三角形模
八年级上册数学三角形模型大全
八年级上册数学三角形模型大全
八年级上册数学三角形模型包括以下几种:
1. A字模型:∠1 + ∠2 = ∠c + 180°。
2. 高分角模型:高分角等于底角差的一半。
3. 八字模型:两翼和相等。
4. 飞镖模型:∠d = ∠a + ∠b + ∠c。
5. 镖分分模型:上下之和等于中间两倍。
6. 八字加角分线模型:上下之和等于中间两倍。
7. 双角平分线模型—内内:内内90°+1/2。
8. 双角平分线模型—外外:外外90°-1/2。
9. 双角平分线模型—内外:本质上有某些关联。
10. 一内一外模型:由三角形的一个内角平分线和一个外角平分线产生夹角。
11. 两内模型:两个内角平分线的夹角。
12. 两外模型:两个外角平分线的夹角。
以上内容仅供参考,可以请教数学老师或查看教辅资料,以获取更多有关三角形模型的解题技巧和方法。
全等三角形常见模型
全等三角形常见模型1 什么是等边三角形等边三角形,又称直角三角形,是一种有色形状,三条边的长度相等,且所有的夹角相等的三角形。
它是一种三角形的特殊情况,是由三条等长线段组成的。
这三条边的长度为a,三个内角的度数为60°。
由于它具有三条边相等的特点,所以又称为等边三角形,它在几何学中广泛应用,可用于解决很多问题,例如概率和测量计算等。
2 等边三角形的特征等边三角形是一种特殊的三角形类型,它有三个边,长度都是相等的,并且三个内角的度数均为60°。
此外,它的最大角落一般是朝向上和向右的,如果将其旋转,那么角的位置就可能有所不同。
等边三角形的特点在于,它是不可细分的,哪怕它看起来只有三个内角,但是它的特性决定可以构成整体的特性。
3 全等三角形模型全等三角形模型是对等边三角形的一个进一步分类,它具有三角形的基本特征,但是每个角落均一样,而且每个角落夹角均为60°,可比较常见的模型有:30-60-90三角形、45-45-90三角形、以及平行四边形等。
30-60-90三角形指的是三条边的角为30°,60°,90°的三角形,它的三个边长为对等数值的关系,例如a:b:c=1:√3:2。
45-45-90三角形指的是三个角为45°,45°,90°的三角形,它的三条边关系为a:b:c=1:1:√2。
平行四边形指的是两个平行边既垂直也等长的四边形,它的内角为90°,边长比例为1:2。
4 等边三角形在日常生活中的应用等边三角形在日常生活中非常普遍,其特殊的几何形状可以应用于许多场景。
其中最常见的应用是几何结构,它可以被用于建造公共工程和住宅式建筑,例如屋顶、床垫等;此外,等边三角形也可以被用于制作精美的装饰品,例如吊坠、耳环、脚链等。
甚至在日常生活中还可以看到一些以等边三角形为特色的食品,例如三角包、三角饼等等。
初中几何46种模型大全
初中几何46种模型大全初中几何46种模型大全正文:几何是初中数学的重要分支,其中涉及到的模型数量和种类非常丰富。
下面,我们将介绍初中几何中的46种模型,包括它们的定义、性质、应用等。
1. 等腰三角形模型定义:一个等腰三角形的两条边长度相等,且它们的腰角度数相等。
性质:1. 等腰三角形的两条底边长度相等;2. 等腰三角形的两条顶角角度数相等;3. 等腰三角形的顶角和等于180度-底边长度的夹角。
应用:等腰三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
2. 直角三角形模型定义:一个直角三角形的两条直角边长度相等,且它们的斜角角度数相等。
性质:1. 直角三角形的两条直角边长度相等;2. 直角三角形的斜角角度数相等;3. 直角三角形的斜边长度等于两条直角边长度的乘积。
应用:直角三角形模型可以用来解决直角三角形相关问题,如勾股定理等。
3. 等边三角形模型定义:一个等边三角形的三条边长度相等。
性质:1. 等边三角形的三条边长度相等;2. 等边三角形的任意两边长度都大于第三边;3. 等边三角形的任意角度数都小于180度。
应用:等边三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
4. 正方形模型定义:一个正方形的四条边长度相等。
性质:1. 正方形的四条边长度相等;2. 正方形的任意一个角都是90度;3. 正方形的任意两个角都是直角。
应用:正方形模型可以用来解决正方形相关问题,如面积、周长等。
5. 长方形模型定义:一个长方形的两条边长度相等,且它们的长度之和等于宽度。
性质:1. 长方形的两条边长度相等;2. 长方形的长、宽相等;3. 长方形的任意一个角都是直角。
应用:长方形模型可以用来解决长方形相关问题,如面积、周长等。
6. 菱形模型定义:一个菱形的四条边长度相等且互相平分,对角线互相垂直且相等。
性质:1. 菱形的四条边长度相等且互相平分;2. 菱形的对角线互相垂直且相等;3. 菱形的任意一个角都是45度。
专题02 全等三角形中的六种模型梳理
专题02 全等三角形中的六种模型梳理专题02 全等三角形中的六种模型梳理全等三角形是初中数学中一个非常重要的概念,也是平面几何中的基础知识之一。
全等三角形指的是具有相同形状和大小的三角形,它们的对应边长和对应角度都相等。
在学习全等三角形的过程中,我们可以通过六种模型来更好地理解和应用这一概念。
本文将以深度和广度的要求,全面探讨全等三角形的六种模型,帮助读者更好地理解和掌握这一知识点。
1. 回顾全等三角形的概念在深入探讨全等三角形的六种模型之前,我们首先需要回顾一下全等三角形的概念。
在平面几何中,如果两个三角形的对应边长和对应角度都相等,我们就称它们为全等三角形。
全等三角形的性质包括边长相等、对应角度相等、周长相等和面积相等。
这些性质是我们理解全等三角形的基础,也是之后探讨六种模型的重要依据。
2. 全等三角形的基本模型我们来看全等三角形的基本模型。
当两个三角形的对应边和对应角均相等时,这两个三角形就是全等的。
这是最基本的全等三角形模型,也是其他五种模型的基础。
通过这个基本模型,我们可以理解全等三角形的定义和性质,为之后的探讨打下基础。
3. 侧边-夹角-侧边模型我们来探讨侧边-夹角-侧边模型。
当两个三角形的一个对应边和夹角以及另一个对应边均相等时,这两个三角形也是全等的。
这个模型在实际问题中经常用到,比如通过已知一个角和两边的长短来确定两个三角形是否全等。
这个模型的理解和运用可以帮助我们更好地解决实际问题。
4. 夹角-边-夹角模型接下来,我们继续探讨夹角-边-夹角模型。
当两个三角形的一个夹角和两个对应边的夹角均相等时,这两个三角形也是全等的。
这个模型的理解有助于我们在解题过程中更灵活地运用全等三角形的性质,从而更快地解决问题。
5. 边-边-边模型我们来看一下边-边-边模型。
当两个三角形的三条边分别相等时,这两个三角形也是全等的。
这个模型在实际问题中也经常用到,通过边长的关系来判断两个三角形是否全等。
全等三角形经典模型总结解析
全等三角形相關模型總結一、角平分線模型(一)角平分線の性質模型輔助線:過點G作GE⊥射線ACA、例題1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那麼點D到直線AB の距離是cm.2、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC.B、模型鞏固1、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.(二)角平分線+垂線,等腰三角形必呈現A、例題輔助線:延長ED交射線OB於F 輔助線:過點E作EF∥射線OB 例1、如圖,在△ABC中,∠ABC=3∠C,AD是∠BACの平分線,BE⊥AD於F .求證:1()2BE AC AB=-.例2、如圖,在△ABC中,∠BACの角平分線AD交BC於點D,且AB=AD,作CM⊥AD交ADの延長線於M. 求證:1()2AM AB AC=+.(三)角分線,分兩邊,對稱全等要記全兩個圖形飛輔助線都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC .A、例題1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC於P,BQ平分∠ABC 交AC於Q,求證:AB+BP=BQ+AQ .2、如圖,在△ABC中,AD是∠BACの外角平分線,P是AD上異於點Aの任意一點,試比較PB+PC與AB+ACの大小,並說明理由.B、模型鞏固1、在△ABC中,AB>AC,AD是∠BACの平分線,P是線段AD上任意一點(不與A重合).求證:AB-AC>PB-PC .2、如圖,△ABC中,AB=AC,∠A=100°,∠Bの平分線交AC於D,求證:AD+BD=BC .3、如圖,△ABC中,BC=AC,∠C=90°,∠Aの平分線交BC於D,求證:AC+CD=AB .二、等腰直角三角形模型(一)旋轉中心為直角頂點,在斜邊上任取一點の旋轉全等:操作過程:(1)將△ABD逆時針旋轉90°,得△ACM ≌△ABD,從而推出△ADM為等腰直角三角形.(2)輔助線作法:過點C作MC⊥BC,使CM=BD,連結AM.(二)旋轉中心為斜邊中點,動點在兩直角邊上滾動の旋轉全等:操作過程:連結AD.(1)使BF=AE(或AF=CE),導出△BDF ≌△ADE.(2)使∠EDF+∠BAC=180°,導出△BDF ≌△ADE.A、例題1、如圖,在等腰直角△ABC中,∠BAC=90°,點M、N在斜邊BC上滑動,且∠MAN=45°,試探究BM、MN、CN之間の數量關係.2、兩個全等の含有30°,60°角の直角三角板ADE和ABC,按如圖所示放置,E、A、C三點在一條直線上,連接BD,取BDの中點M,連接ME、MC.試判斷△EMCの形狀,並證明你の結論.B、模型鞏固1、已知,如圖所示,Rt△ABC中,AB=AC,∠BAC=90°,O為BC中點,若M、N分別線上段AC、AB上移動,且在移動中保持AN=CM.(1)試判斷△OMNの形狀,並證明你の結論.(2)當M、N分別線上段AC、AB上移動時,四邊形AMONの面積如何變化?2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF為多少度.(三)構造等腰直角三角形(1)利用以上(一)和(二)都可以構造等腰直角三角形(略);(2)利用平移、對稱和絃圖也可以構造等腰直角三角形.(四)將等腰直角三角形補全為正方形,如下圖:A、例題應用1、如圖,在等腰直角△ABC中,AC=BC,∠ACB=90°,P為三角形ABC內部一點,滿足PB=PC,AP=AC,求證:∠BCP=15°.三、三垂直模型(弦圖模型)A、例題已知:如圖所示,在△ABC中,AB=AC,∠BAC=90°,D為AC中點,AF⊥BD於點E,交BC於F,連接DF .求證:∠ADB=∠CDF .變式1、已知:如圖所示,在△ABC中,AB=AC,AM=CN,AF⊥BM於E,交BC於F,連接NF .求證:(1)∠AMB=∠CNF;(2)BM=AF+FN .變式2、在變式1の基礎上,其他條件不變,只是將BM和FN分別延長交於點P,求證:(1)PM=PN;(2)PB=PF+AF .Fpg四、手拉手模型1、△ABE和△ACF均為等邊三角形結論:(1)△ABF≌△AEC .(2)∠BOE=∠BAE=60°.(3)OA平分∠EOF .(四點共圓證)拓展:△ABC和△CDE均為等邊三角形結論:(1)AD=BE;(2)∠ACB=∠AOB;(3)△PCQ為等邊三角形;(4)PQ∥AE;(5)AP=BQ;(6)CO平分∠AOE;(四點共圓證)(7)OA=OB+OC;(8)OE=OC+OD .((7),(8)需構造等邊三角形證明)Fpg 例、如圖①,點M為銳角三角形ABC內任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉60°得到BN,連接EN.(1)求證:△AMB≌△ENB;(2)若AM+BM+CMの值最小,則稱點M為△ABCの費爾馬點.若點M為△ABCの費爾馬點,試求此時∠AMB、∠BMC、∠CMAの度數;(3)小翔受以上啟發,得到一個作銳角三角形費爾馬點の簡便方法:如圖②,分別以△ABC のAB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設交點為M,則點M 即為△ABCの費爾馬點.試說明這種作法の依據.2、△ABD 和△ACE 均為等腰直角三角形結論:(1)BE =CD ;(2)BE ⊥CD .3、四邊形ABEF 和四邊形ACHD 均為正方形結論:(1)BD =CF ;(2)BD ⊥CF .變式1、四邊形ABEF 和四邊形ACHD 均為正方形,AS ⊥BC 交FD 於T ,求證:(1)T 為FD 中點;(2)ABC ADF SS .變式2、四邊形ABEF和四邊形ACHD均為正方形,T為FD中點,TA交BC於S,求證:AS⊥BC .4、如圖,以△ABCの邊AB、AC為邊構造正多邊形時,總有:360 12180n︒∠=∠=︒-五、半角模型條件:1,+=1802αββθβ=︒且,兩邊相等.思路:1、旋轉輔助線:①延長CD到E,使ED=BM,連AE或延長CB到F,使FB=DN,連AF②將△ADN繞點A順時針旋轉90°得△ABF,注意:旋轉需證F、B、M三點共線結論:(1)MN=BM+DN;(2)=2CMNC AB;(3)AM、AN分別平分∠BMN、∠MND .2、翻折(對稱)輔助線:①作AP⊥MN交MN於點P②將△ADN、△ABM分別沿AN、AM翻折,但一定要證明M、P、N三點共線 .A、例題例1、在正方形ABCD中,若M、N分別在邊BC、CD上移動,且滿足MN=BM+DN,求證:(1)∠MAN=45°;C AB;(2)=2CMN(3)AM、AN分別平分∠BMN和∠DNM .變式:在正方形ABCD中,已知∠MAN=45°,若M、N分別在邊CB、DCの延長線上移動,AH⊥MN,垂足為H,(1)試探究線段MN、BM、DN之間の數量關係;(2)求證:AB=AH例2、在四邊形ABCD中,∠B+∠D=180°,AB=AD,若E、F分別為邊BC、CD上の點,且滿足EF=BE+DF,求證:12EAF BAD ∠=∠.變式:在四邊形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分別為邊BC、CD上の點,且12EAF BAD∠=∠,求證:EF=BE+DF .。
三角形常见模型
三角形常见模型三角形,作为几何学中最基本且最常用的图形之一,以其独特的稳定性和多样的形状在各个领域都有广泛的应用。
在数学中,三角形有许多常见的模型,这些模型不仅简化了复杂的问题,还为我们提供了解决各种问题的新视角。
下面,我们将探讨几个常见的三角形模型。
等边三角形,顾名思义,是所有边都相等的三角形。
这种三角形的所有角都是60度,它具有高度的对称性和均衡性。
在几何学中,等边三角形经常被用来作为其他复杂图形的参照物。
在现实生活中,等边三角形的运用也很广泛,比如在建筑设计、工程绘图和计算机图形学等领域。
等腰三角形是两边相等的三角形。
它的两个底角是相等的,顶角与底角的和等于180度。
这种三角形在现实生活中也很常见,比如衣帽架、梯子和平面设计等。
直角三角形是一个角为90度的三角形。
在这个三角形中,斜边是最大的边,两条直角边可以根据勾股定理进行计算。
直角三角形在数学、工程、建筑等领域都有广泛的应用。
例如,在建筑设计中,直角三角形经常被用来构建稳定的结构。
相似三角形是形状相同但大小不同的三角形。
它们的对应角相等,对应边的比也相等。
在解决一些复杂的问题时,相似三角形的运用可以大大简化计算过程。
例如,在物理学和工程学中,相似三角形被用来解决许多复杂的问题。
以上就是三角形的几种常见模型。
这些模型各有其独特的性质和应用领域,但它们都以各自的方式展示了三角形的魅力和价值。
无论是等边三角形等腰三角形、直角三角形还是相似三角形,它们都在各自的领域中发挥着重要的作用。
这些模型的运用不仅简化了问题的解决过程,也为我们提供了深入理解和探索三角形世界的工具。
全等三角形常用辅助线模型,常见的全等三角形的模型归纳在几何学中,全等三角形是一个重要的概念,它指的是两个或多个三角形,其边长和角大小均相等。
全等三角形的证明和应用在几何学中具有广泛的应用价值。
为了更有效地构造和证明全等三角形,下面将介绍几种常见的全等三角形辅助线模型,并对常见的全等三角形模型进行归纳。
相似三角形的常见模型
专题相似三角形的常见模型一、下面六个图中△ADE与△ABC均相似,在相应图的下方写出对应角,及对应边的比例式。
二、如图,若∠A=∠ECD=∠B,则△AEC∽△BCD,我们可以把这种类型的相似叫做“一线三等角”型或“K字型”,请在下方空白处写上对应角,及对应边的比例式。
三、如图,已知△ABC∽△ADE,这种像是一边转一边缩小(或扩大的)相似,我们可以叫做“旋转”型。
先写出对应角及对应边的比例式。
连结BD,CE,你有什么新发现?你能证明吗?练习:1.如图,在△ABC中,DE∥BC,若,DE=4,则BC=.2.如图,直线l1∥l2∥l3,AC分别交l1,l2,l3于点A,B,C;DF分别交l1,l2,l3于点D,E,F;AC与DF交于点O.已知DE=3,EF=6,AB=4.(1)求AC的长;(2)若BE:CF=1:3,求OB:AB.3.由36个边长为1的小正方形组成的6×6网格中,线段AB的两个端点都在格点上.(1)如图1,C,D也在格点上,连接AB,CD相交于点O,求的值和OC的长;(2)如图2,仅用无刻度直尺在线段AB上找一点M,使得.4.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD=2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是5.如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.6.(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.(2)如图2,在 ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE =3,求AD的长.7.如图在平面直角坐标系xOy中,O为坐标原点,点A的坐标为(﹣1,2),点B在第一象限,且OB⊥OA,OB=2OA,则B点的坐标为.8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=8,BD=2,则CF等于.相似三角形模型一———A字型&8字型例1、如图,在△ADE中,BC∥DE,AB=3,BD=DE=6,则BC的长是()A.2 B.3 C.4 D.6变式1、如图,在△ABC中,点D,E分别在AB、AC边上,DE∥BC,且AD=3BD,若S△ABC=16,则S△ADE=()A.B.9 C.D.12变式2、如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若△ABC与△DEC的周长比为3:2,AC=6,则DC=.变式3、如图,在△ABC中,点D为AC上一点,且,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=.例2、如图,在△ABC中,点D,F是AB的三等分点,E,G是AC的三等分点,四边形DFGE和四边FBCG的面积分别是S1和S2,则S1:S2为()A.3:5 B.4:9 C.3:4 D.2:3变式1、如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,DE∥BC,DF∥AC,若△ADE 与四边形DBCE的面积相等,则△DBF与△ADE的面积之比为()A.B.C.D.变式2、如图,平行四边形ABCD中,点E是AD边上一点,连结EC、BD交于点F,若AE:ED=5:4记△DFE的面积为S1,△BCF的面积为S2,△DCF的面积为S3,则DF:BF=,S1:S2:S3=.例3、如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A.4 B.5 C.6 D.7变式1、在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则S:S△CBF等于()△EDFA.B.C.D.变式2、如图,正方形ABCD的对角线AC、BD相交于点O,E是BC的中点,DE交AC于点F,若DE=12,则DF=()A.3 B.4 C.6 D.8变式3、如图,已知点M为平行四边形ABCD边AB的中点,线段CM交BD于点E,S△BEM=2,则图中阴影部分的面积为()A.5 B.4 C.8 D.6变式4、如图,在矩形ABCD中,AB=,点E是BC的中点,AE⊥BD于点F.(1)求BE的长;(2)延长FE交DC的延长线于点G ,求证:.例4、如图▱ABCD 中,E 、F分别是AD 、CD边上的点,连接BE 、AF交于点G,延长BE交CD的延长线于H,下列结论错误的是()=B.=C.=D.=A.变式1、如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=4,EF=3,那么CD的长是()A.12 B.9 C.6 D.16变式2、如图,在▱ABCD中,AB=3,AD=5,AF分别交BC于点E、交DC的延长线于点F,且CF=1,则CE的长为.变式3、如图,点F在平行四边形ABCD的边上,延长BF交CD的延长线于点E,交AC于点O,若=,则=.例5、如图,已知点O是△ABC中BC边上的中点,且,则=.变式1、如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.变式2、如图,在正方形AOCB中,AB=3,点A在x轴的负半轴上,点C在y轴的正半轴上,点P 在边AB上,且OP交AC于点Q,函数y=(x<0)的图象经过点Q.若S△APQ=S△OCQ,则k 的值为()A.﹣B.﹣2 C.2 D.例6、如图,在△ABC中,点E在BC上,且BE=3EC.D是AC的中点,AE、BD交于点F,则AF:EF的值为()A.3:2 B.4:3 C.5:3 D.5:4变式1、在△ABC中,D,E分别为BC,AC上的点,且AC=2EC,连结AD,BE,交于点F.设x =CD:BD,y=AF:FD,则()A.y=x+1 B.y=x+1 C.y=D.y=变式2、如图,AD是△ABC的中线,点E是线段AD上的一点,且AE=AD,CE交AB于点F.若AF=2cm,则AB=cm.例8、如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC =:6;④S▱OEF=S▱ABCD,成立的是.变式、如图,平行四边形ABCD中,AB=2AD=2,且AD⊥BD,一动点P在AB上方,且∠APB=60°,AP与BD交于点E,则的最大值为.相似三角形模型二———反(斜)A字型&反(斜)8字型例1、如图,在△ABC中,点D,E分别在AB,AC上,∠ADE=∠C,如果AE=2,AB=5,那么DE:BC=()A.B.C.D.变式、如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A.∠AED=∠B B.∠ADE=∠C C.=D.=例2、如图,线段AD、CB相交于点O,连结AB、CD,∠A=∠C,则下列结论正确的是()A.B.C.D.变式、如图,已知Rt△ABC中,∠ACB=90°,射线CD交AB于点D,点E是CD上一点,且∠AEC =∠ABC,联结BE.(1)求证:△ACD∽△EBD;(2)如果CD平分∠ACB,求证:AB2=2ED•EC.例3、如图,在△ABC中,D,E分别是AC,AB上的点,∠ADE=∠B.△ABC的角平分线AF交DE于点G,交BC于点F.(1)求证:△ADG∽△ABF;(2)若,AF=6,求GF的长.变式1、如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.变式2、已知∠ADE=∠C,AG平分∠BAC交DE于F,交BC于G.(1)求证:△ADF∽△ACG;(2)连接DG,若DG∥AC,=,AD=6,求CE的长度.例4、如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA 边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值.变式1、如图,在△ABC中,∠C=90°,AC=16cm,BC=8cm动点P从点C出发沿着CB方向以2cm/s的速度向点B运动,另一动点Q从点A出发沿着AC方向以4cm/s的速度向点C运动,P、Q两点同时出发,当点P到达B点或点Q到达C点即停止运动,设运动时间为t(s).(1)当t为多少秒时,以P、C、Q为顶点的三角形和△ABC相似?(2)当t为多少秒时,△PCQ的面积是△ACB面积的?变式2、如图所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发:(1)经过多少秒后,△CPQ的面积为8cm?(2)经过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似.。
八年级上册数学三角形五种基本模型
八年级上册数学学科包含了各种重要概念和技能,其中三角形的五种基本模型是其中的重要一部分。
在本篇文章中,我们将深入探讨这五种基本模型,包括它们的性质、特点以及在实际问题中的应用。
通过对这些内容的深入讨论,我们可以更好地理解三角形的基本知识,并且可以在解决实际问题时更加灵活地应用这些知识。
让我们来回顾一下三角形的基本概念。
三角形是由三条边和三个角组成的多边形,其中最基本的三角形模型包括等边三角形、等腰三角形、直角三角形、普通三角形和直角等腰三角形。
这五种基本模型在数学中具有重要的地位,不仅在几何学中有着广泛的应用,而且在实际问题中也经常出现。
我们首先来讨论等边三角形。
等边三角形是指三条边长度均相等的三角形。
它有着特殊的性质,例如它的三个内角均相等,每个角都是60度,而且它的高度、中位线和重心重合于同一点。
在实际问题中,等边三角形常常出现在建筑、工程等领域中,例如在建筑设计中,我们常常会使用等边三角形来布局房屋的基础结构,利用它的稳定性来确保建筑物的安全性。
接下来,我们来讨论等腰三角形。
等腰三角形是指至少有两条边相等的三角形。
它也有着特殊的性质,例如它的两个底角相等,而顶角则不一定相等,而且它的高度、中位线和重心也有着特殊的关系。
在实际问题中,等腰三角形也经常出现,在日常生活中,我们可以用等腰三角形的性质来设计各种图案和装饰,从而增加空间的美感和艺术性。
第三个基本模型是直角三角形。
直角三角形是指其中一个角为90度的三角形。
它有着独特的性质,例如勾股定理的适用以及三条边的关系。
直角三角形在实际问题中有着广泛的应用,例如在测量、地理勘测和导航等领域中,我们常常会用到直角三角形的性质来解决实际问题。
接下来是普通三角形,即没有边相等的三角形。
普通三角形具有较为普遍的性质,例如它的三个内角的和为180度,而且它也有着丰富的性质和定理,如三角形内角和定理、外角定理等。
在实际问题中,普通三角形也经常出现,例如在地理测量、建筑设计和工程建设等领域中,我们经常需要利用普通三角形的性质来解决各种实际问题。
七年级下册数学全等三角形的模型及应用(知识点串讲)(解析版)
专题12 全等三角形的模型及应用知识网络重难突破知识点一全等三角形常见模型(1)一线三等角常见图形如下:(含特殊的一线三垂直)(2)手拉手模型常见图形如下:(等腰三角形、等边三角形、等腰直角三角形)(2)半角模型常见图形如下:(正方形、一般四边形)(1)一线三等角典例1(2019春•莲湖区期末)如图1,在ABC⊥∆中,90∠=︒,AB ACBAC=,过点A作直线DE,且满足BD DE 于点D,CE DE⊥于点E,当B,C在直线DE的同侧时,(1)求证:DE BD CE=+.(2)如果上面条件不变,当B,C在直线DE的异侧时,如图2,问BD、DE、CE之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C在直线DE的异侧时,如图3,问BD、DE、CE之间的数量关系如何?写出结论并证明.【解答】(1)证明:如图1,BD DE⊥,CE DE⊥,90D E ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE ∴∠+∠=︒.90BAD ABD ∠+∠=︒,CAE ABD ∴∠=∠.在ADB ∆和CEA ∆中,D E ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆≅∆,BD AE ∴=,AD CE =,DE AD AE =+,DE CE BD ∴=+;(2)解:BD DE CE =+,理由:如图2,BD DE ⊥,CE DE ⊥,90ADB CEA ∴∠=∠=︒.90BAD ABD ∴∠+∠=︒.90BAD EAC ∠+∠=︒ABD EAC ∴∠=∠.在ADB ∆和CEA ∆中,ADB CEA ABD EAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆≅∆,BD AE ∴=,AD CE =.AE AD ED =+,BD DE CE ∴=+.(3)解:DE CE BD =-,理由是:如图3,同理易证得:()ABD CAE AAS ∆≅∆,BD AE ∴=,AD CE =,DE AD AE =-,DE CE BD ∴=-.典例2(2019春•长清区期末)CD 是经过BCA ∠顶点C 的一条直线,CA CB =,E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)如图(1),若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,当90BCA α∠=∠=︒时,线段BE与CF有怎样的大小关系?并说明理由.(2)如图(2),若直线CD经过BCA∠的外部,当90∠=∠>︒时,则EF、BE、AF三条线段之间BCAα有怎样的数量关系?并说明理由.【解答】解:(1)BE CF=,理由:FCA FAC∠+∠=︒,90∠+∠=︒,90BCE ACF∴∠=∠,(同角的余角相等)BCE FCA=,∠=∠,CA CBBEC CFA∴∆≅∆,Rt BCE Rt CAF(AAS)∴=;BE CF(2)EF AF BE=+,理由:CAF ACFα∠+∠=︒-∠,BCE ACFα∠+∠=︒-∠,180180∴∠=∠,(同角的补角相等)BCE CAF=,∠=∠,CA CBBEC CFA∴∆≅∆,BCE CAF AAS()=,∴=,BE CFCE AF∴=+=+.EF CE CF AF BE(2)手拉手全等典例1如图,等边ABC∆中,D是AB边上的一动点,以CD为一边,向上作等边EDC∆,连接AE.(1)求证:ACE BCD∆≅∆;(2)判断AE与BC的位置关系,并说明理由.【解答】证明:(1)ABC ∆和DCE ∆都是等边三角形,BC AC ∴=,DC CE =,60ACB DCE ∠=∠=︒,ACB DCA DCE DCA ∴∠-∠=∠-∠,即BCD ACE ∠=∠,在ACE ∆和BCD ∆中,BC AC BCD ACE DC CE =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆;(2)//AE BC ,理由是:ACE BCD ∆≅∆,CAE ABC ∴∠=∠,ABC ∆是等边三角形,ABC ACB ∴∠=∠,CAE ACB ∴∠=∠,//AE BC ∴.典例2(2019春•金牛区期末)如图.已知∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠F AB +∠DAE 的度数;(3)请问线段CE 、BF 、DE 之间有什么数量关系?请说明理由.【解答】(1)证明:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =90°,∠CAD +∠DAE =90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)解:∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠CAB=∠DAE,∠BCA=∠E=45°,∠F AB+∠DAE=∠F AB+∠CAB=∠F AC,∵∠AFC=90°,∠BCA=45°,∴∠F AC=45°,∴∠F AB+∠DAE=45°;(3)解:CE=2BF+2DE;理由如下:延长BF到G,使得FG=FB,连接AG,如图所示:∵AF⊥BG,∴AB=AG,∴∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE,∴CE=2BF+2DE.典例3(2019春•天桥区期末)如图1,在ABC ∆中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),以AD 为边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE ,设BAC α∠=,BCE β∠=.(1)线段BD 、CE 的数量关系是 ;并说明理由;(2)探究:当点D 在BC 边上移动时,α,β之间有怎样的数量关系?请说明理由;(3)如图2,若90BAC ∠=︒,CE 与BA 的延长线交于点F .求证:EF DC =.【解答】解:(1)结论:BD CE =.理由:如图1中,AB AC =,AD AE =,BAC DAE ∠=∠,BAD CAE ∴∠=∠,()BAD CAE SAS ∴∆≅∆,BD CE ∴=.(2)结论:180αβ+=︒.理由:如图1中,BAD CAE ∆≅∆(已证),ABD ACE ∴∠=∠,BCE ACB ABC ABC ACE β∴∠=∠+∠=∠+∠=,180BAC ABC ACB ∠+∠+∠=︒,BAC α∠=,180αβ∴+=︒.(3)如图2中,由(1)可知BAD CAE ∆≅∆,BD EC ∴=,B ACE ∠=∠,AB DC =,90BAC ∠=︒,45B ACB ACF ∴∠=∠=∠=︒,90BCF ∴∠=︒,45F ∠=︒,B F ∴∠=∠,CB CF ∴=,BD EC =,EF CD ∴=.(3)半角模型典例1(2019春•罗湖区期末)四边形ABCD 是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A 点重合,角的两边分别交BC 于E ,交CD 的延长线于F ,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE =15,DF=2,试求线段EF的长.【解答】证明:(1)∵正方形ABCD是正方形,∴AD=AB,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,∴∠BAE+∠EAD=∠EAD+∠DAF=90°,∴∠BAE=∠DAF,在△BAE和△DAF中,∵,∴△ABE≌△ADF(ASA),∴BE=DF;(2)如图2,∵AD=AB,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合.由旋转可得∠BAE=∠DAE',BE=DE',∠B=∠ADE'=90°.∴∠ADF+∠ADE'=90°+90°=180°,∴点F、D、E'在同一条直线上,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠DAE'=45°=∠EAF,在△EAF和△E'AF中,∵,∴△EAF≌△E'AF(SAS),∴EF=E'F,∵E'F=DF+DE'=DF+BE,∴EF=BE+DF;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,如图3所示,由四边形ABCD为正方形可知点B、C、F′在一条直线上,∵∠BAF′=∠DAF,∠EAF=∠EAD+∠DAF=45°,∴∠EAF′+∠EAD+∠DAF=90°,∴∠EAF′=∠EAF=45°.在△EAF和△EAF′中,,∴△EAF≌△EAF′(SAS),∴EF=EF′,∴EF=EF'=BE﹣BF'=BE﹣DF=15﹣2=13.知识点二全等三角形的应用典例1(2019春•皇姑区期末)要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD CB=,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出10BD=,5ED=,则AB的长是()A.2.5B.10C.5D.以上都不对【解答】解:AB BD⊥,ED AB⊥,90ABC EDC∴∠=∠=︒,在ABC∆和EDC∆中,90ABC EDCBC DCACB ECD∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()ABC EDC ASA∴∆≅∆,5AB ED∴==.故选:C.典例2(2019春•灵石县期末)某大学计划为新生配备如图1所示的折叠凳图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,由以上信息能求出CB的长度吗?如果能,请求出BC的长度,如果不能,请你说明理由.【解答】解:O是AB、CD的中点,OA OB∴=,OC OD=,在AOD∆和BOC∆中,OA OBAOD BOC OC OD=⎧⎪∠=∠⎨⎪=⎩,()AOD BOC SAS∴∆≅∆,CB AD∴=,30AD cm=,30CB cm∴=.巩固训练一、单选题(共6小题)1.(2019春•罗湖区期末)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m【解答】解:连接AB,根据三角形的三边关系定理得:28﹣20<AB<28+20,即:8<AB<48,则AB的值在8和48之间.2.(2019春•市中区期末)如图,有一池塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C ,连接AC 并延长至D ,使CD CA =,连接BC 并延长至E ,使CE CB =,连接ED .若量出58DE =米,则A ,B 间的距离即可求.依据是( )A .SASB .SSSC .AASD .ASA【解答】解:在ABC ∆和DEC ∆中,AC CD ACB DCE BC CE =⎧⎪∠=∠⎨⎪=⎩,()ABC DEC SAS ∆≅∆,58AB DE ∴==米,故选:A .3.(2018春•槐荫区期末)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD CD =,AB CB =,詹姆斯在探究筝形的性质时,得到如下结论:①AC BD ⊥;②12AO CO AC ==;③ABD CBD ∆≅∆;④四边形ABCD 的面积12AC BD =⨯其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:在ABD ∆与CBD ∆中,AD CD AB BC DB DB =⎧⎪=⎨⎪=⎩,()ABD CBD SSS ∴∆≅∆,ADB CDB ∴∠=∠,在AOD ∆与COD ∆中,AD CD ADB CDB OD OD =⎧⎪∠=∠⎨⎪=⎩,()AOD COD SAS ∴∆≅∆,90AOD COD ∴∠=∠=︒,AO OC =,AC DB ∴⊥,故①②正确;四边形ABCD 的面积111222S ADB S BDC DB OA DB OC AC BD =∆+∆=⨯+⨯=, 故④正确;故选:D .4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【解答】解:带③去可以利用“角边角”得到全等的三角形.故选:C .5.(2019春•青羊区期末)如图,∠ACB =90°,AC =BC ,AE ⊥CE 于点E ,BD ⊥CE 于点D ,AE =5cm ,BD =2cm ,则DE 的长是( )A .8cmB .5cmC .3cmD .2cm【解答】解:∵AE ⊥CE 于点E ,BD ⊥CE 于点D ,∴∠AEC =∠D =∠ACB =90°,∴∠A+∠ACE=90°,∠ACE+∠BCD=90°,∴∠A=∠BCD,∵AC=BC,∴△ACE≌△CBD(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=5﹣2=3cm.故选:C.6.(2019春•罗湖区期末)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1 B.2 C.3 D.4【解答】解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA ∥BC ,∴∠DAB =∠ABC =60°,∵∠BAC =90°,∴∠ACB =30°,∵∠ACE =60°,∴∠ECB =90°,∴BC ⊥CE ,④正确,综上所述,①②④正确,故选:C .二、填空题(共5小题)7.(2018春•历下区期中)如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知大树AB 的高为5m ,小华行走的速度为1/m s,小华走的时间是 .【解答】解:90AED ∠=︒,90AEB DEC ∴∠+∠=︒,90ABE =︒,90A AEB ∴∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和DCE ∆中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE ECD AAS ∴∆≅∆,5EC AB m ∴==,13BC m =,8BE m ∴=,∴小华走的时间是818()s ÷=,故答案为:8s .8.(2018春•槐荫区期末)如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD BC =,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明EDC ABC ∆≅∆,所以测得ED 的长就是A 、B 两点间的距离,这里判定EDC ABC ∆≅∆的理由是.【解答】解:AB BD ⊥,ED BD ⊥,90ABD EDC ∴∠=∠=︒,在EDC ∆和ABC ∆中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()EDC ABC ASA ∴∆≅∆.故答案为:ASA .9.(2019春•商河县期末)如图,要在湖两岸A ,B 两点之间修建一座观赏桥,由于条件限制,无法直接测量A 、B 两点间的距离,于是小明想出来这样一种做法:在AB 的垂线BF 上取两点C 、D ,使BC CD =,再定出BF 的垂线DE ,使A ,C ,E 三点在一条直线上,这时测得50DE =米,则AB = 米.【解答】解:根据题意可知90B D ∠=∠=︒,BC CD =,ACB ECD ∠=∠()ABC EDC ASA ∴∆≅∆50AB DE ∴==米.故答案为:5010.(2019春•平阴县期末)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边ABC ∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②//PQ AE ;③AP BQ =;④DE DP =;⑤120AOE ∠=︒,其中正确结论有 (填序号).【解答】解:等边ABC ∆和等边CDE ∆,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB BCD DCE BCD ∴∠+∠=∠+∠,即ACD BCE ∠=∠,在ACD ∆与BCE ∆中,AC BC ACD BCECD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆, AD BE ∴=,①正确,ACD BCE ∆≅∆,CBE DAC ∴∠=∠, 又60ACB DCE ∠=∠=︒,60BCD ∴∠=︒,ACP BCQ ∴∠=∠,在CQB ∆和CPA ∆中,CBE DAC AC BCBCQ ACP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()CQB CPA ASA ∴∆≅∆,CP CQ ∴=, 又60PCQ ∠=︒,PCQ ∴∆为等边三角形,60PQC DCE ∴∠=∠=︒,//PQ AE ∴,②正确,CQB CPA ∆≅∆,AP BQ ∴=③正确,AD BE =,AP BQ =,AD AP BE BQ ∴-=-,即DP QE =,60DQE ECQ CEQ CEQ ∠=∠+∠=︒+∠,60CDE ∠=︒,DQE CDE ∴∠≠∠,故④错误;//BC DE ,CBE BED ∴∠=∠,CBE DAE ∠=∠,60AOB OAE AEO ∴∠=∠+∠=︒,同理可得出120AOE ∠=︒,60DOE ∴∠=︒,故⑤正确;∴正确结论有:①②③⑤;故答案为:①②③⑤.11.(2019春•金牛区期末)如图,已知四边形ABCD 中,AB =12厘米,BC =8厘米,CD =14厘米,∠B =∠C ,点E 为线段AB 的中点.如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为 厘米/秒时,能够使△BPE 与以C 、P 、Q 三点所构成的三角形全等.【解答】解:设点P 运动的时间为t 秒,则BP =3t ,CP =8﹣3t ,∵∠B =∠C ,∴①当BE =CP =6,BP =CQ 时,△BPE 与△CQP 全等,此时,6=8﹣3t ,解得t,∴BP=CQ=2,此时,点Q的运动速度为23厘米/秒;②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t,∴点Q的运动速度为6厘米/秒;故答案为:3或.三、解答题(共2小题)12.如图,Rt ABC⊥于D,CE AE∠=︒,直线l为经过点A的任一直线,BD l⊥,∆中,AB AC=,90BAC若BD CE>,试问:(1)AD与CE的大小关系如何?请说明理由;(2)线段BD,DE,CE之间的数量之间关系如何?并说明理由.【解答】解:(1)AD与CE的大小关系为AD CE=,理由是:90∠+∠=∠=︒,BAD EAC BAC又CE l⊥于E,90∴∠+∠=︒,ACE EAC∴∠=∠;BAD ACEBD l ⊥于D ,CE l ⊥于E ,90BDA AEC ∴∠=∠=︒;又AB AC =;()ABD CAE AAS ∴∆≅∆,AD CE ∴=.(2)线段BD ,DE ,CE 之间的数量之间关系为:BD DE CE =+,理由如下: ABD CAE ∆≅∆,BD AE ∴=,AD CE =,又AE DE AD =+,BD DE CE ∴=+.13.(2018秋•宿松县期末)(1)问题背景:如图1:在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,E 、F 分别是BC ,CD 上的点且EAF ∠=60︒,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG BE =.连结AG ,先证明ABE ADG ∆≅∆,再证明AEF AGF ∆≅∆,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD 中,AB AD =,180B D ∠+∠=︒.E ,F 分别是BC ,CD 上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30︒的A 处,舰艇乙在指挥中心南偏东70︒的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70︒,试求此时两舰艇之间的距离.【解答】解:(1)EF BE DF =+,证明如下:DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,()ABE ADG SAS ∴∆≅∆,AE AG ∴=,BAE DAG ∠=∠,12EAF BAD ∠=∠, GAF DAG DAF BAE DAF BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠, EAF GAF ∴∠=∠,在AEF ∆和GAF ∆中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS ∴∆≅∆,EF FG ∴=,FG DG DF BE DF =+=+,EF BE DF ∴=+;故答案为EF BE DF =+.(2)结论EF BE DF =+仍然成立;理由:延长FD 到点G .使DG BE =.连结AG ,如图2,在ABE ∆和ADG ∆中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,AE AG∴=,BAE DAG∠=∠,12EAF BAD∠=∠,GAF DAG DAF BAE DAF BAD EAF EAF∴∠=∠+∠=∠+∠=∠-∠=∠,EAF GAF∴∠=∠,在AEF∆和GAF∆中,AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS∴∆≅∆,EF FG∴=,FG DG DF BE DF=+=+,EF BE DF∴=+;(3)如图3,连接EF,延长AE、BF相交于点C,3090(9070)140AOB∠=︒+︒+︒-︒=︒,70EOF∠=︒,12EOF AOB∴∠=∠,又OA OB=,(9030)(7050)180OAC OBC∠+∠=︒-︒+︒+︒=︒,∴符合探索延伸中的条件,∴结论EF AE BF=+成立,即2(4560)210EF=⨯+=(海里).答:此时两舰艇之间的距离是210海里.。
全等三角形的六种模型全梳理(学生版)--初中数学专题训练
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
三角形等高模型
等高三角形模型知识框架三角形等高模型我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =baS 2S 1DC BA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.例题精讲【例 1】 你有多少种方法将任意一个三角形分成 3个面积相等的三角形.【巩固】你有多少种方法将任意一个三角形分成4个面积相等的三角形.【例 2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上.⑴求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?D CBA【巩固】如右图,E在AD上,AD垂直BC, AD=12厘米,DE=3厘米。
28章 锐角三角函数专题 解直角三角形实际应用的基本模型初中数学模型
(2)“母子”型 模型 已知三角形中的两角(∠1 和∠2)及其中一边, 模型分 在三角形外边作高 BC,构造两个直角三角形求 析 解,以高 BC 为桥梁是解题的关键
3.(成都中考)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极 落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面 的高度.如图,已知测倾器的高度为 1.6 米,在测点 A 处安置测倾器,测得点 M 的 仰角∠MBC=33°,在与点 A 相距 3.5 米的测点 D 处安置测倾器,测得点 M 的仰角 ∠MEC=45°(点 A,D 与 N 在一条直线上),求电池板离地面的高度 MN 的长.(结 果精确到 1 米,参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65)
ME x+25 5 公楼 AB 的高度约为 20 米
(2)一般梯形模型 模型
模型 过较短的底 AD 作梯形的两条高 AE 和 DF,构造一个长方 分析 形和两个直角三角形,分别解两个直角三角形再加减求解
7.某轮滑特色学校准备建立一个如图①的轮滑技巧设施,从侧面看如图②,横 截面为梯形,高 1 米,AD 长为 2 米,坡道 AB 的坡度为 1∶1.5,DC 的坡度为 1∶2.
+40 3 .∴小山 BC 的高度为(10+40 3 )米
模型二:四边形模型 (1)直角梯形模型
模型
模型 过较短的底 AB 作直角梯形的高 BE,构造一个矩形和一
分析
个直角三角形,先解直角三角形再加减求解
6.如图,某办公楼 AB 的后面有一建筑物 CD,当光线与地面的夹角是 22°时, 办公楼在建筑物的墙上留下高 2 米的影子 CE,而当光线与地面夹角是 45°时,办公 楼顶 A 在地面上的影子 F 与墙角 C 有 25 米的距离(点 B,F,C 在一条直线上).求办 公楼 AB 的高度.(参考数据:sin 22°≈25 ,cos 22°≈1156 ,tan 22°≈25 )
三角形常见基本模型及相关结论
三角形常见基本模型及相关结论三角形是几何学中最基本的图形之一,也是许多数学问题和定理的重要基础。
在这篇文章中,我们将探讨三角形的常见基本模型及相关结论,以便读者更深入地理解这个重要的几何形状。
1. 三角形的定义三角形是由三条线段组成的闭合图形,其中任意两条线段的和大于第三条线段。
根据三角形的内角和定理,三角形的内角和总是等于180度。
这个基本定理为我们理解三角形的性质提供了重要的基础。
2. 直角三角形直角三角形是一种特殊的三角形,其中一个内角是90度。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方,这为解决许多实际问题提供了重要的数学工具。
直角三角形的特殊性质也在航海、建筑和工程等领域得到广泛应用。
3. 等边三角形等边三角形是指三条边都相等的三角形,每个内角都是60度。
等边三角形具有对称性和稳定性,在对称图案和结构设计中有着重要的应用。
等边三角形也是许多规则多边形的基本组成部分,如正六边形和正十二边形。
4. 等腰三角形等腰三角形是指至少两条边相等的三角形,其重要性在于其内角的性质。
其中,等腰三角形的底角相等,这为我们解决许多几何问题提供了重要线索。
等腰三角形也在对称图案和几何构造中发挥着重要作用。
5. 总结与回顾通过对三角形的常见基本模型及相关结论的探讨,我们深入地理解了三角形的重要性和特殊性质。
从直角三角形的勾股定理到等边三角形的稳定性,从等腰三角形的对称性到三角形的内角和定理,我们更加全面、深刻和灵活地认识了这个重要的几何形状。
在个人观点方面,我认为三角形作为基本的几何图形,在数学和实际应用中都有着重要的地位。
通过深入理解三角形的各种模型和性质,我们可以更好地解决实际问题,设计对称图案和结构,并且在数学推导和证明中得到更清晰的线索。
对于初学者来说,深入理解三角形的常见模型及相关结论是非常重要的。
通过本文的讨论,我们希望读者能够更深入地理解三角形的重要性和特殊性质,从而在数学学习和实际应用中取得更好的成绩。
【差】全等三角形简单模型(解析版)
全等三角形简单模型【模型讲解】模型1、平移全等模型,如下图:【巩固训练】1.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是()A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =【答案】C 【分析】直接根据三角形证明全等的条件进行判断即可;【详解】A 、∵AB ∥DE ,∴∠ABC=∠DEC ,∴根据ASA 即可判定三角形全等,故此选项不符合题意;B 、∵AC ∥DF ,∴∠DFE=∠ACB ,∴根据AAS 即可判定三角形全等,故此选项不符合题意;C 、AC ⊥DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、∵AC=DF ,∴根据SAS 即可判定三角形全等,故此选项不符合题意;故选:C .【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;2.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.【答案】见解析【分析】由AD=BE 可求得AB=DE ,再结合条件可证明△ABC ≌△DEF .【详解】证明:∵AD BE =∴AD BD BE BD +=+∴AB DE=又∵//BC EF ∴ABC DEF∠=∠在ABC 和DEF 中AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△(SAS )【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .3.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB //DE ,AB =DE ,∠A =∠D .(1)求证:ABC DEF ≌;(2)若BF =11,EC =5,求BE的长.【答案】(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键.4.如图,已知点C 是AB 的中点,CD ∥BE ,且CD BE =.(1)求证:△ACD ≌△CBE .(2)若87,32A D ∠=︒∠=︒,求∠B的度数.【答案】(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD ≌△CBE ;(2)根据三角形内角和定理求得∠ACD ,再根据三角形全等的性质得到∠B=∠ACD .【详解】(1)∵C 是AB 的中点,∴AC =CB ,∵CD//BE ,∴ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴ACD CBE ∆≅∆;(2)∵8732A D ︒︒∠=∠=,,∴180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又∵ACD CBE ∆≅∆,∴61B ACD ︒∠=∠=.【点睛】考查了全等三角形的判定和性质,解题关键是根据SAS 证明△ACD ≌△CBE .5.如图,AB//CD ,AB=CD 点E 、F 在BC 上,且BF=CE .(1)求证:△ABE ≌△DCF (2)求证:AE//DF .【答案】(1)见详解;(2)见详解【分析】(1)由题意易得B C ∠=∠,BE CF =,然后问题可得证;(2)由(1)可得DFC AEB ∠=∠,则有EFD AEF ∠=∠,然后问题可得证.【详解】证明:(1)∵AB ∥CD ,∴B C ∠=∠,∵BF =CE ,∴CF EF BE EF +=+,∴BE CF =,∵AB =CD ,∴ABE DCF △≌△(SAS );(2)由(1)可得:ABE DCF △≌△,∴DFC AEB ∠=∠,∵180,180DFC EFD AEF AEB ∠+∠=︒∠+∠=︒,∴EFD AEF ∠=∠,∴//AE DF .【点睛】本题主要考查三角形全等的判定及性质,熟练掌握全等三角形的判定定理是解题的关键.6.如图1,A ,B ,C ,D 在同一直线上,AB =CD ,DE ∥AF ,且DE =AF ,求证:△AFC ≌△DEB .如果将BD 沿着AD 边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【思路】可以根据已知利用SAS 判定△AFC ≌△DEB .如果将BD 沿着AD 边的方向平行移动,如图(2)、(3)时,其余条件不变,结论仍然成立.可以利用全等三角形的常用的判定方法进行验证.【解答过程】解:∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD .∵DE ∥AF ,∴∠A =∠D .在△AFC 和△DEB 中,AF DE∠A ∠D AC DB,∴△AFC ≌△DEB (SAS ).在(2),(3)中结论依然成立.如在(3)中,∵AB =CD ,∴AB ﹣BC =CD ﹣BC ,即AC =BD ,∵AF ∥DE ,∴∠A =∠D .在△ACF 和△DEB 中,AF DE∠A ∠D AC DB,∴△ACF ≌△DEB (SAS ).模型2.对称(翻折)全等模型,如下图:【巩固训练】1.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,ABO ADO △≌△,下列结论:①AC BD ⊥;②CB CD =;③ABC ADC △≌△;④DA DC =,其中正确结论的序号是__________.【答案】①②③【分析】根据全等三角形的性质得出AB=AD ,∠BAO =∠DAO ,∠AOB =∠AOD =90°,OB=OD ,再根据全等三角形的判定定理得出△ABC ≌△ADC ,进而得出其它结论.【详解】由△ABO ≌△ADO 得:AB=AD ,∠AOB =∠AOD =90°,∴AC ⊥BD ∠BAC =∠DAC ,又AC =AC ,所以,有△ABC ≌△ADC ,∴CB=CD ,所以,①②③正确.由已知条件得不到DA=DC ,故④不正确.故答案为:①②【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS ,SAS ,ASA ,AAS ,以及HL ,是解题的关键.2.如图,已知ACB DBC ∠=∠,若要使得ABC DCB ∆≅∆,则添加的一个条件不能是()A .A D∠=∠B .ABC DCB ∠∠=C .AB =DC D .AC =DB【答案】C 【分析】根据全等三角形的判定方法对各选项进行判断,即可得出结论.【详解】解:∵ACB DBC ∠=∠,BC =CB ,A 、当添加∠A =∠D 时,可利用“AAS”判断△ABC ≌△DCB ,故此选项不符合题意;B 、当添加ABC DCB ∠=∠时,可利用“ASA”判断△ABC ≌△DCB ,故此选项不符合题意;C 、当添加AB=DC 时,利用“SSA”不能判断△ABC ≌△DCB ,故此选项符合题意;D 、当添加AC=DB 时,可利用“SAS”判断△ABC ≌△DCB ,故此选项不符合题意.故选:C .【点睛】本题考查了全等三角形的判定:全等三角形的判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.3.如图,12∠=∠,BC EC =,请补充一个条件:______,能使用“ASA ”方法判定ABC DEC ≌△△.【答案】∠B =∠E【分析】已知∠1=∠2,就是已知∠ACB =∠DCE ,则根据三角形的判定定理“ASA ”即可证【详解】可以添加∠B =∠E .理由是:∵∠1=∠2,∴∠1+∠BCE =∠2+∠BCE ,∴∠ACB =∠DCE ,∴在△ABC 和△DEC 中,ACB DCE BC EC B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEC (ASA ).故答案是:∠B=∠E【点睛】本题考查了三角形全等的判定,熟练掌握“两角及夹边对应相等的两个三角形全等”是解题关键.4.在数学课上,林老师在黑板上画出如图所示的图形(其中点B 、F 、C 、E 在同一直线上),并写出四个条件:①AB =DE ,②BF =EC ,③∠B =∠E ,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:【答案】①②③;④;证明过程见解析;【分析】根据三个不同的情况进行讨论分析即可;【详解】情况一:题设①②③,结论④;∵BF=EC ,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≅ ,∴12∠=∠;情况二:题设①③④,结论③;在△ABC 和△DEF 中,12B E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≅ ,∴BC EF =,∴BC FC EF FC -=-,即BF EC =;情况三:题设②③④,结论①;∵BFEC =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,12BC EF B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABC DEF ≅ ,∴AB DE =;故答案为:①②③;④.【点睛】本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键.5.如图,在ABC 中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:AB AC =.【答案】见详解;【分析】依题意,BD =CE ,∠ABE =∠ACD ,∠BFD =∠CFE ,可得△BDF ≌△CEF ,可得DF =EF ,BF =CF ;可得CD =BE ,可得△ABE ≌△ACD ,即可;【详解】由题知:BD =CE ,∠ABE =∠ACD ,又∠BFD 和∠CFE 为对顶角,∴∠BFD =∠CFE ;在△BDF 和△CEF 中ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△CEF (AAS );∴DF =EF ,BF =CF ;又CD =DF +CF ,BE =BF +EF ;∴CD =BE ;在△ABE 和△ACD 中A A ABE ACD BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );∴AB =AC ;【点睛】本题主要考查对顶角相等、用AAS 证明全等及其性质,熟练构造出全等的三角形是关键;6.如图,已知∠C =∠F =90°,AC =DF ,AE =DB ,BC 与EF 交于点O ,(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.【答案】(1)见解析;(2)78°【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC ≌Rt△DEF;(2)根据直角三角形的两锐角互余得∠ABC=39°,根据全等三角形的性质得∠ABC=∠DEF=39°,由三角形外角的性质即可求解.【详解】(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE.又∵∠C=∠F=90°,AC=DF,∴Rt△ABC≌Rt△DEF.(2)∵∠C=90°,∠A=51°,∴∠ABC=∠C-∠A=90°-51°=39°.由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF.∴∠DEF=39°.∴∠BOF=∠ABC+∠BEF=39°+39°=78°.【点睛】本题主要考查直角三角形的两锐角互余,三角形外角的性质,全等三角形的判定与性质,证明三角形全等是解题的关键.模型3.旋转全等模型,如下图:【巩固训练】1.如图,△ABC和△AED共顶点A,AD=AC,∠1=∠2,∠B=∠E.BC交AD于M,DE交AC于N,甲说:“一定有△ABC≌△AED.”乙说:“△ABM≌△AEN.”那么()A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对【答案】A 【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN .【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.2.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为()A .120︒B .135︒C .115︒D .125︒【答案】C【分析】由已知得△ABC ≌△ADE ,故有∠BAC =∠DAE ,由∠EAB =120°及∠CAD =10°可求得∠AFB 的度数,进而得∠GFD 的度数,在△FGD 中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF 的度数.【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴∠BAC =∠DAE∵∠EAB =∠BAC +∠DAE +∠CAD =120°∴∠BAC =∠DAE ()112010552=⨯︒-︒=︒∴∠BAF =∠BAC +∠CAD =65°∴在△AFB 中,∠AFB =180°-∠B -∠BAF =90°∴∠GFD =90°在△FGD 中,∠EGF =∠D +∠GFD =115°故选:C【点睛】本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC 的度数.3.已知:如图,C 为线段BE 上一点,AB//DC ,AB=EC ,BC=CD .求证:∠A=∠E.【答案】见详解【分析】直接利用全等三角形的判定方法得出△ABC ≌△ECD ,即可得出答案.【详解】证明:∵AB ∥DC ,∴∠B =∠ECD ,在△ABC 和△ECD 中,AB EC B ECD BC CD ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△ECD (SAS ),∴∠A =∠E (全等三角形的对应角相等).【点睛】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.4.如图,,,,AC BC DC EC AC BC DC EC ⊥⊥==,求证:(1)ACE BCD ∆≅∆;(2)AE BD ⊥.【答案】(1)见解析;(2)见解析【分析】(1)根据垂直得到90ACB DCE ∠=∠=︒,求出DCB ECA ∠=∠,即可得到结果;(2)设AC 交BD 于N ,AE 交BD 于O ,根据全等三角形的性质得到A B ∠=∠,再根据已知条件转换即可;【详解】证明:()1AC BC ⊥Q ,DC EC ⊥,90ACB DCE ∴∠=∠=︒,ACB ACD DCE ACD ∴∠+∠=∠+∠,∴∠=∠DCB ECA ,在DCB ∆和ECA ∆中,AC BC DCB ECA CD CE =⎧⎪∠=∠⎨⎪=⎩,()DCB ECA SAS ∴∆≅∆;()2如图,设AC 交BD 于N ,AE 交BD 于O ,∆≅∆ DCB ECA ,A B ∴∠=∠,∠=∠ AND BNC ,90∠+∠=︒B BNC ,90∴∠+∠=︒A AND ,90∴∠=︒AON ,AE BD ∴⊥.【点睛】本题主要考查了全等三角形的判定与性质,准确证明是解题的关键.。
全等三角形的经典模型(一)
全等三角形的经典模型(一)全等三角形的经典模型(一)在研究三角形的时候,全等三角形是一个非常重要的概念。
这里介绍一些经典的模型,帮助大家更好地理解和应用全等三角形。
三角形7级:倍长中线与截长补短倍长中线与截长补短是一个非常经典的全等三角形模型。
当三角形的中线等于另一条边的一半时,可以证明三角形全等。
此外,如果一条边被截成两段,其中一段的长度等于另一条边的长度减去另一段的长度,那么这两个三角形也是全等的。
三角形8级:全等三角形的经典模型(一)这是一个非常基础的全等三角形模型,利用的是三边对应相等的原理。
如果两个三角形的三条边分别相等,那么这两个三角形是全等的。
三角形9级:全等三角形的经典模型(二)这个模型利用的是两边一角相等的原理。
如果两个三角形的两条边和夹角分别相等,那么这两个三角形是全等的。
题型一:等腰直角三角形模型等腰直角三角形是一个非常特殊的三角形,可以利用其特殊的性质来解决问题。
常见的辅助线包括作高和补全为正方形等。
思路导航如果要解决一个等腰直角三角形的问题,可以尝试以下思路:1.利用特殊边特殊角证题,如AC=BC或90°,45,45。
2.常见辅助线为作高,利用三线合一的性质解决问题。
3.补全为正方形。
等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC或90°,45,45).如图1;⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2;⑶补全为正方形.如图3,4.典题精练例1】已知:如图所示,Rt△ABC中,AB=AC,BAC90°,O为BC的中点。
B⑴写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)⑵如果点M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.试判断△XXX的形状,并证明你的结论.⑶如果点M、N分别在线段CA、AB的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.解析】⑴OA=OB=OC⑴连接OA。
正弦三角形常见的几何模型
正弦三角形常见的几何模型
正弦三角形是一个常见的几何形状,具有特殊的性质和应用。
本文将介绍几种常见的正弦三角形模型。
1. 直角三角形
直角三角形是最简单的正弦三角形模型之一。
它由一个直角(90度角)和两个非直角组成。
根据正弦定理,直角三角形的最长边与其对应的最大角的正弦值成比例。
这一性质在解决三角函数和测量角度时非常有用。
2. 等边三角形
等边三角形是指三个边长相等的三角形。
虽然等边三角形没有直角,但通过正弦定理可以计算其任意角的正弦值。
等边三角形是对称的,并且所有内角都是60度。
它在几何学和物理学中广泛应用,例如结构力学和晶体学。
3. 等腰三角形
等腰三角形是指两个边长相等的三角形。
同样地,通过正弦定理,可以计算等腰三角形中任意角的正弦值。
等腰三角形具有一些
特殊的性质,例如它的底角和顶角相等,以及高线(从顶角到底边中点的垂线)相等。
这些性质可以用于解决与等腰三角形相关的问题。
4. 锐角三角形
锐角三角形是指所有内角都小于90度的三角形。
由于正弦函数在0到90度范围内是递增的,锐角三角形中的角度较小,其正弦值也较小。
因此,正弦函数在这种三角形中的数值较小,但在计算中仍然有用。
需要注意的是,正弦三角形模型的性质和应用远不止于上述几种。
在实际问题中,我们还可以考虑不同类型的三角形以及更复杂的正弦函数应用。
总结:
正弦三角形常见的几何模型包括直角三角形、等边三角形、等腰三角形和锐角三角形。
这些模型具有独特的性质和应用,在解决角度和三角函数相关问题时非常有用。
锐角三角形常见的几何模型
锐角三角形常见的几何模型
锐角三角形是指三个内角均小于90度的三角形。
在几何学中,有几种常见的锐角三角形模型,其中包括直角三角形、等腰三角形
和一般锐角三角形。
下面将详细介绍这些几何模型。
直角三角形
直角三角形是指其中一个角为90度的三角形。
直角三角形的
另外两个角既可以是锐角,也可以是钝角。
直角三角形的特点是其
中一个角是90度,而余下的两个角的和为90度。
等腰三角形
等腰三角形是指其中两边长度相等的三角形。
等腰三角形的两
个底角是锐角,而腰角是钝角。
等腰三角形的特点是两边长度相等,底角相等。
一般锐角三角形
一般锐角三角形是指除直角三角形和等腰三角形之外的锐角三角形。
一般锐角三角形的所有内角都小于90度。
这种三角形没有特殊的性质和特点,它的内角可以是任意角度。
以上介绍了几种常见的锐角三角形模型,即直角三角形、等腰三角形和一般锐角三角形。
对于这些模型,我们可以根据其特点和性质进行相应的研究和应用。
注意:本文档中所有的内容都是根据几何学知识进行撰写的,确保了准确性和可靠性。
三角形模型归纳
三角形模型归纳
三角形是几何学中最基本的图形之一,其特点是由三条线段组成的三边和三个角。
随着我们对三角形的探索,我们可以发现它们有许多不同的类型和特征。
首先,根据其内角的大小,我们可以将三角形分为三类:锐角三角形、直角三角形和钝角三角形。
锐角三角形是指内角小于90度的三角形,直角三角形是指有一个内角为90度的三角形,而钝角三角形则是指有一个内角大于90度的三角形。
其次,根据其边长的比例,我们可以将三角形分为以下三类:等边三角形、等腰三角形和普通三角形。
等边三角形是指三个边都相等的三角形,等腰三角形是指至少有两个边相等的三角形,而普通三角形则是指三个边都不相等的三角形。
除了基本的三角形类型外,我们还可以在它们中间建立各种各样的关系。
例如,如果我们在一个直角三角形中画出一条从直角到对角线的垂线,就会得到两个相似的三角形。
而如果我们在某个三角形中画一条从顶点到对边的垂线,就会得到新的形状,被称为高。
另一方面,通过应用勾股定理,我们可以计算三角形中的元素,例如两条边的长度和第三条边的角度大小。
总之,三角形是一个非常基础的几何形状,它拥有许多有趣的属性和关系。
通过深入研究这些属性和关系,我们可以更好地理解三角形,并使用这些知识解决各种几何问题。
在学习三角形时,需要多做
实践和练习,这样才能真正掌握这些概念,并在日常生活中有效地利用它们。
三角形模板支模方式
三角形模板支模方式
1、材料方块围出一个长方形,也就是俗称的火柴盒~围成一圈后再加高几层,加高4层是最合适的火柴盒围好后将头顶上方的空间封起来。
2、用同样材料的方块围一圈,也可以不围,做成屋檐。
3、转到侧面去,也就是和大门方向垂直的位置。
爬到屋顶后在四个角各放一个楼梯。
4、在第一个楼梯后方放一个普通方块,然而把第二个楼梯放上去,以此类推。
不会的小伙伴可以去网上看下楼梯摆放教程。
5、到最高位置后到对侧按照同样方式堆砌。
最后用方块将两个等腰三角形衔接起来。
每列方块高度和对应的楼梯高度相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.0f, 1.0f, 0.0f, 1.0f, //设置颜色为绿色
0.0f, 0.0f, 1.0f, 1.0f //设置颜色为蓝色
};
/**
* 构造方法,实例化vertexBuffer对象
//关闭顶点绘制状态
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
//关闭颜色绘制状态
gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
}
}
private float vertices[] = {
0.0f, 1.0f, 0.0f, //Top
-1.0f, -1.0f, 0.0f, //Bottom Left
1.0f, -1.0f, 0.0f //Bottom Right
};
private float colors[] = {
public class Triangle {
/** 定点坐标值 */
private FloatBuffer vertexBuffer;
/** The buffer holding the colors */
private FloatBuffer colorBuffer;
/** 初始化定点坐标 */
*/
public Triangle() {
//
ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
byteBuf.order(ByteOrder.nativeOrder());
vertexBuffer = byteBuf.asFloatBuffer();
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
//启用颜色绘制状态
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
//绘制三角形
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, vertices.length / 3);
colorBuffer = byteBuf.asFloatBuffer();
colorBuffer.pu
}
/**
*自定义的绘制三角形方法
*/
public void draw(GL10 gl) {
//指定要绘制的顶点
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
//指定要绘制的颜色
gl.glColorPointer(4, GL10.GL_FLOAT, 0, colorBuffer);
//开启顶点绘制状态
vertexBuffer.put(vertices);
vertexBuffer.position(0);
byteBuf = ByteBuffer.allocateDirect(colors.length * 4);
byteBuf.order(ByteOrder.nativeOrder());