有理数——初一数学竞赛系列讲座(11)

合集下载

七年级数学上册教学课件《有理数》

七年级数学上册教学课件《有理数》

巩固练习
归纳总结
1.2 有理数
小学里学过的数除0外都是正数;正数前面添上“-” 号的数是负数;0既不是正数,也不是负数,它表示正 数、负数的界限.
有理数的分类方法不是唯一的,可以按整数和分数分成 两大类,也可以按正有理数、零、负有理数分成三大类.
探究新知
1.2 有理数
素养考点 2 把有理数按要求分类
拓广探索题
某中学对九年级男生进行引体向上的测试,以能做10个为标 准,超过的次数用正数表示,不足的次数用负数表示,其中 8名男生的成绩如下:+2,-5,0,-2,+4,-1,-1,+3.
(1)达到标准的男生占百分之几?
(2)他们共做了多少个引体向上? 解:(1)48 100%=50% ,达到标准的男生占50%.
课堂检测
1.2 有理数
2. 下列各数:
-2,5,
1 3
,0.63,0,7,-0.05,-6,9,
11 5

5 4
.
其中正数有_6___个,负数有__4__个,正分数有__3__个,
负分数有__2__个,自然数有__4__个,整数有__6__个.
课堂检测
3. 判 断: (1)0是整数.( √ ) (2)自然数一定是整数.( √ ) (3)0一定是正整数.( × ) (4)整数一定是自然数.( × )
C.12
D.1
2. 四个数-3, 0, 1, 2,其中负数是( A )
A. -3
B. 0
C. 1
D. 2
课堂检测
基础巩固题
1. 下列说法中,正确的是( B ) A. 正整数、负整数统称为整数 B. 正分数、负分数统称为分数 C. 零既可以是正整数,也可以是负整数 D. 一个有理数不是正数就是负数

(完整版)七年级上专题讲座有理数及其运算绝对值篇

(完整版)七年级上专题讲座有理数及其运算绝对值篇

第二讲 有理数及其运算②——再探绝对值绝对值,不仅仅是有理数中的一个重要的概念,也是初中数学中一个异常活跃且举足轻重的元素。

它不但描述了有理数与数轴的密切联系,而且是有理数运算的基本工具,可以说深刻理解了绝对值概念,是学好初中数学的第一个关品。

一 知识点精讲1、定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,记作:| a |。

2、去绝对值符号的法则。

0000a a a a a a >⎛⎫ ⎪== ⎪ ⎪<⎝⎭- 00a a a a a ≥⎛⎫ ⎪= ⎪ ⎪≤⎝⎭- 3、性质:| a | ≥0,即数a 的绝对值具有非负性。

4、技能构建。

(1)数轴上,右边的数比左边的数大,如图a -b<0,b -a>0,a +b<0(2)多项式的相反数,用去括号法则理解为:括号前是负号,把括号和负号一起去掉,括号内每项都要变号,也可以直接理解为每项都变号。

如a -b 的相反数是:-(a -b )=-a +b(3)|a -b|表示数a 到数b 的两点间的距离。

(4)若|a|=b ,且b ≥0,则有a =±b(5)|ab|=|a|·|b|a ab b=(b ≠0) |a| 2 =|a 2 |=a 2(6)充分利用“数轴”这个工具来进行“数形结合”的思考,这是一种很重要的数学方法,本专题也要用到“分类讨论思想”。

它必须遵循两条原则:①每一次分类要按照同一标准进行;②不重复,不遗漏。

二 典型例题讲解及思维拓展:例1:已知,|a|=1,|b|=2,则a +b 的值是_________。

例2:a 是任意有理数,则|-a|-a 的值是等于___________。

例3:如图,化简|a|-|a +b|+|c -a|-|a -|a||例4:已知,x<y<0,设M=|x|,N=|y|,p= ,则M 、N 、p 的大小关系是___________。

例5:(湖北省选拔赛题)若|a|=5,|b|=3,且|a-b|=b -a ,那么|a+b|=___。

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析一、代数部分。

1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。

- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。

- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。

- 那么a^b = 3^-2=(1)/(9)。

2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。

- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。

- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。

- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。

3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。

- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。

4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。

- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。

人教版七年级数学上册第一章《有理数》(大单元教学设计)

人教版七年级数学上册第一章《有理数》(大单元教学设计)
4.理解绝对值的概念,掌握求一个数的绝对值的方法,并能够应用于解决实际问题。
5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。

初中数学北师大版七年级上册第二单元第11课《有理数的混和运算》优质课公开课教案教师资格证面试试讲教案

初中数学北师大版七年级上册第二单元第11课《有理数的混和运算》优质课公开课教案教师资格证面试试讲教案

初中数学北师大版七年级上册第二单元第11课《有理数的混和运算》优质课公开课教案教师资格证面试试讲教案
1重点难点
1、理解掌握有理数混合运算的法则,用运算律对算式进行简便运算.让学生独立发现提出自己的计算方法。

2、混合运算要能够把各种运算在混合中分离出来,并先乘方运算,后乘除,再加减运算.如有括号要先算括号内部的。

3、如何将实际问题归纳抽象为数学模型并加以计算和解决。

2教学过程
2.1第一学时
2.1.1教学目标
知识目标: 掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算(以三步为主)。

能力目标: 学生在运算过程中通过观察、分析、交流能合理使用运算律简化运算。

情感目标:学生能主动参与、勇与发现、学会合作探索交流的学习方式。

2.1.2学时重点
理解掌握有理数混合运算的法则,用运算律对算式进行简便运算.让学生独立发现提出自己的计算方法。

2.1.3学时难点
1、混合运算要能够把各种运算在混合中分离出来,并先乘方运算,后乘除,再加减运算.如有括号要先算括号内部的。

2、如何将实际问题归纳抽象为数学模型并加以计算和解决。

2.1.4教学活动
活动1【导入】有理数的混合运算教学过程
第一环节:复习回顾,引入新课。

初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除。

0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y=6。

∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。

初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初一数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 质数那些事阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫作质数(也叫素数);如果能被1和本身以外的自然数整除,就叫作合数;自然数1既不是质数,也不是合数,叫作单位数.这样,我们可以按约数个数将正整数分为三类:关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4.2.1既不是质数,也不是合数;2是唯一的偶质数.3.若质数|,则必有|或|.4.算术基本定理:任意一个大于1的整数N能唯一地分解成个质因数的乘积(不考虑质因数之间的顺序关系):N=,其中,为质数,为非负数(=1,2,3,…,).正整数N的正约数的个数为(1+)(1+)…(1+),所有正约数的和为(1++…+)(1++…+)…(1++…+).例题与求解【例1】已知三个质数,,满足+++=99,那么的值等于_________________.(江苏省竞赛试题) 解题思想:运用质数性质,结合奇偶性分析,推出,,的值.【例2】若为质数,+5仍为质数,则+7为( )A.质数B.可为质数,也可为合数C.合数D.既不是质数,也不是合数(湖北省黄冈市竞赛试题) 解题思想:从简单情形入手,实验、归纳与猜想.【例3】求这样的质数,当它加上10和14时,仍为质数.(上海市竞赛试题) 解题思想:由于质数的分布不规则,不妨从最小的质数开始进行实验,另外,需考虑这样的质数是否唯一,按剩余类加以深入讨论.【例4】⑴将1,2,…,2 004这2 004个数随意排成一行,得到一个数,求证:一定是合数.⑵若是大于2的正整数,求证:-1与+1中至多有一个质数.⑶求360的所有正约数的倒数和.(江苏省竞赛试题) 解题思想:⑴将1到2 004随意排成一行,由于中间的数很多,不可能一一排出,不妨找出无论怎样排,所得数都有非1和本身的约数;⑵只需说明-1与+1中必有一个是合数,不能同为质数即可;⑶逐个求解正约数太麻烦,考虑整体求解.【例5】设和是正整数,≠,是奇质数,并且,求+的值.解题思想:由题意变形得出整除或,不妨设.由质数的定义得到2-1=1或2-1=.由≠及2-1为质数即可得出结论.【例6】若一个质数的各位数码经任意排列后仍然是质数,则称它是一个“绝对质数”[如2,3,5,7,11,13(31),17(71),37(73),79(97),113(131,311),199(919,991),337(373,733),…都是质数].求证:绝对质数的各位数码不能同时出现数码1,3,7,9.(青少年国际城市邀请赛试题) 解题思想:一个绝对质数如果同时含有数字1,3,7,9,则在这个质数的十进制表示中,不可能含有数字0,2,4,5,6,8,否则,进行适当排列后,这个数能被2或5整除.能力训练A级1.若,,,为整数,=1997,则=________.2.在1,2,3,…,这个自然数中,已知共有个质数,个合数,个奇数,个偶数,则(-)+(-)=__________.3.设,为自然数,满足1176=,则的最小值为__________.(“希望杯”邀请赛试题) 4.已知是质数,并且+3也是质数,则-48的值为____________.(北京市竞赛试题) 5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( )A.4B.8C.12D.06.在2 005,2 007,2 009这三个数中,质数有( )A.0个B.1个C.2个D.3个(“希望杯”邀请赛试题) 7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有()A.1个B.3 个C.5个D.6 个(“希望杯”邀请赛试题) 8.设,,都是质数,并且+=,<.求.9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题)11.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为cm规格的地砖,恰用块,若选用边长为cm规格的地砖,则要比前一种刚好多用124块,已知,,都是正整数,且(,)=1,试问这块地有多少平方米?(湖北省荆州市竞赛试题)B级1.若质数,满足5+7=129,则+的值为__________.2.已知,均为质数,并且存在两个正整数,,使得=+,=×,则的值为__________.3.自然数,,,,都大于1,其乘积=2 000,则其和++++的最大值为__________,最小值为____________.(“五羊杯”竞赛试题) 4.机器人对自然数从1开始由小到大按如下的规则染色:凡能表示为两个合数之和的自然数都染成红色,不合上述要求的自然数都染成黄色,若被染成红色的数由小到大数下去,则第1 992个数是_______________.(北京市“迎春杯”竞赛试题) 5.若,均为质数,且满足+=2 089,则49-=_________.A.0B.2 007C.2 008D.2 010(“五羊杯”竞赛试题) 6.设为质数,并且7+8和8+7也都为质数,记=77+8,=88+7,则在以下情形中,必定成立的是()A.,都是质数B.,都是合数C.,一个是质数,一个是合数 D.对不同的,以上皆可能出现(江西省竞赛试题) 7.设,,,是自然数,并且,求证:+++一定是合数.(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足:⑴6个数中任意两个都互质;⑵6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数,都是质数,并且7+与+11也都是质数,试求的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.专题01 质数那些事例1 34例2 C例3 3符合要求提示:当p=3k+1时,p+10=3k+11,p+14=3(k+5),显然p+14是合数,当p=3k+2时,p+10=3(k+4)是合数,当p=3k时,只有k=1才符合题意.例4 (1)因1+2+…+2004=×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n是大于2的正整数,则-1≥7,-1、、+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除,故-1与+1中至多有一个数是质数.(3)设正整数a的所有正约数之和为b,,,,…,为a的正约数从小到大的排列,于是=1,=a.由于中各分数分母的最小公倍数=a,故S===,而a=360=,故b=(1+2++)×(1+3+)×(1+5)=1170.==.例5 由=,得x+y==k.(k为正整数),可得2xy=kp,所以p整除2xy且p为奇质数,故p整除x或y,不放设x=tp,则tp+y=2ty,得y=为整数.又t与2t-1互质,故2t-1整除p,p为质数,所以2t-1=1或2t-1=p.若2t-1=,得t=1,x=y=p,与x≠y矛盾;若2t-1=p,则=,2xy=p(x+y).∵p是奇质数,则x +y为偶数,x、y同奇偶性,只能同为xy=必有某数含因数p.令x=ap,ay=,2ay=ap+y.∴y=,故a,2a-1互质,2a-1整除p,又p是质数,则2a-1=p,a=,故x==,∴x+y=+=。

初中数学竞赛辅导系列

初中数学竞赛辅导系列
2.分式的基本性质——分式的分子和分母都乘以(或除以)同一个不等于零的整式,分 式的值不变.
例1 化简分式:
例2 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求
15
15
此时, x 105
若a 3,b 7,则100 c 150 ,此时无解
21
21
综上,x 102,104,105,110,114,128,130,135,136,138
余数问题
在整数除法运算中,除了前面说过的“能整除”情形 外,更多的是不能整除的情形.
被除数=除数×商+余数. 通常把这一算式称为带余除式,它使我们容易从“余
例2 有四个学生,他们的年龄恰好是一个比一个大1岁, 而他们的年龄的乘积是5040,那么,他们的年龄各是多少 ?
解:设他们的年龄分别是x-1, x , x+1 , x+2
(x 1)x(x 1)(x 2) 5040
(x2 x)(x2 x 2) 5040
(x2 x)2 2(x2 x) 5040 0
(4)能被4(或25)整除的数的特征:如果一个整数的末 两位数能被4(或25)整除,那么它必能被4(或25)整除.
(5)能被8(或125)整除的数的特征:如果一个整数的 末三位数能被8(或125)整除,那么它必能被8(或125) 整除.
(6)能被11整除的数的特征:如果一个整数的奇数位数 字之和与偶数位数字之和的差(大减小)能被11整除,那 么它必能被11整除.
质数中只有一个偶数,就是2,其他质数都是奇数.但 是奇数不一定是质数,例如,15,33,….
一个整数的因数中,为质数的因数叫做这个整数的质 因数,例如,2,3,7,都是42的质因数,6,14也是42的 因数,但不是质因数.

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版
2.练习有理数的运算:设计一系列有理数的运算题目,要求学生熟练掌握加、减、乘、除等运算规则,并能够正确计算。
3.解决实际问题:提供几个涉及有理数的实际问题,要求学生运用所学知识解决这些问题。
4.有理数在生活中的应用:鼓励学生观察和思考日常生活中涉及有理数的问题,如购物时的打折、优惠等,尝试用所学的有理数知识解决实际问题。
-参与数学竞赛:鼓励学生参加数学竞赛,提高学生的数学水平和竞赛能力,培养学生的团队合作精神。
教学反思与改进
回过头来看,今天的内容感觉学生掌握得怎么样?我在讲解有理数运算规则时,是否讲解得足够清晰?学生在课堂上的参与度如何?这些问题都需要我在课后进行反思。
首先,我意识到在讲解有理数的概念时,有些学生似乎还是有些模糊。下次我在讲解时,可以结合更多的实际例子,让学生更好地理解有理数在日常生活中的应用。此外,我也可以让学生在课堂上更多的互动,比如通过小组讨论,让学生互相解释有理数的定义,这样也许能帮助他们更清晰地理解。
作业反馈:
1.对于有理数的定义和分类的作业,我会检查学生是否能够准确识别各种类型的有理数,并针对存在的问题给出改进建议。
2.对于有理数的运算的作业,我会检查学生的计算是否正确,并指出存在的问题,如运算错误、计算粗心等,给出改进建议。
3.对于解决实际问题的作业,我会检查学生是否能够运用所学知识解决这些问题,并针对存在的问题给出改进建议。
-设计预习问题:围绕有理数的定义和分类,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解有理数的基本概念。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。

竞赛讲座(有理数的有关知识)

竞赛讲座(有理数的有关知识)

竞赛讲座(有理数的有关知识)一、 知识要点 1、绝对值x 的绝对值x 的意义如下:x =⎩⎨⎧<-≥0x x x x ,如果,如果x 是一个非负数,当且仅当x=0时,x =0绝对值的几何意义是:一个数的绝对值表示这个数对应的数轴上的点到原点的距离;由此可得:b a -表示数轴上a 点到b 点的距离。

2、倒数1除以一个数(零除外)的商,叫做这个数的倒数。

如果两个数互为倒数,那么这两个数的积等于1。

3、相反数绝对值相同而符号相反的两个数互为相反数。

两个互为相反数的数的和等于0。

二、 例题精讲 例1 化简 6312-+--+x x x分析:由2x+1=0、x-3=0、x-6=0求出零点,然后用零点分段法将绝对值去掉,从而达到化简的目的。

解:由2x+1=0、x-3=0、x-6=0 分别求得:x= -1/2, x=3, x=6 当21-<x 时,原式= -(2x+1)+(x-3) - (x-6)= -2x+2 当321<≤-x 时,原式= (2x+1)+(x-3) - (x-6)= 2x+4 当63<≤x 时,原式= (2x+1)-(x-3) - (x-6)= 10当x ≥6时,原式= (2x+1)-(x-3) + (x-6)= 2x-2∴原式=⎪⎪⎩⎪⎪⎨⎧≥<≤<≤-+-<+-时当,时当,时当,时当,6x 2-2x 63 103 42 222121x x x x x评注:用零点分段法,通过零点分段将绝对值去掉,从而化简式子,解决问题是解决含绝对值问题的基本方法。

例2 已知312351312+----≥--x x xx x ,求的最大值和最小值。

(第六届迎春杯决赛试题)分析:先解不等式,求出x 的范围,然后利用绝对值的几何意义来求最大值和最小值。

解:解不等式2351312x x x --≥-- 得: 117≤x1131+--x x 的几何意义是x 到1的距离与x 到-3的距离的差,从上图中可以看出:当x ≤-3时这差取得最大值4,因117≤x ,则当117=x 时这差取得最小值1133-.评注:1、本题是采用数形结合的思想,用绝对值的几何意义来解题。

初中数学竞赛第01讲 有理数 数轴真题讲解

初中数学竞赛第01讲 有理数 数轴真题讲解

第1讲有理数和数轴知识方法扫描1. 正数和负数自然界有许多具有相反意义的量,如上升与下降,向东与向西、盈余与亏损等都可以用正负数来表示.如+5,+78,+2.4等带有正号的数叫正数;正号通常可以省略。

如-65,-78,-92.4等带有负号的数叫负数;“0”既不是正数,也不是负数,2.有理数的分类(1)⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数(2)⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数3. 数轴规定了原点、正方向、长度单位的有向直线叫做数轴建立了数轴后,就可以用数轴上的点表示有理数,原点表示的数是0,正有理数用原点右边的点表示,负有理数用原点左边的点表示,所有的有理数都可在数轴上找到对应的点.数轴上的两个有理数中,右边的数总比左边的数大,因此有理数大小比较的规律是:正数大于0,零大于一切负数,负数小于零,正数大于一切负数. 4.相反数只有符号不同的两个数叫互为相反数,其中一个数叫另一个数的相反数,0的相反数是0. 互为相反数的和为0,在数轴上的原点两旁,离原点的距离相等的两个点所表示的数互为相反数.经典例题解析例1(1996年第7届“希望杯”数学邀请赛试题)若a、b互为相反数,c,d互为负倒数, 则(a+b)1996+(cd)323=______解因a、b互为相反数,故a+b=0;因c,d互为负倒数,故cd = -1,于是(a+b)1996+(cd)323 = 01996+(-1)323 = -1评注互为相反数的两数和为0,互为倒数的两数积为1,互为负倒数的两数积为-1,解答此类问题要注意从整体考虑。

例2 (2000年上海市中学生业余数学学校预备年级招生试题)三个互不相等的数,可以表示成1,a+b,a的形式,也可以表示成0,ba,b的形式,那么a+3b=解 由题意知,a 与a+b 中必有一个等于0,b 与b a 中必有一个等于1, 但显然a ≠0,故a+b =0,从而b a=-1,于是b =1,这样就有a =-1, ∴a +3b =2。

初中数学竞赛—有理数篇共59页

初中数学竞赛—有理数篇共59页
初中数学竞赛—有理数篇
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

数学竞赛辅导讲座(新)

数学竞赛辅导讲座(新)

数学竞赛辅导系列讲座一 ——数1.计算:1111(12)(123)(12320)2320+++++++++++.2.如果5555555555555554444666666233322n++++++++⨯=+++,那么n=_______. 3.军训基地购买苹果慰问学员,已知苹果总数用八进制表示为abc ,七进制表示为cba ,那么苹果总数用十进制表示为_______.4.已知实数a 满足|2014|a a -=,那么a -20142的值是( )A 、2013B 、2014C 、2015D 、20165.设分数13(13)56n n n -≠+不是最简分数,那么正整数n 的最小值可以是( )A 、84B 、68C 、45D 、1156.数272-1能被500与600之间的若干整数整除,试找出三个这样的整数,它们是________. 7.n 是自然数,19n+14与10n+3都是某个不等于1的自然数d 的倍数,则d=________.8.设1a =,则3a 3+12a 2-6a -12=( )A 、24B 、25C 、10D 、129.已知a 、b 是正整数,且满足2是整数,则这样的有序数对(a ,b )共有____对.10.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数有( )个A 、3B 、4C 、5D 、611.设n a 表示数4n 的末位数,则122012a a a +++=________.12.如果对于某一特定范围内x 的任意允许值,p=|1-2x|+|1-3x|+…+|1-10x|为定值,则定值为( )A 、2 B 、3C 、4D 、513.若1,2,3xy yz zxx y y z z x===+++,则x=______. 14.试求|x -1|+|x -2|+|x -3|+…+|x -2015|的最小值.15.已知p 、q 均为素数,且满足5p 2+3q=59,则以p+3,1-p+q ,2p+q -4为边长的三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形16.若x 1、x 2 、x 3 、x 4 、x 5为互不相等的正奇数,满足(2005-x 1)(2005-x 2)(2005-x 3)(2005-x 4)(2005-x 5)=242,则x 12+x 22+x 32+x 42+x 52的末尾数字是( ) A 、1B 、3C 、5D 、717.在数1、2、3、…、2014、2015前面任意添加上“+”或“-”进行计算,所得可能的最小非负数是________.18.设a 、b 、c 为实数,2222,2,2362x a b y b c z c a πππ=-+=-+=-+,x 、y 、z 中至少有一个值( )A 、大于0B 、等于0C 、不大于0D 、小于019.今天是星期日,若明天算第1天,则第13+23+…+20163天是星期_____. 20.已知()()()⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++++=201313121201321.11)(2f f f f f f x x f 则=.21.已知四个互不相等的正数x 、y 、m 、n 中,x 最小,n 最大,且x :y=m :n ,试比较x+n 与y+m 的大小,并证明你的结论. 22.10099++++.23.设x>0,y>0=的值.24.25.设a 、b 、c26.=且0<x<y ,那么满足上述等式的整数对(x ,y)的个数有多少?27.设1980100S =++++[S]表示不超过S 的最大整数,试求S .28.已知x 、y 是整数,并且13|(9x+10y),求证:13|(4x+3y).29、若a 、b 是整数,且7|(a+b),7|(2a -b),求证:7|(5a+2b). 30.正整数p 、q 都大于1,且2121,p q q p--都是整数,求p+q . 31.当n 是正整数时,n 4-6n 2+25是质数还是合数?证明你的结论. 32.已知a 是自然数,问a 4-3a 2+9是质数还是合数?证明你的结论.33.试求出一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同.34.设a 、b 、c 、d 是正整数,并且a 2+b 2=c 2+d 2,证明a+b+c+d 一定是合数.35.你能找到三个正整数a 、b 、c ,使得关系式(a+b+c)(a -b+c)(a+b -c)(b+c -a)=3388成立吗?如果能找到,请举一例;如果找不到,请说明理由.36.一个正整数a ,若将其数字重新排列,可得到一个新的正整数b ,如果a 恰好是b 的3倍,我们称a 是一个“希望数”. (1)请你举例:“希望数”一定存在;(2)请你证明:如果a 、b 都是“希望数”,则ab 一定是729的倍数.37.将自然数1、2、3、…、21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33. 38.设x =a 是x 的小数部分,b 是-x 的小数部分,求333a b ab ++的值.39.设a 、b 都是整数,求证:a ,b ,a 2+b 2,a 2-b 2中一定有一个被5整除.40.若一个数能够表示成2222x xy y ++(x ,y 是整数)的形式,则称该数为“好数” (1)试判断29是否为好数;(2)写出80,81,…,100中的好数; (3)如果m ,n 都是好数,证明mn 也是好数.41.有三堆小石子的个数分别是19、8、9,现在进行如下的操作:每次从三堆中的任意两堆中取出1个石子,然后把这两个石子都加到另一堆中,试问能否进过若干次这样的操作后,使得(1)三堆的石子数分别是2、12、22? (2)三堆的石子数都是12? 如能达到要求,请用最小的操作次数完成它,如不能达到,请说明理由.注:每次操作可用如下方式表示,比如从第一、二堆中各取出一个石子,加到第三堆上,可表示为(19,8,9)→(18,7,11)等等.42.为无理数.43.已知p 为大于3的质数,证明p 的平方被24除的余数是1.44.已知M 是一个四位的完全平方数,若将M 的千位数字减少3而个位数字增加3可以得到另一个完全平方数,则M=_________.45.在“□1□2□3□4□5□6□7□8□9”的小方格中填上“+”或“-”号,如果可以使其代数和为n ,就称数n 是“可被表出的数”,否则,就称数n 是“不可被表出的数”(如1是可被表出的数,这是因为1+2-3-4+5+6-7-8+9是1的一种可被表出的方法). (1)求证:7是可被表出的数,而8是不可被表出的数; (2)求25可被表出的不同方法种数.46.是否存在:用0,1,2,…,9这十个数字组成几个数,使它们的和恰好为100,每个数字都用一次并且只能用一次.47.设〔x 〕表示不超过实数x 的最大整数.则在平面直角坐标系xoy 中满足〔x 〕〔y 〕=2011的所有点(x ,y )组成的图形的面积 . 48.已知122015,,,a a a 是一列互不相等的正整数.若任意改变这2015个数的顺序,并122015,,,b b b 记为.则数()()()112220152015M a b a b a b =---的值必为 .49.(1)证明:由2015个1和0组成的自然数不是完全平方数;(2)试说明:存在最左边2015位都是1的形如11…1﹡﹡…﹡的自然数(﹡代表阿拉伯数码)是完全平方数.数学竞赛辅导系列讲座二 ——式1.已知x _______.2.已知a+b+c=11与1111317a b b c c a ++=+++,则a b cb c c a a b+++++的值是_______. 3.已知实数a ,b ,c 满足(a+b)(b+c)(c+a)=0,且abc<0,则代数式||||||a b ca b c ++的值是_______.4.已知a ,b 为实数,且ab=1,a ≠1,设11,1111a b M N a b a b =+=+++++,则M-N=____. 5.a ,b ,c 不全为0,满足a+b+c=0,a 3+b 3+c 3=0,称使得a n+b n+c n=0恒成立的正整数n 为“好数”,则不超过2013的正整数中好数的个数为( )A 、2B 、1007C 、2012D 、20136.设()()94122=++++y y x x ,则=+++1422x y y x ______.7.设a ,b ,c 的积为负数,和为正数,且||||||||||||a b c ab bc cax a b c ab bc ca =+++++,则321ax bx cx +++的值为( )A 、0B 、1C 、2D 、-18.若|x-a|=a-|x|(x ≠0,a ≠x)( )A 、2aB 、2xC 、-2aD 、-2x9.若a ,b 为实数,满足111a b a b -=+,则b aa b-的值为( ) A 、-1 B 、0C 、12D 、110.设a ,b ,c 为互不相同的有理数,满足((2b ac +=++,则满足条件的a ,b ,c 共有( )组A 、0B 、1C 、2D 、411.已知x y ==,则3312x xy y ++=___________.12.的结果是( )A 、1B 、 3C 、2D 、413.分式222253051611x xy y x xy y ++++的最小值是( )A 、-5B 、-3C 、5D 、314.非零实数a ,b ,c ,x ,y ,z 满足关系式x y za b c==,则()()()()()()xyz a b b c c a abc x y y z z x ++++++=_____. 15.已知x ,y ,z 为实数,若2222221,2,2x y y z x z +=+=+=,则xy+yz+zx 的最小值为( )A 、52B 、12+ 3C 、-12D 、12- 3 16.若44222226a b a a b b +=-++,则22a b +=_____. 17.若实数x ,y 满足703392xy x y x y xy+++=⎧⎨+=+⎩,则22x y xy +=_______.18.设x ,y 为实数,代数式2254824x y xy x +-++的最小值为_______.19.已知实数a ,b ,c 满足27,160a b c ab bc b c -+=++++=,则b a 的值等于_____.20.分解下列因式:(1)2(61)(21)(31)(1)x x x x x ----+ (2)42221x x ax a +++- (3)322222422x x z x y xyz xy y z --++- (4)444()x y x y +++ (5)22276212x xy y x y -++-- (6)32211176x x x +++ (7)136912++++x x x x(8)33221a b ab a b -+++21.使27m m ++为完全平方数的正整数m 的个数为__________. 22.若实数a 满足322331132a a a a a a +-+=--,则1a a+=________. 23.已知实数x ,y 满足(2015x y -=,则2232332014x y x y -+--的值为( )A 、-2015B 、2015C 、-1D 、124.设a =5432322a a a a a a a+---+-=________. 25.设a ,b ,c ,d 都是正整数且5432,a b c d ==,19=-a c .求d -b 的值.26.若2223331,2,3x y z x y z x y z ++=++=++=,求444x y z ++的值.27.若22221,1,0a b c d ac bd +=+=+=,试求ab+cd 的值.28.已知x>y>z>0,求合适等式xyz+xy+yz+zx+x+y+z=1989的整数x ,y ,z 的值. 29.已知一组数据4,-2,0,2,x 的极差是10,求x 的值. 30.设1219,,,x x x 都是正整数,且满足121995x x x +++=,求2221219x x x +++的最大值.31.实数a ,b1032b b =-+--,求22a b +的最大值.32.22013.33.当x 变化时,求分式22365112x x x x ++++的最小值.34.已知x y z uy z u z u x u x y x y z===++++++++,求x y y z z u u xz u u x x y y z+++++++++++的值. 35.求证:(1)一个自然数的平方被7除的余数只能是0,1,4,2;(2)对任意正整数n,不被7整除. 36.12,,,n x x x 为实数,()21222212n n x x x x x x n++++++=,求证:12n x x x ===.37.已知a ,b ,c 均为正整数,且满足222a b c +=,又a 为质数,求证:(1)b 与c 这两个数的乘积为偶数;(2)2(a+b+1)是完全平方数.38.设a ,b ,c 均是不等于0的实数,且满足22a b bc -=及22b c ca -=,证明:22a c ab -=.39.设实数x ,y 满足(1x y ++=,求x+y 的值.40.已知a ,b ,c 为实数,证明2222(),(),(),()a b c a b c b c a c a b +++-+-+-这四个代数式的值中至少有一个不小于222a b c ++的值,也至少有一个不大于222a b c ++的值. 41.设实数x ,y ,z 同时满足33334,266,398x y x y z y z x z +=++=++=+,试求2222013(1)2014(1)2015(1)x y z -+-+-的值.42.如果实数a ,b 满足条件22221,|12|21a b a b a b a +=-+++=-,a+b 的值是多少? 43.已知a ,b ,c 为正数,满足下列条件 32a b c ++= …………①14b c a c a b a b c bc ca ab +-+-+-++= …………②为三边长的三角形可构成以一个直角三角形. 44.已知cb ac b a ++=++1111.求证:a+b ,b+C ,c+a 中至少有一个为零.45. 互不相等的实数a 、b 、c ,d.且x ad d c c b b a =+=+=+=+1111, 求x 的值. 46.已知1abc =-,221a bc c+=,求555ab bc ca ++的值.数学竞赛辅导系列讲座三 ——方程1.方程|3x|+|x -2|=4的解的个数是( )A 、0B 、1C 、2D 、32.以关于x ,y 的方程组32339mx y x my +=⎧⎨-=⎩的解为坐标的点(x ,y )在第二象限,则符合条件的实数m 的范围是( )A 、m>19B 、m<-2C 、-2<m<19D 、-12<m<93.已知实数a>0,b>0,满足22014,2014a b b +=+=,则a+b 的值是______.4.关于x 的方程22211ax a a x -=+-的解为________. 5.已知p 是质数,且方程24440x px p +-=的两个根都是整数,则p=_____. 6.方程323652x x x y y ++=-+的整数解(x ,y )的个数是( )A 、0B 、1C 、3D 、无数多个7.若a ,b 都是整数,方程220080ax bx +-=的两相异根都是质数,则3a+b 的值是( )A 、100B 、400C 、700D 、10008.对于实数x ,符合[x]表示不大于x 的最大整数,例如[3.14]=3,[-7.59]=-8,则关于x 的方程3747x +⎡⎤=⎢⎥⎣⎦的整数解有( )个 A 、4B 、3C 、2D 、19.已知正数a ,b ,c ,d ,e ,f 满足1114,9,16,,,4916bcdef acdef abdef abcef abcdf abcde a b c d e f ======,则 (a+c+e)-(b+d+f)的值为________.10.方程||(1)0x x k --=有三个不相等的实根,则k 的取值范围是( )A 、-14<k<0B 、0<k<14C 、k>-14D 、k<1411.若整数m 使得方程220060x mx m -++=的根为非零整数,这样的整数m 的个数为________.12.设x 1,x 2是方程240x x +-=的两根,则3212510x x -+=( )A 、-29B 、-19C 、-15D 、-913.方程22332x xy y x y ++=-的非负整数解(x ,y )的组数为( )A 、0B 、1C 、2D 、314.方程7[2][3]82x x x +=-的所有实数解为_____________. 15.对于实数u ,v ,定义一种运算“*”为:u*v=uv+v ,若关于x 的方程x*(a*x)=- 14 有两个不同的实数根,则满足条件的实数a 的取值范围是____________.16.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度一样,而且18路公交车总站每隔固定的时间发一辆车,那么发车间隔为几分钟?17.不定方程5x -14y=11的最小正整数解是____________. 18.方程22[]30x x --=的解的个数是( )A 、1B 、2C 、3D 、419.已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=,的两个非负实根,则22(1)(1)a b --的最小值是________. 20.已知m ,n是二次方程2201470x x ++=的两根,那么22(20136)(20158)m m n n ++++等于( )A 、2006 B 、2007 C 、2008 D 、200921.若实数x ,y ,z 满足方程组122232xyx y yzy z zxz x⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩,则( ) A 、x+2y+3z=0B 、7x+5y+2z=0C 、9x+6y+3z=0D 、10x+7y+z=022.已知实数a ,b ,c ,d ,且a ≠b ,c ≠d ,若关系式22222,2,4,4a ac b bc c ac d ad +=+=+=+=同时成立,则6a+2b+3c+2d=__________.23.方程组3322181x y z x y z +=-⎧⎨+=-⎩的正整数解(x ,y ,z )为_____________. 24.方程222522007x xy y ++=的所有不同的整数解共有_______组.25.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入□x 2+□x+□=0的三个方框中,作为一元二次方程的二次项系数,一次项系数和常数项,使得方程至少有一个整数根的a ,b ,c 有( )A 、不存在B 、有一组C 、有两组D 、多于两组26.已知a ,b ,c 为正数,关于x 的一元二次方程20ax bx c ++=有两个相等的实数根,则方程2(1)(2)(1)0a x b x c +++++=的根的情况是( ) A 、没有实根B 、有两个相等的实根C 、有两个不等实根D 、根的情况不确定27.求方程232730x xy y -+=的正整数解.28.设x ,y ,z 是都不为零的相异实数,且满足等式y z z x x yy z x+++==,试证明:此等式的值不可能是实数.29.解方程:222916(3)x x x +=- 30.满足方程2221x y -=的所有质数解(即x ,y 都是质数的解)是_______. 31.若2222,x y m n x y m n +=++=+,求证:2014201420142014xy m n +=+.32.已知a>0,且b>a+c ,证明方程20ax bx c ++=必有两个不同的实根. 33.解下列方程:(1)4322914920x x x x -+-+=(2)44(2)820x x +--= (3)222(231)(251)9x x x x x -+++=(4)222211114325671221x x x x x x x x +++=+++++++ (5)2240119x x x x ⎛⎫⎛⎫+= ⎪ ⎪-+⎝⎭⎝⎭(6)1321121111x x x++=+++34.设a 为整数,使得关于x 的方程2(5)70ax a x a -+++=至少有一个有理根,试求方程所有可能的有理根.35.已知正整数a ,b ,c 满足a<b<c ,且ab+bc+ca=abc ,求所有可能符合条件的a ,b ,c . 36.当a ,b 为何值时,方程2222(1)(3442)0x a x a ab b ++++++=有实根. 37.m 为有理数,试确定方程22443240x mx x m m k -++-+=的根为有理数.38.当12122()p p q q =+时,试证方程2110x p x q ++=和2220x p x q ++=中至少有一个方程有实根.39.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明共有几个? 40.如果关于x 的方程2211k x kx x x x x+-=--只有一个解,求k 的值. 41.把最大正整数是31的连续31个正整数分成A ,B 两组,且10在A 组,如果把10从A 组移到B 组中,则A 组中的各数的平均数增加12 ,B 组中各数的平均数也增加12 ,问A 组中原有多少个数?42.已知a>2,b>2,试判断关于x 的方程2()0x a b x ab -++=与方程2x abx a b -++=有没有公共根,并说明理由.43.求满足条件的所有实数k ,使得关于x 的方程2(1)(1)0kx k x k +++-=的根都是整数. 44.设a ,b ,c 为互不相等的非零实数,求证三个方程22220,20,20ax bx c bx cx a cx ax b ++=++=++=不可能同时有两个相等实根.45.设△是整系数二次方程20ax bx c ++=的判别式,(1)4,5,6,7,8五个数值中,哪几个能作为判别式△的值?分别写出一个相应的二次方程;(2)请你从中导出一般规律——一切整数中怎样的整数值不能作为△的值,并给出理由. 46.设a 、b 、c 、d 是正整数,a 、b 是方程()02=+--cd x c d x 的两个根.证明:存在边长是整数且面积为ab 乘积的直角三角形.数学竞赛辅导系列讲座四——不等式1.不等式2|26|x x a +-≥对一切实数x 都成立,则实数a 的最大值为_____.2.x <<x 的个数是( ) A 、4B 、5C 、6D 、73.已知-1<2x -1<1,则21x-的取值范围是_______. 4.已知关于x 的不等式(2m -n)x -m -5n>0的解集为x<107 ,那么关于x 的不等式mx>n(m ≠0)的解集为__________. 5.使关于x 的不等式12ax a x --≥成立的x 的最大值是-1,则a 的值是____. 6.关于x 的不等式|2x -1|<6的所有非负整数解的和为_______.7.若正数x ,y ,z 满足不等式组1126352351124z x y z x y z x y x z y ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩,则x ,y ,z 的大小关系是( )A 、x<y<zB 、y<z<xC 、z<x<yD 、不能确定8.若a ,c ,d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,那么a+b+c+d 的最大值为( )A 、-1B 、-5C 、0D 、19.若a ,b ,c ,d 为乘积是1的四个正数,则代数式2222a b c d ab ac ad bc bd cd +++++++++的最小值是( )A 、0B 、4C 、8D 、1010.设实数x 满足3142631323510x x x ----≥-,求2|x -1|+|x+4|的最小值. 11.求证:2211331x x x x -+≤≤++(x 为实数).12.已知221a b +=,对于满足条件0≤x ≤1的一切实数x ,不等式a(1-x)(1-x -ax)-bx(b -x -bx)≥0.恒成立,当乘积ab 取最小值时,求a ,b 的值13.设x ,y 为实数,若22222,x xy y x xy y k -+=++=,求k 的取值范围.14.解关于x 的不等式组365(12)8mx mxmx x m x -<-⎧⎨+>-+⎩.15.在坐标平面上,纵坐标与横坐标都是整数的点称为整点,试在二次函数2910105x x y =-+的图像上找出满足y ≤|x|的所有整点(x ,y ),并说明理由.16.已知0<a<1,0<b<1,0<c<1,求证:(1-a)b ,(1-b)c ,(1-c)a 不可能同时大于14 .17.一玩具厂用于生产的全部劳动力为450个工时原料为400个单位.生产一个小熊要用15个工时,20个单位的原料,售价为80元;生产一个小猫要用10个工时,5个单位的原料,售价为45元.在劳动力和原料的限制下合理安排生产小熊小猫的个数.可以使小熊和小猫总售价尽可能高.请你用学过的数学知识分析,总售价是否可能达到2200元.18.求满足不等式 a 2+b 2+c 2+3﹤ab+3b+2c 的整数解.19.由沿河岸一城市A 运货物到离河岸30km 的地点B,按沿河岸距离计算,B 离A 的距离AC 是40km .如果水路运费是公路运费的一半,应该怎样确定在河岸的点D,从B 点筑一条公路到D ,才能使由A 到B 的运费最少?20.甲乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元.则其中单价为9元的商品有几件?21.货轮上卸下若干只箱子,其总质量为10吨.每只箱子的质量不超过1吨,为了保证能把这些箱子一次性运走.问至少需要多少载重为3吨的车子.22.已知二次函数y=2x +(m+1)x+n 过点(3,3),并且对于一切实数x ,所对应的函数值均不小于x ,求这个函数图像的顶点到原点的距离.23.如图,△ABC 中,∠C 为锐角,AD ,BE 分别是BC 和AC 边上的高线,设CD=2m BC ,CE=2nAC ,当m ,n 为正整数时,试判断△ABC 的形状,并说明理由.24.已知y x x x )2(622222-=+-+-,求yx -1的值.25.已知a ,b 为实数,且满足16a 2+2a+8ab+b 2—1=O ,求3a+b 的最小值.26.设10p p x ,求证:21)1(11522+-+++≤p x x .27.若二次函数()x f =a x ax --22满足()()()()0312f f f f ,则实数a 的取值范围为 . 28.已知+∈R y x ,.求yx yy x x 22+++的最大值.29.能同时表示成连续9个整数之和、连续10个整数之和及连续11个整数之和的最小正整数为 .30.四边形ABCD 两条对角线AC 、BD 相交于点O ,且⊿AOB 与⊿COD 的面积分别为1、9.求四边形ABCD 面积的最小值,并判断当取得最小值时四边形的形状.31.已知正数a 、b 、c 、a 1、b 1、c 1,满足条件a+a 1=b+b 1=c+c 1=k ,求证:a b 1+ b c 1+ c a 1﹤k 2.32.设a 、b 、c +∈R ,求证:2222cb a ac c c b b b a a ++≥+++++.33.已知a 、b 是给定的大于2015的实数,对于任意实数x 、y ,都有122))((22222++--+++k k ay bx y x b a >0,其中k 是实数,求k 的取值范围.34.当三个非负实数x 、y 、z 满足关系式323=++z y x 与433=++z y x 时,M=3x-2y+4z 的最小值和最大值分别为 .35.有n 个连续的正整数1、2、…,n ,去掉其中的一个数x 后,剩下的平均数是16 .则满足条件的n 和x 的值分别是 .36.已知实数x 、y 满足5422=--y x x ,记y x t 2-=,则t 的取值范围是 .37.小马在体育场卖饮料,雪碧每瓶4元,汽水每瓶7元,开始时他有350瓶饮料,虽然没有全部卖完,但是他的销售收入恰好是2009元,则他至少卖出了 瓶汽水. 38.请判断1002是多少位整数(要有详细的过程).数学竞赛辅导系列讲座五 ——函数1.在平面直角坐标系中有点A (-2,2)、B (3,2),C 是坐标轴上的一点,若△ABC 是直角三角形,则符合条件的点C 有( )个A 、1B 、2C 、4D 、62.已知一次函数y=kx+b ,kb<0,则这样的一次函数的图象必经过的公共象限有____个,即第_________象限.3.若反比例函数y=kx 的图像与一次函数y=ax+b 的图像交于点A (-2,m )、B (5,n ),则3a+b=_______.4.已知二次函数2y x x a =-+的图像与x 轴的两个不同交点到原点的距离之和不超过5,则a 的取值范围是__________.5.已知点A 、B 分别在一次函数y=x ,y=8x 的图像上,其横坐标分别为a ,b (a>0,b>0),若直线AB 为一次函数y=kx+m 的图像,则当b a是整数时,满足条件的整数k 的值共有( )A 、1个B 、2个C 、3个D 、4个6.一次函数13y x =-+与x 轴、y 轴分别交于点A 、B ,以线段AB 为边在第一象限内作正方形ABCD ,在第二象限内有一点P (a ,12 ),满足S △ABP =S 正方形ABCD ,则a=________.7.已知y =x ,y 均为实数),则y 的最大值与最小值的差为( )A 、 6 -3B 、3C 、 5 - 3D 、 6 - 38.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图像与x 轴有两个不同交点的概率是( )A 、512B 、49C 、1736D 、129.过点P (-1,3)作直线,使它与坐标轴围成的三角形面积为5,这样的直线可以做( )A 、4条B 、3条C 、2条D 、1条10.若关于x 的函数2(3)(41)4y a x a x a =---+的图像与坐标轴有两个交点,则a 的值为_______.11.二次函数2(0)y ax bx c a =++≠的图像经过(-1,2)且与x 轴的交点的横坐标分别为x 1,x 2(-2<x 1<-1,0<x 2<1),给出下列结论:①abc>0,②4a -2b+c<0,③2a -b<0,④b 2+8a>4ac ,其中正确的有( )个A 、1B 、2C 、3D 、412.过原点的直线与反比例函数y=- 7x 的图像交于A ,C ,自点A ,C 分别作x 轴的垂线,垂足分别为B ,D ,则四边形ABCD 的面积等于______.13.设抛物线24y x kx =++与x 轴有两个不同的交点(x 1,0)、(x 2,0),则下列结论中一定成立的是( )A 、221217x x +=B 、22128x x +=C 、221217x x +<D 、22128x x +>14.一次函数y=kx+b 的图像过点P (1,4),且分别与x 轴,y 轴的正半轴交于A ,B ,O 为坐标原点,△ABO 的面积最小时,k ,b 的值分别是( )A 、-4,8B 、-4,4C 、-2,4D 、-2,-215.已知函数2()f x ax c =-(a ,c 为实数),若-4≤f(1)≤-1,-1≤f(2)≤2,则f(8)的最大值是__________.16.如果函数y=b 的图像与函数23|1|43y x x x =----的图像恰有三个交点,则b 的可能值为_________.17.若函数245(1)y x x t x t =--+≤≤+的最大值关于t 的表达式y max =______. 18.已知abc<0,则在图中的四个选项中,表示2y ax bx c =++的图像可能是( )ABCD19.如图,两个反比例函数1k y x =和2ky x=(k 1>k 2>0)在第一象限内的图像依次是曲线C 1和C 2,设点P 在C 1上,PE ⊥x 轴于点E ,交C 2与点A ,PD ⊥y 轴于点D ,交C 2于点B,则四边形PAOB 的面积为( ) A 、k 1+k 2 B 、k 1-k 2 C 、k 1k 2D 、k 1k 220.如图已知点A 、B 分别在反比例函数)0(x x n y =、)0( x xm y =的图像上,OB OA ⊥,则tanB= .21.在平面直角坐标系中,已知点A (1,1)在坐标轴上找一点P ,使△AOP 为等腰三角形,求P点坐标.22.设抛物线25(21)24y x a x a =++++的图像与x 轴只有一个交点. (1)求a 的值;(2)求186323a a -+.23.已知直线y=b (b 为实数)与函数2|43|y x x =-+的图像至少有三个公共点,则实数b 的取值范围.24.已知一次函数y=Ax+B 与反比例函数y=kx 的图像交于点M (2,3),N (-4,m )(1)求一次函数y=Ax+B 与反比例函数y=kx 的解析式;(2)求△OMN 的面积.25.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )A .B .C .D .C D E FA B26.求满足下列条件的正整数n 的所有可能值:对这样的n ,能找到实数a ,b ,使得函数21()f x x ax b n=++对任意整数x ,f(x)都是整数. 27.如图,已知点M (0,1),N (0,-1),P 是抛物线214y x =上的一个动点 (1)判断以点P 为圆心,PM 为半径的圆与直线y=-1的位置关系;(2PNM=∠QNM28.已知二次函数2(0)y x bx c c =++<的图像与x 轴的交点分别为A ,B ,与y 轴的交点为C ,设△ABC 的外接圆的圆心为P .(1)证明⊙P 与y 轴的另一个交点为定点;(2)如果AB 恰好为⊙P 的直径且S △ABC =2,求b 和c 的值.29.已知抛物线2y x px q =++上有一点M (x 0,y 0)位于x 轴的下方.(1)求证:已知抛物线与x 轴必有两个交点A (x 1,0),B (x 2,0),其中x 1<x 2; (2)求证x 1< x 0<x 2;(3)若点M 为(1,-2)时,求整数x 1,x 2的值.30. 如果抛物线1C 的顶点在抛物线2C 上,同时,抛物线2C 的顶点在抛物线1C 上,那么,我们称抛物线1C 与2C 关联.(1)已知抛物线①122-+=x x y ,判断下列抛物线②122++-=x x y ;③122++=x x y 与已知抛物线①是否关联,并说明理由.(2)抛物线1C :2)1(812-+=x y ,动点P 的坐标为(t ,2),将抛物线绕点P (t ,2)旋转︒180得到抛物线2C ,若抛物线1C 与2C 关联,求抛物线2C 的解析式.(3)点A 为抛物线1C :2)1(812-+=x y 的顶点,点B 为与抛物线1C 关联的抛物线顶点,是否存在以AB 为斜边的等腰直角ABC Δ,使其直角顶点C 在y 轴上,若存在,求出C 点的坐标;若不存在,请说明理由.31.已知二次函数2222(0)y x mx m m =--≠的图像与x 轴交于点A ,B ,它的顶点在以AB 为直径的圆上.(1)证明:A ,B 是x 轴上两个不同的交点; (2)求二次函数的解析式;(3)设以AB 为直径的圆与y 轴交于点C ,D ,求弦CD 的长.32.如图,双曲线xy 2=(x >0)经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得△C B A ',B '点落在OA 上,则四边形OABC 的面积是 .33.如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标 ;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点. 若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为 .34.我们知道,对于二次函数y=a (x+m )2+k 的图像,可由函数y=ax 2的图像进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax 2为“基本函数”,而称由它平移得到的二次函数y=a (x+m )2+k 为“基本函数”y=ax 2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离22k m +称为朋友距离.第32题图B'yx O CBAOBC D由此,我们所学的函数:二次函数y=ax 2,函数y=kx 和反比例函数xky =都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”. 如一次函数y=2x-5是基本函数y=2x 的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=103122=+.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x 先向 ,再向下平移7单位,相应的朋友距离为 .(2)探究二:已知函数y=x 2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离. (3)探究三:为函数143++=x x y 和它的基本函数xy 1=,找到朋友路径,并求相应的朋友距离.35.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是( )36.已知等腰三角形ABC 的两个顶点分别是A (0,1),B (0,3),第三个顶点C 在x 轴的负半轴上.关于y 轴对称的抛物线y =ax 2+bx +c 经过A ,D (3,-2),P 三点,且点P 关于直线AC 的对称点在x 轴上. (1)求直线BC 的解析式;(2)求抛物线y =ax 2+bx +c 的解析式及点P 的坐标;(3)设M 是y 轴上的一个动点,求PM +CM 的取值范围.ABCDMN P37.抛物线2y ax bx c =++(a ≠ 0)满足条件:(1)40a b -=;(2)0a b c -+>; (3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①0a <; ②0c >;③0a b c ++<;④43c ca <<,其中所有正确结论的序号是( ) A .①③ B .②④ C .①② D .③④38.已知抛物线y=2x 2—4mx+21与x 轴有2个不同的交点A ,B ,抛物线的顶点为C , (1)当△ABC 为等边三角形时,试确定点C 的位置; (2)如何平移符合条件(1)的抛物线,使AC=23AB ; (3)设点D ,E 分别是AC ,BC 的中点,点F ,G 分别是DC ,EC 的中点,问四边形DFGE 的面积S 的大小与m 的取值是否有关?若有关,写出其关系式;若无关,请说明理由.39.已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥恒成立.(1)试确定抛物线y =(1)(1)()0a x x ax bx b x bx ------≥的开口方向以及与x 轴的交点个数.(2)求乘积ab 的最小值.(3)当ab 取最小值时,求抛物线y =(1)(1)()0a x x ax bx b x bx ------≥的解析式.40.已知二次函数c bx ax x f ++=2)(2(c ﹥b ﹥a),其图象过点(1,0),并且与直线a y -=有公共点.证明:ab≤0﹤1. 41.方程 ()42330ax a x a --+=有一个根小于-2,另外三个根都大于-1,求a 的取值范围.数学竞赛辅导系列讲座六——三角形1.设△ABC 的三边分别为a ,b ,c 且2228440a c b ab bc ++--=,则△ABC 一定是( )A 、直角三角形B 、等边三角形C 、等腰三角形D 、钝角三角形2.△ABC 的边a ,b ,c 满足条件211b a c=+,则b 边所对的∠B 的大小是( ) A 、锐角B 、直角C 、钝角D 、锐角、直角、钝角都有可能3.在锐角△ABC 中,三个内角的度数都是质数,且最短边的长是1,则满足条件的互不全等的三角形的个数为( )A 、1B 、2C 、3D 、多于34.7条长度均为整数的线段127,,,a a a ,满足127a a a <<<,且这7条线段中的任意三条都不能构成三角形,若a 1=1,a 7=21,则a 6=( )A 、18B 、13C 、8D 、55.1239A A A A 是一个正九边形,1213,A A a A A b ==,则15A A 等于( )ABC 、12(a+b)D 、a+b6.在Rt △ABC 中,∠C=90°,BC<AC ,且241AB AC BC =⨯,则∠A=( ) A 、15°B 、18°C 、20°D 、25°7.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角, 在直线l 上取一点P ,使得∠APB=30°,则这样的点P 有( )A 、3个B 、2个C 、1个D 、不存在8.在△ABC 中,AB=AC=2,BC 边上有100个不同的点123100,,,,P P P P , 记()100,,3,2,12K =⨯+=i PC BP AP m i i i i ,则12100m m m +++=( )A 、100B 、200C 、300D 、4009.如图,在线段AE 同侧作两个等边△ABC ,△CDE (∠ACE<120°),P ,M 分别是线段BE 和AD 的中点,则△PCM 是( )A 、钝角三角形B 、直角三角形C 、等边三角形D 、非等腰三角形 10.在△ABC 中,∠C=3∠A ,a=27,c=48,则b 等于( )A 、33B 、35C 、37D 、不确定BDE11.在△ABC 中,AB=5,AC=12,BC=13,D ,E 在边BC 上,满足BD=1,CE=8,则∠DAE 的度数为_______.12.在Rt △ABC 中,F 是斜边AB 的中点,D 、E 分别在CA 、CB 上,满足∠DFE=90°,若AD=3,BE=4,则线段DE 的长度为______.13.如图,在正△ABC 中,D 、E 分别在BC ,CA 上,使CD=AE ,AD 与BE 交于点P ,BQ ⊥AD 于点Q ,则QPQB=______.14.设P 是边长为12的正△ABC 内一点,过P 分别作三条边BC 、CA 、AB 的垂线,垂足为别为D 、E 、F ,已知PD:PE:PF=1:2:3,那么四边形BDPF 的面积是________. 15.如图,已知∠BAD=∠DAC=9°,AD ⊥AE ,且AB+AC=BE ,则∠B=________.16.如图,在三角形ABC 中,∠BAC=45°,AD ⊥BC 于点D ,若BD=3,CD=2,则S △ABC =________. 17.在△ABC 中,AB=7,AC=11,M 是BC 边的中点,AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长是______.18.在△ABC 中,∠CAB=70°,∠CAB 和∠ACB 的平分线交于点I ,若AC+AI=BC ,则∠ACB= _____°.19.在钝角△ABC 中,∠A<∠B<∠C ,∠A 、∠C 的外角平分线交对边延长线与D 、E ,且AD=AC=CE ,则∠BAC 的大小是__________.20、在底角等于80°的等腰△ABC 的两腰AB ,AC 上分别取点D 、E 使得∠BDC=50°,∠BEC =40°,则∠ADE=______.21.已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF .22.如图,以△ABC 的AB 、AC 为斜边向形外作直角三角形ABD 和ACE 且使∠1=∠2,M 是BC 的中点,求证:MD=ME .D EC23.已知在△ABC 中,∠A>90°,AD ⊥BC ,求证AC+AB<AD+BC .24.在等腰三角形ABC 一腰AB 上取一点D ,在另一腰AC 的延长线上去CE=BD ,连DE ,求证:DE>BC .25.锐角△ABC 中,BC<AB ,AH 是BC 边上的高,BM 是AC 边上的中线,AH=BM ,求证:∠MBC =30°.26.如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°的角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形,求证:△AMN 的周长等于2.27.如图,△ABC 中,∠ACB=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC ,BD=0.5,DE+BC=1,求证:∠ABC=30°.28.如图,∠ABD=∠ACD=60°,∠ADB=900—12 ∠BDC ,求证:△ABC 是等腰三角形.E29.如图,在△ABC 中,已知∠A=90°,AB=AC ,D 为AC 中点,AE ⊥BD ,延长AE 交BC 于F ,求证:∠ADB=∠CDF .30.如果P 是等边三角形ABC 内一点,PA=2,PB=2 3 ,PC=4,求正△ABC 的边长. 31.如图,已知D 、E 、F 分别是锐角△ABC 的三边BC 、CA 、AB 上的点,且AD 、BE 、CF 相交于点P ,AP=BP=CP=6,设PD=x ,PE=y ,PF=z ,若xy+yz+zx=28,求xyz 的大小.32.如图,在一张长方形纸片ABCD 中,AB AD <,点E F 、分别是AB 和CD 的中点,现将这张纸片按图示方式折叠,使点B 落在线段EF 上的点G 处,折痕AK 交EF 于H ,则下列说法正确的个数有 ①30DAG ∠=︒;②△GHK 是正三角形;③2GH EH =;④3FG EH =. ( )A .1个B .2个C .3个D .4个33.如图,同一段铁丝分成相等的四段可围成正方形,若分成相等的五段,则可围成正五边形,其中正方形的边长为(2212a ab b -+)m ,正五边形的边长为(25)b m -,则这段铁丝的总长是_______________m .34.如图,直线l 1、l 2、l 3相交于点A 、B 、C ,得到△ABC ,其中∠ACB =90°,AC=6,BC=8,点O 在线段AC 上,且OA=2OC ,将△ABC 绕点O 旋转得到△A /B /C /,当点A /落在这三条直线上时,线段AA /的长是_______________.35.如果长为l 的一根绳子恰好可围成两个全等三角形,那么其中一个三角形的最长边x的取值范围是( ) A .8l ≤x <4l B .6l ≤x <4l C .8l ≤x <3l D .6l ≤x <2l 36.已知AD 是△ABC 的中线,∠ABC =30°,∠ADC =45°,则∠ACB = 度.EDPCAEFHK GF DAB C。

初中数学竞赛教程

初中数学竞赛教程

七年级第一讲 有理数(一)一、【能力训练点】1、正负数,数轴,相反数,有理数等概念。

2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,,n m n ≠互质)。

4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。

5、绝对值的意义与性质: ① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥③ 非负数的性质: i )非负数的和仍为非负数。

ii )几个非负数的和为0,则他们都为0。

二、【典型例题解析】:1. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方2.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。

3.如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - C.0 D.2b4.有3个有理数a,b,c ,两两不等,那么,,a b b c c ab c c a a b------中有几个负数?5.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba,b 的形式,求20062007a b +。

6.三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少?7.若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

第二讲 有理数(二)一、【能力训练点】: 1、绝对值的几何意义① |||0|a a =-表示数a 对应的点到原点的距离。

初中数学初一数学上册《有理数的加减》教案、教学设计

初中数学初一数学上册《有理数的加减》教案、教学设计
1.基础巩固:
-完成课本习题P34页第1、2、3题,重点在于对有理数加减法则的理解和应用。
-选择两道题目进行错题解析,要求学生分析错误原因,并总结避免类似错误的方法。
2.能力提升:
-设计一组混合运算题目,包括正负数的加减,要求学生按照运算顺序正确计算,并注意符号的处理。
-完成课后练习册中相关题目,鼓励学生尝试不同的解题方法,培养灵活运用知识的能力。
2.详细讲解有理数的加减法则,并通过数轴进行直观演示,帮助学生理解法则背后的数学原理。
-举例说明:“3 + 2”和“3 - 2”在数轴上的表示,引导学生发现加减运算的规律。
3.针对混合运算,强调运算顺序和符号处理的重要性,并通过典型例题进行讲解。
(三)学生小组讨论
1.教师提出讨论主题,如“有理数加减运算的规律和技巧”。
初中数学初数学上册《有理数的加减》教案、教学设计
一、教学目标
(一)知识与技能
1.理解有理数的概念,掌握正数、负数、整数和分数的分类;
2.掌握有理数的加减法则,并能熟练运用法则进行有理数的加减运算;
3.能够解决实际问题中涉及有理数加减的问题,提高运算速度和准确性;
4.理解和掌握有理数加减运算的顺序,能正确进行混合运算。
三、教学重难点和教学设想
(一)教学重难点
1.有理数加减法则的理解与应用是本章节的重点和难点。学生需要掌握正数、负数、整数和分数的加减运算规则,特别是对负数的加减法则的理解。
-教学设想:通过数轴的直观演示,帮助学生理解正负数的加减法则。设计实际生活情境,让学生感受到有理数加减运算在实际问题中的应用,从而加深理解。
3.拓展应用:
-结合生活实际,编写一道与有理数加减相关的实际问题,要求学生运用所学知识解决,并在作业中简述解题思路。

初中数学竞赛专题讲座有理数及其运算的技巧

初中数学竞赛专题讲座有理数及其运算的技巧

有理数及其运算技巧经验谈:有理数运算是中学数学中全部运算的基础,正确的理解有理数有关的看法,以及它的运算法例、公式,并且擅长依据所给题目要求,将推理与计算相联合,灵巧奇妙的选择简捷的算法,能够很好的提升思想的矫捷性。

将现实中的问题与学习中的知知趣联合,并合理的解决它,你会发现数学的好多乐趣。

内容综述:当我们认识了零、负整数和负分数后,就引出了有理数的看法。

整数(正整数、零、负整数)和分数(正分数、负分数)统称有理数,任何一个有理数都能够表示为一个既约分数。

并且,有理数能够比较大小,有理数的和、差、积、商(分母不为零)仍为有理数,随意两个有理数之间都有无量个有理数,有理数运算是中学数学中全部运算的基础,它要求同学们在理解有理数的有关看法、法例的基础上,能依据法例,公式等正确、快速地进行运算,同时还要擅长依据题目条件,将推理与计算相联合,灵巧奇妙地选择合理的简捷的算法解决问题,从而提升运算能力,发展思想的矫捷性与灵巧性。

重点解说:§1、数轴与大小:两个有理数的大小由它们在数轴上对应点的地点关系来确立:对应点在右侧的数总比对应点在左侧的数大。

★★例 1 察看图 1 中的数轴用字母a,b,c挨次表示点A, B, C 对应的数,试确立这三个数的大小关系。

思路:由 B 点在 A 点右侧,知b-a>0 ,而 A, B 都在原点左侧,故ab>0 ,又 c>0 ,这说明要比较的大小,只要比较分母ab,b-a,c的大小。

解:因为 C 点在 1 的右侧,所以c>1 ,因为 A 点在 -1 与之间,B点在与0之间,所以AB 的距离大于而小于1,即由相同的原因有,。

所以又 ab>0, 故从而有0<ab<b-a<c。

所以★★例 2:设证明 1:a,b∵是两个有理数,且a<b,∴ b>a,∴ba<b, 求证:-a>0..而∴∴证明2∵∴即∴又∴即故说明:由本例可知,随意两个不相等的有理数a,b之间存在一个有理数,由此可推知,随意两个有理数之间存在无穷多个有理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9 图 1 ) 一 2.


2 ~3


3 4 ~1

1 — 2 3 4

3 —4 1

4 O

O ~2
O 一4 1
2 O Байду номын сангаас

3 —2 ~ 1
1 —4 3
3 2

1 4 —3
维普资讯
0 , 以±1 ”所 必须填在一组对角上, 只能填在另一 组 ±3
了这些发现 , 填起幻方来就方便快捷 了.
1 解答 填写方案如图 4 .





4 O
评注
根 据 图形 的 对称 知 识 , 方 既 是 “ 幻 中
维普资讯
有 理 数
— —
初 一数学竞赛 系列讲座 ( 1 1)
江苏省 盐城 中学 张顺和
问题 I小明家有 1 袋小麦要到市场出售 , 0 爸爸让小明算一下 小麦的总重量 , 现称得 1 袋小麦的重量分别为 9 g 9 g8 ,6 , 0 7 ,5 ,6 9 k k
八组, 仔细观察这八组数 , 发现 0 重复用 了四次 ; , ±1 ±3 各用了三次 ; ±2 ±4 , 只分别用了两次 , 而横 、 斜对角 4 竖、 次经过中心, 以, 所 有且只
有0 应当填在幻方的中心空格 ; 竖、 横、 斜对 角三组数过一个角上的角 ,
所以四个角上的空格只能分别填上±1 ±3又 由于“ , , 互为相反数的和为
图9
图 1 0
图 1 1
图 1 2
例 3 小明、 小华、 小丽的家都与超市在 同一条东西 向的公路
边, 一辆货 车从 超 市 出发 , 向东走 了 3k 到 达小 华 家, 续 走 了15 m m 继 . k
到达 小 明家 , 然后 向西走 9 5 m, . k 到达小 丽 家 , 后 回到超 市. 最
‘‘
例 2 填写 三 阶幻方
将 一4 ,一3 ,一2 ,一1 ,1 , , ,0 ,2 3 4这 9个 数 字
分别填 入 图 3方 阵( 幻方 ) 9个 空格 中, 得横 、 、 的 使 竖 斜 对 角所 有三个 数相 加 的和 为“ ” 0. 图3
分析
怎样才能填得又快又准, 且不漏不重呢?这就要通过
9 , , , ,8 ,1 g爸爸刚把每袋小麦的重量报完, 4 9 3 8 7 8 8 9 9 k . 小 明口算立即报出了结果为 95 g你能知道小明为什么算得这么快? 2 , k 问题 Ⅱ 小丽的姨妈定居美国纽约, 国庆节期间姨妈要 回来 , 小丽想
请姨妈把手提电脑带回, 某天下午 5 点钟 , 小丽想打电话告诉姨妈 , 你觉 得 小丽 此时打 电话 合适 吗 ? ( 北京 与纽约 的时 差是 +1 小 时 ) 3
图5
3 —2 ~ 1

图6
1 —4 3
图7
3 2


图8

1 4 —3


4 O



O ~2
O ~4

2 O


2 —3
3 4 ~1
1 — 2 3
3 —4 1
1 .整数和分数统称 为有理数 , 由于整数都可 以写成分母为 1 的分
数, 所以有理数总可以表示成姜的形式( q ,为整数, ≠ 0 且 , 互 , q
质 )常用有理数的这种表达形式说明或判断一个数是否为有理数. . 2 .一个数的绝对值就是数轴上表示这个数的点到原点的距离, 显
推敲题意 , 仔细观察 , 认真分析 , 以发现规律. 题中要求“ 使得横 、 斜对 竖、 角的所有 3 个数相加的和 为 0 , ”则横三组 , 竖三组 , 斜对角两组 , 共有八
组, 再分析给定的 9个数可以组成 3 个数和为 0的有 : , , ; , 1 2 一3 一1

2 3 1 ,一4 一1 一 3 4 1 一1 0 3 一3 0 4 一4 0 正巧 也是 , ; ,3 ; , , ;, , ;, , ;, , ,
然, 任何数的绝对值都是非 负数 , J ≥ 0 数轴的直观性为我们解决 即 日J . 绝对值问题提供 了方便 , 对于含绝对值的式子的化简常常用分类讨论的
数学 思想 .
3 .有理数 的四则运算具有封 闭性, 即两个 有理数 的和 、 、 商 差 积、 ( 除数不为零) 仍是有理数, 有理数的运算满足交换律 、 结合律 、 分配律.
维普资讯



图2
< 0< a< c或 b< a<
又由 a b c , , 之和与其中之 相 反数 , 以原 点只 能 在 点 所 B, A之间且是线段 B 的中点( A 如图 2 , )其中 b=- a c 3 , - , 一 a 所求比
‘‘
例 l 如图 1在数轴上( , 未标 出原点及单位长度) 点 A是线 ,
段 B 的 中点 , C 已知 点 A, C对应 的 三个数 日 , B, ,b c之积 是负 数 , 三 这 数 之和 与其 中一数相 等 , 户为 日 b c三数 中两数 的比值 , 设 ,, 求 的最 大
的最大值为 一3 最小值为 手 一塑 一 . , 一3

解答 评注
略. 研 究 有 理 数 的性 质 和 问题 , 充 分利 用 数 轴 的直 观 应
性, 这有 利 于把 抽 象的数 形 象化 , 而 便 于理 解 , 时 , 要 善 于把 形 中 从 同 也
的信 息转化 为数 的结论 .
3 —2 — 1
心 对称 图形” 又是“ 对称 图形” 当找 到 一种 填 法后 , 轴 , 只 要 绕 着幻方 的 中心 旋 转 9 。 得 到 了第 二 种 填 法 ( 4 O就 共 种 )再根 据 轴对称 的知 识把 这 四 种填 法对 折 , , 就得 到 另外 四种填 法 ( 图
相关文档
最新文档