等腰三角形基础练习题解析
等腰三角形的判定练习题

等腰三角形的判定练习题等腰三角形是指具有两边长度相等的三角形。
判定一个三角形是否是等腰三角形有多种方法,下面将介绍几个常用的练习题,帮助读者加深对等腰三角形的判定方法的理解。
练习题1:判定三角形的三边是否相等判定一个三角形是否是等腰三角形的最基本方法就是判断三边是否相等。
请读者根据给定的三条边,判断哪些是等腰三角形。
请注意,给定的三条边是任意长度的实数。
练习题2:判定三角形的两个角是否相等判定一个三角形是否是等腰三角形的另一种方法是判断两个角是否相等。
在等腰三角形中,两个底边的对角是相等的。
给定一个三角形的三个角度,请读者判断哪些是等腰三角形。
请注意,给定的角度是任意度数的实数。
练习题3:结合两种判定方法练习题1和练习题2是等腰三角形判定的两种基本方法,但单独使用一个方法可能不够准确。
在实际应用中,结合两种方法可以提高判定的准确性。
给定一个三角形的三边长度和三个角度,请读者结合两种方法并判断哪些是等腰三角形。
练习题4:拓展思考亲自画出不同形状的等腰三角形,并对这些三角形进行判定。
观察不同等腰三角形的性质,思考如何通过形状或者角度的特点更准确地判定一个三角形是否是等腰三角形。
补充练习题:1. 给定一个三角形的边长分别为a、b、c,判断是否为等腰三角形。
2. 给定一个三角形的内角度数分别为α、β、γ,判断是否为等腰三角形。
3. 给定一个三角形的两条底边分别为a、b,判断是否为等腰三角形。
4. 通过观察等腰三角形的形状特点,提供一种更准确的判定方法。
答案及解析:1. 三角形abc是等腰三角形的条件是a=b或者b=c或者a=c。
只要满足这三个条件中的任意一个,那么该三角形就是等腰三角形。
2. 三角形的内角都是180度。
给定的三角形的内角度数为α、β、γ,那么如果α=β或者β=γ或者α=γ,那么该三角形就是等腰三角形。
3. 在等腰三角形中,两条底边对应的顶角相等。
给定的三角形的两条底边为a、b,那么如果a与b对应的顶角相等,那么该三角形就是等腰三角形。
等腰三角形练习题(含答案)

等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。
2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。
3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。
4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。
5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。
6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。
证明:DE=DF。
第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。
2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。
3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。
4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。
5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。
证明:AB=AC。
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。
证明:△EFG是等腰三角形。
等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。
2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。
能判定△ABC为等边三角形的有条件①、②、③。
3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。
等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( ) A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C =60°AQ CPB∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=BD AB =21(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。
等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础巩固1、已知等腰三角形的一个内角为 80°,则它的另外两个内角分别是多少度?解:当 80°的角为顶角时,底角的度数为:(180° 80°)÷ 2 = 50°,所以另外两个内角分别是 50°,50°。
当 80°的角为底角时,顶角的度数为:180° 80°× 2 = 20°,所以另外两个内角分别是 80°,20°。
2、等腰三角形的两边长分别为 6 和 8,则其周长是多少?解:当腰长为 6 时,三边长分别为 6,6,8,因为 6 + 6>8,所以能组成三角形,此时周长为 6 + 6 + 8 = 20。
当腰长为 8 时,三边长分别为 8,8,6,因为 8 + 6>8,所以能组成三角形,此时周长为 8 + 8 + 6 = 22。
综上,其周长为 20 或 22。
3、一个等腰三角形的周长为 20,其中一边长为 8,求另外两边的长。
解:当 8 为腰长时,底边长为 20 8× 2 = 4,因为 8 + 4>8,所以能组成三角形,此时另外两边长分别为 8,4。
当 8 为底边时,腰长为(20 8)÷ 2 = 6,因为 6 + 6>8,所以能组成三角形,此时另外两边长分别为 6,6。
(二)能力提升1、等腰三角形一腰上的高与另一腰的夹角为 30°,则顶角的度数为多少?解:当等腰三角形为锐角三角形时,腰上的高与另一腰的夹角为30°,则顶角为 60°。
当等腰三角形为钝角三角形时,腰上的高与另一腰的夹角为 30°,则顶角的外角为 60°,所以顶角为 120°。
综上,顶角的度数为 60°或 120°。
2、如图,在△ABC 中,AB = AC,D 是 BC 边上的中点,∠B =30°,求∠1 和∠ADC 的度数。
等腰三角形练习题

等腰三角形练习题等腰三角形练习题等腰三角形是初中数学中的一个重要概念,也是几何学中常见的一种形状。
它具有特殊的性质和特点,因此在数学教学中,经常会出现与等腰三角形相关的练习题。
下面我将为大家介绍几道关于等腰三角形的练习题,希望能帮助大家更好地理解和掌握这一概念。
练习题一:已知等腰三角形ABC中,AB = AC,角A = 40°,求角B和角C的度数。
解析:由于等腰三角形的定义,我们知道AB = AC,因此角B和角C的两边也相等。
又已知角A = 40°,所以角B和角C的度数相等,设为x。
根据三角形内角和定理,我们可以得到40° + x + x = 180°,化简得2x = 140°,解方程可得x = 70°。
所以角B和角C的度数均为70°。
练习题二:已知等腰三角形ABC中,AB = AC = 8cm,角B = 50°,求三角形的周长和面积。
解析:由于等腰三角形的定义,我们知道AB = AC = 8cm,角B = 50°。
首先,我们可以通过余弦定理求得三角形的底边BC的长度。
根据余弦定理,我们有cosB = (AB^2 + AC^2 - BC^2) / (2AB * AC),代入已知条件,可以得到cos50° = (8^2 + 8^2 - BC^2) / (2 * 8 * 8),化简可得BC^2 = 128 - 128 * cos50°,计算可得BC ≈ 9.62cm。
接下来,我们可以求三角形的周长。
由于等腰三角形的两边相等,所以周长等于AB + AC + BC = 8 + 8 + 9.62 ≈ 25.62cm。
最后,我们可以求三角形的面积。
由于等腰三角形的高线可以通过顶角的平分线构造出来,所以我们可以通过高线计算面积。
设高线的长度为h,根据三角形面积公式,我们有面积S = (1/2) * AB * h。
等腰三角形经典例题透析

经典例题透析类型一:探究型题目1.如图1,在直角△ABC中,∠ACB=90°,∠CAB=30°,请你设计三种不同的分法,把△ABC分割成两个三角形,且要求其中有一个是等腰三角形。
(在等腰三角形的两个底角处标明度数)思路点拨:在三角形中,“等边对等角”与“等角对等边”,本题应从角度入手进行考虑。
下面提供四种分割方法供大家参考。
解析:总结升华:对图形进行分割是近年来新出现的一类新题型,主要考查对基础知识的掌握情况以及动手实践能力,本类题目的答案有时不唯一。
举一反三:【变式1】如图3,D是△ABC中BC边上的一点,E是AD上的一点,EB=EC,∠1=∠2,求证:AD⊥BC。
请你先阅读下面的证明过程。
证明:在△AEB和△AEC中,所以△ABE≌△AEC(第一步),所以AB=AC,∠3=∠4(第二步),所以AD⊥BC(等腰三角形的“三线合一”)。
上面的证明过程是否正确?如果正确,请写出每一步的推理依据;如果不正确,请指出关键错在哪一步,写出你认为正确的证明过程。
【答案】第一步错误。
因为在△ABE和△AEC中有两边和其中一边的对角对应相等,不能判定它们全等。
正确的证明过程是:因为EB=EC,所以∠EBD=∠ECD,所以∠EBD+∠1=∠ECD+∠2,即:∠ABC=∠ACB,所以AB=AC。
在△AEB和△AEC中,所以△ABE≌△AEC,所以∠3=∠4,所以AD⊥BC(等腰三角形的“三线合一”)。
【变式2】已知△ABC为等边三角形,在图4中,点M是线段BC上任意一点,点N 是线段CA上任意一点,且BM=CN,直线BN与AM相交于Q点。
(1)请猜一猜:图4中∠BQM等于多少度?(2)若M、N两点分别在线段BC、CA的延长线上,其它条件下不变,如图5所示,(1)中的结论是否仍然成立?如果成立,请加以证明;如果不成立,请说明理由。
【答案】(1)题通常猜想、测量或证明等方法不难发现∠BQM=60°,而且这一结论在图形发生变化后仍然成立。
专题06 利用等腰三角形的性质求角的度数(解析版)

专题06 利用等腰三角形的性质求角的度数知识对接考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点补充:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、角1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.专项训练1一、单选题1.(2021·江苏九年级专题练习)等腰三角形的一个外角是130°,则它的底角的度数为( ) A .65° B .80°或50° C .50° D .65°或50°【答案】D 【分析】分该外角是底角的外角还是顶角的外角两种情况解答即可. 【详解】解:①当该外角是底角的外角时,底角为:180°-130°=50°; ①当该外角是顶角的外角时,则底角为:130°×12=65°所以底角为65°或50°. 故选D . 【点睛】本题主要考查了等腰三角形的定义,掌握分类讨论思想是解答本题的关键.2.(2021·湖北黄冈·九年级模拟预测)如图,有一块含有45︒角的直角三角板的两个顶点放在直尺的对边上.如果120∠=︒,那么2∠的度数是( )A .20︒B .25︒C .30D .45︒【答案】B 【分析】依题意,由直尺边是相互平行、三角形为等腰直角三角形,可得+2=45DAC ∠∠︒,即可; 【详解】由题知,如图,ABC 为等腰直角三角形,① 45BAC BCA ∠=∠=︒; 直尺边相互平行,120∠=︒① ADCE ,①120DAC ∠=∠=︒;又+245DAC ∠∠=︒,① 225∠=︒; 故选:B ;【点睛】本题考查平行线、等腰直角三角形的性质,关键在熟练应用等腰直角三角形的角的关系; 3.(2021·福建省福州咨询有限公司九年级模拟预测)如图,在①ABC 中,①B=40°,将①ABC 绕点A 逆时针旋转,得到①ADE ,点D 恰好落在直线BC 上,则旋转角的度数为( )3A .70°B .80°C .90°D .100°【答案】D 【分析】利用旋转的性质得到①ABC①①ADE ,根据全等三角形的性质可知AB=AD ,进而得到①ADB=①B=40°,再利用三角形内角和定理即可解答. 【详解】①将①ABC 绕点A 逆时针旋转,得到①ADE ①①ABC①①ADE ①AB=AD ①①ADB=①B=40° ①①ADB+①B+①BAD=180° ①①BAD=180°-40°-40°=100° 故选D 【点睛】本题考点涉及旋转的性质、全等三角形的性质、等腰三角形的性质以及三角形内角和定理,熟练掌握相关性质定理是解题关键.4.(2021·湖北黄石八中九年级三模)如图,在①ABC 中,①BAC =116°,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点D ,E ,作直线DE ,交BC 于点M ;分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点P 、Q ,作直线PQ ,交BC 于点N ;连接AM 、AN .则①MAN 的度数为( )A .52°B .50°C .58°D .64°【答案】A 【分析】先根据作图可知DE 和FG 分别垂直平分AB 和AC ,再利用线段的垂直平分线的性质得到①B =①BAM ,①C =①CAN ,即可得到①MAN 的度数. 【详解】解:由作图可知,DE 和FG 分别垂直平分AB 和AC ,①MB =MA ,NA =NC ,①①B =①MAB ,①C =①NAC =116°, 在①ABC 中,BAC ∠=, ①①B +①C =180°−①BAC =64°, 即①MAB +①NAC =64°,则①MAN =①BAC −(①MAB +①NAC )=52°. 故选A . 【点睛】此题主要考查线段的垂直平分线的性质以及三角形内角和定理.解题时注意:线段的垂直平分线上的点到线段的两个端点的距离相等.5.(2021·陕西西安·交大附中分校)如图,①ABC 是①O 的内接三角形,AB =AC .BO 的延长线交AC 于点D .若①ABD =23°.则①A 的度数为( )A .23°B .32°C .46°D .60°【答案】C 【分析】延长BD 交O 于点E ,连接AE ,由圆周角定理可得90BAE ∠=︒,继而解得67AEB ∠=︒,根据等腰三角形的性质和三角形内角和定理解题即可. 【详解】解:延长BD 交O 于点E ,连接AE ,则90BAE ∠=︒23ABD ∠=︒9067AEB ABD ∴∠=︒-∠=︒67ACB AEB ∴∠=∠=︒AB AC =567ABC ACB ∴∠=∠=︒18046BAC ABC ACB ∴∠=︒-∠-∠=︒ 故选:C . 【点睛】本题考查三角形的外接圆与圆心、圆周角定理、直径所对的圆周角是90°、等腰三角形、三角形的内角和定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.6.(2021·浙江)如图,直线////a b c ,等腰直角ABC 的三个顶点分别在直线a ,b ,c 上(A 为直角顶点),若120∠=︒,则①2的度数为( )A .15°B .20°C .25°D .30°【答案】C 【分析】利用平行线的性质可以得到1320∠=∠=︒,由ABC 是等腰直角三角形可得到45ABC ∠=︒,再利用角的等量关系列式计算即可. 【详解】解:如图所示建立3∠①////a b c ①1320∠=∠=︒①ABC 是等腰直角三角形 ①45ABC ∠=︒①23452025ABC =-=︒-︒=︒∠∠∠ 故答案选:C 【点睛】本题主要考查了平行线的性质,等腰直角三角形的性质,利用平行线的性质进行角度等量代换是解题的关键.7.(2021·湖北随州·九年级一模)如图,PA、PB分别是①O的切线,A、B为切点,AC是①O的直径,已知①BAC=35°,①P的度数为()A.35°B.45°C.65°D.70°【答案】D【分析】由PA与PB都为圆的切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,可得出①OAP与①OBP都为直角,又OA=OB,根据等边对等角可得①ABO与①BAC相等,由①BAC 的度数求出①ABO的度数,进而利用三角形的内角和定理求出①AOB的度数,在四边形APBO中,利用四边形的内角和定理即可求出①P的度数;【详解】①PA,PB分别是圆的切线①OA①AP,OB①BP,①①OAP=①OBP=90°,① OA=OB,①BAC=35°,① ①ABO=①BAC=35°,①①AOB=180°-35°-35°=110°,在四边形APBO中,①OAP=①OBP=90°,①AOB=110°,则① P=360°-(①OAP+①OBP+①AOB)=70°,故选:D.【点睛】此题考查了切线的性质,等腰三角形的性质,三角形及四边形的内角和定理,熟练掌握切线的性质是解本题的关键;∠=︒,则①2 8.(2021·全国)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若120的度数是()A.15°B.20°C.25°D.40°【答案】C【分析】利用平行线的性质求得①3的度数,即可求得①2的度数.【详解】①AD①BC,①①3=①1=20︒,①①DEF是等腰直角三角形,①①EDF=45︒,①①2=45︒-①3=25︒,故选:C.【点睛】本题考查了平行线的性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.9.(2021·沙坪坝区·重庆八中九年级)如图,已知AB①CD,AD=CD,①1=40°,则①2的度数为()A.60°B.65°C.70°D.75°【答案】C【分析】由等腰三角形的性质可求①ACD=70°,由平行线的性质可求解.【详解】①AD=CD,①1=40°,①①ACD=70°,①AB①CD,①①2=①ACD=70°,故选:C.7【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.10.(2021·河南九年级二模)如图,在①ABC中,AB=AC,AE平分①BAC,DE垂直平分AB,连接CE,①B=70°.则①BCE的度数为()A.55°B.50°C.40°D.35°【答案】B【分析】连接BE,根据等腰三角形性质求出EB=EC,根据线段垂直平分线性质求出AE=BE,根据等边对等角求出①BAE=①EBA、①BCE=①EBC,即可求出答案.【详解】解:如图,连接BE,①AB=AC,AE平分①BAC,①EB=EC,①①EBC=①ECB,①①ABC=70°,AC=AB,①①ACB=①ABC=70°,①①BAC=180°﹣①ABC﹣①ACB=40°,①AE平分①BAC,①①BAE=20°,①DE垂直平分AB,①AE=EB,①①ABE=①BAE=20°,①①BCE=①EBC=①ABC﹣①ABE=70°﹣20°=50°,故选B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质和三角形内角和定理等知识点,能求出①BAE=①EBA和①BCE=①EBC是解此题的关键.二、填空题11.(2021·辽宁九年级)AD是等腰三角形ABC的高,BC=2AD,则①BAC的度数是_____.【答案】90°或75°或15°【分析】可以分别从若BC是底边,即AB=AC,与若BC是腰,即BC=BA,①点D在BC边上,①若点D在CB的延长线上去分析,根据等腰三角形的性质与直角三角形的性质,即可求得答案.【详解】解:①AD是BC边上的高线,若BC是底边,即AB=AC,如图(1)所示,①BD=DC,AD①BC,①BAD=①CAD①AD=BD①①B=①BAD=45°①①BAC=2①BAD=90°若BC是腰BC=BA,①若点D在BC边上,如图(2)所示,则在Rt①BAD中,①BA=2AD,①①B=30°,①①BAC=75°;①若点D在CB的延长线上,如图(3)所示,类似地,得:①DBA=30°,则:①ABC=150°,①①BAC=15°.综上:①BAC的度数为90°,75°,15°.912.(2021·华中科技大学附属中学)如图,将Rt ABC ∆绕直角顶点C 逆时针旋转50︒,使顶点A 的对应点D 落在边AB 上,点B 的对应点E 与点D 的连线交BC 于点F ,则CFE ∠的度数为_______︒.【答案】105. 【分析】将Rt ABC ∆绕直角顶点C 逆时针旋转50︒得到Rt DEC ∆,可得旋转角=50DCA ECB ∠=∠︒,由CA =CD ,可求65A CDA ∠=∠=︒,由旋转性质①EDC =①A=65°,可求①FCD =90°-①ACD =90°-50°=40°,由外角性质=105CFE FCD CDF ∠∠+∠=︒. 【详解】解:将Rt ABC ∆绕直角顶点C 逆时针旋转50︒得到Rt DEC ∆, ①旋转角=50DCA ECB ∠=∠︒, ①CA =CD , ①()1180652A CDA DCA ∠=∠=︒-∠=︒, ①①EDC =①A=65°,①①FCD =90°-①ACD =90°-50°=40°,①=4065105CFE FCD CDF ∠∠+∠=︒+︒=︒, 故答案为:105.【点睛】本题考查旋转变换,旋转角,等腰三角形的性质,三角形内角和,互余角计算,三角形外角性质,掌握旋转变换性质,等腰三角形的性质,三角形内角和,互余角计算,三角形外角性11质,能从图中找到旋转角是解题关键.13.(2021·苏州高新区第二中学九年级二模)如图,在ABC ∆中,90,BAC ∠=︒点D 在BC 上,BD BA =,点E 在BC 的延长线上,CA CE =,连接AE ,则DAE ∠的度数为_____________.【答案】45 【分析】利用余角、等腰三角形和三角形外角的性质即可求出. 【详解】①BDA DAE AEC ∠=∠+∠,DAE DAC EAC ∠=∠+∠, ①BDA DAC EAC AEC ∠=∠+∠+∠. ①90DAC BAC BAD BAD ∠=∠-∠=︒-∠, ①90BDA BAD EAC AEC ∠=︒-∠+∠+∠. 根据题意可知=BDA BAD EAC AEC ∠=∠∠∠,. ①45BDA AEC ∠-∠=︒, ①=45DAE ∠︒. 故答案为:45. 【点睛】本题考查等腰三角形和三角形外角的性质以及余角.找出图形中角的等量关系是解答本题的关键.14.(2021·辽宁九年级)如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________【答案】110°或80° 【分析】根据等腰三角形的性质,先求出①BAC 的度数,然后分3种情况:①AD =AE 时,①AD=ED时,①当AE=DE时,分别求解,即可.【详解】①在①ABC中,AB=AC,①B=40°,①①B=①C=40°①①BAC=100°,①AD=AE时,①AED=①ADE=40°,①①DAE=100°,此时,点D与点B重合,不符合题意舍去,①AD=ED时,①DAE=①DEA,①①DAE=12(180°−40°)=70°,①①BAD=①BAC−①DAE=100°−70°=30°,①①BDA=180°−①B−①BAD=110°,①当AE=DE时,①DAE=①ADE=40°,①①BAD=100°−40°=60°,①①BDA=180°−40°−60°=80°,综上所述:①BDA的度数为110°或80°时,①ADE的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.15.(2021·四川广安市·)规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“雅系特征值”,记作k,若2k3,则该等腰三角形的顶角为_____.【答案】45°.【分析】根据等腰三角形的性质得出①B=①C,根据三角形内角和定理和已知得出5①A=180°,求出即可.【详解】解:①①ABC中,AB=AC,①①B=①C,13①等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=2k 3=, ①①A :①B :①C =2:3:3, 即①A=180°×22+3+3=45°, ①①A=45°. 故答案为:45°. 【点睛】本题考查三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出①A=180°×22+3+3是解题关键. 三、解答题16.(2021·厦门市松柏中学九年级)如图,在Rt ABC △中,①BAC =90°,将Rt ABC △绕直角顶点A 逆时针旋转一定角度后得到Rt ADE △,当点D 在边BC 上时,连接CE . (1)若旋转角为60°,求①ACB 的度数; (2)若AB =3,AC =4,求sin①DAC 的值.【答案】(1)30°;(2)725【分析】(1)由旋转的性质得出AD AB =,60BAD ∠=︒,进而由等腰三角形的性质及三角形的内角和得出60B ADB ∠=∠=︒,最后再由直角三角形的两个锐角互余即可求得答案;(2)由勾股定理求出5BC =,过点A 作AF BC ⊥于点F ,由三角形的面积求出AF 的长,进而可求出CD ,DE 的长,则可得出答案. 【详解】解:(1)将Rt ABC △绕直角顶点A 旋转一定角度后得到Rt ADE △,旋转角为60°,AD AB ∴=,60BAD ∠=︒,60B ADB ∴∠=∠=︒,90BAC ∠=︒,9030ACB B ∴∠=︒-∠=︒,①①ACB 的度数为30°;(2)90BAC ∠=︒,3AB =,4AC =,5BC ∴==,如图,过点A 作AF BC ⊥于点F ,∴1122ABCSAB AC BC AF =⋅=⋅, 341255AB AC AF BC ⋅⨯∴===,95BF ∴,=AD AB ,AF BC ⊥,95DF BF ∴==, 75CD BC BD ∴=-=, 设AC 与DE 相交于点K ,①将Rt ABC △绕直角顶点A 旋转一定角度后得到Rt ADE △,AD AB ∴=,AE AC =,90BAC DAE ∠=∠=︒,B ADB ∴∠=∠,ACE AEC ∠=∠,90BAC DAE ∠=∠=︒,①90BAD DAC CAE DAC ∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,又1902B BAD ∠=︒-∠,1902ECA CAE ∠=︒-∠,ECA B ∴∠=∠,又①旋转,15①B ADE ∠=∠,5DE BC ==,ECA B ADE ∠=∠=∠,AKD EKC ∠=∠,DAC CED ∴∠=∠,90ACB B ∠+∠=︒,ECA B ∠=∠,90ACB ECA ∴∠+∠=︒,775sin sin 525CD DAC CED DE ∴∠=∠===.【点睛】本题考查了旋转的性质,勾股定理,等腰三角形的性质,锐角三角函数的定义,熟练掌握旋转的性质是解题的关键.17.(2021·湖北九年级)如图,ABC 中,点D 在BC 边上,且1902ADB CAD ∠=+∠°.(1)求证:AD AC =;(2)点E 在AB 边上,连接CE 交AD 于点F ,且CFD CAB ∠=∠,AE BD =, ①求ABC ∠的度数;①若8AB =,2DF AF =,直接写出EF 的长. 【答案】(1)见解析;(2)①60°;①23EF =. 【分析】(1)根据ADB ACB CAD ∠=∠+∠,1902ADB CAD ∠=+∠°可得C ADC ∠=∠,进而可得结论;(2)①过点D 作//DG CE 交AB 于点G ,根据“AAS”证出AEC ①DGA △,进而可得BDG 为等边三角形,可得答案;①过点D 作//DH AB 交CE 于点H ,可得FAE ①ACE ,根据比例式可得答案. 【详解】解:(1)①ADB ACB CAD ∠=∠+∠,1902ADB CAD ∠=+∠°,①1902ACB ADB CAD CAD ∠=∠-∠=-∠°,①180ADB CDA ∠+∠=°,①11180180909022CDA ADB CAD CAD ⎛⎫∠=-∠=-+∠=-∠ ⎪⎝⎭°°°°,①ACB ADC ∠=∠, ①AD AC =;(2)①过点D 作//DG CE 交AB 于点G ,①CFD CAB ∠=∠,CFD CAD ACE ∠=∠+∠,CAB CAD DAB ∠=∠+∠, ①ACE DAB ∠=∠,又①ACD ADC ∠=∠,ECB ACD ACE ∠=∠-∠,B ADC DAB ∠=∠-∠, ①ECB B ∠=∠, ①CE BE =, ①//DG CE , ①ECB B ∠=∠, ①DG BG =,①AEC DGA ∠=∠,AC DA =,ACE DAG ∠=∠, ①AEC ①DGA △(AAS), ①DG AE =, 又①AE BD =, ①DG BD BG ==, ①BDG 为等边三角形, ①60ABC ∠=︒; ①23EF =. 过点D 作//DH AB 交CE 于点H ,由①知EBC 和HDC △均为等边三角形,17设AE BD x ==,则8BE BC x ==-, ①82DH CD x ==-, ①//DH AB , ①AE AF DH FD =,即182x x =-, ①2x =,①ACE DAB ∠=∠, ①FAE ①ACE , ①EF AFAE AC=, ①3AC AD AF ==, ①13EF AE =,1233EF AE ==.【点睛】本题考查等腰三角形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,正确作出辅助线是解题关键,题目难度较大,综合性较强.18.(2021·江苏南通田家炳中学九年级)如图,已知点D 、E 在ABC 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE ∠的度数.【答案】(1)证明见解析;(2)90. 【分析】(1)作AF BC ⊥于点F ,利用等腰三角形三线合一的性质得到BF CF =,DF EF =,相减后即可得到正确的结论;(2)根据等边三角形的判定得到ADE 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解. 【详解】(1)证明:如图,过点A 作AF BC ⊥于F .AB AC =,AD AE =,∴BF CF =,DF EF =, ∴BF DF CF EF -=-, ∴BD CE =.(2)AD DE AE ==,∴ADE 是等边三角形, ∴60DAE ADE ∠=∠=,AD BD =,∴DAB DBA ∠=∠, ∴1302DAB ADE ∠=∠=, ∴603090BAE DAB DAE ∠=∠+∠=+=.答:BAE ∠的度数为:90. 【点睛】本题考查了等腰三角形和等边三角形的性质,熟练掌握等腰三角形三线合一的性质是本题的关键.19.(2021·福建九年级)如图,已知等腰三角形ABC 的顶角108A ∠=︒.(1)在BC 上作一点D ,使AD CD =(要求:尺规作图,保留作图痕迹,不必写作法和证明).(2)直接写出BAD ∠的度数. 【答案】(1)见解析;(2)72° 【分析】(1)根据线段垂直平分线的性质即可在BC 上作一点D ,使AD=CD ; (2)结合(1)根据三角形内角和及等腰三角形的性质求出C ∠及DAC ∠,所以BAD BAC DAC ∠=∠-∠问题得解.【详解】19解:(1)如图,点D 即为所求;(2)连接AD ,①AB AC =,108A ∠=︒, ①36B C ∠==︒, 由(1)得:AD CD =, ①36DAC C ∠=∠=︒,1083672BAD BAC DAC ∠=∠-∠=︒-︒=︒.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,根据图形正确找到角之间的关系是解题的关键.20.(2021·湖南湘西·)如图,在ABC ∆中,点D 在AB 边上,CB CD =,将边CA 绕点C 旋转到CE 的位置,使得ECA DCB ∠=∠,连接DE 与AC 交于点F ,且70B ∠=︒,10A ∠=︒. (1)求证:AB ED =; (2)求AFE ∠的度数.【答案】(1)见详解;(2)50AFE ∠=︒ 【分析】(1)由题意易得ECD ACB ∠=∠,AC EC =,则有≌ACB ECD △△,然后问题可求证; (2)由(1)可得10E A ∠=∠=︒,然后可得40ECA DCB ∠=∠=︒,进而根据三角形外角的性质可进行求解. 【详解】(1)证明:①ECA DCB ∠=∠,①ECA ACD DCB ACD ∠+∠=∠+∠,即ECD ACB ∠=∠,①AC EC =,CB CD =, ①()ACB ECD SAS ≌, ①AB ED =;(2)解:①CB CD =,70B ∠=︒, ①70CDB B ∠=∠=︒,①根据三角形内角和可得180240BCD B ∠=︒-∠=︒, ①40ECA DCB ∠=∠=︒,由(1)可得≌ACB ECD △△, ①10A ∠=︒, ①10E A ∠=∠=︒,①50AFE E ACE ∠=∠+∠=︒. 【点睛】本题主要考查等腰三角形的性质及全等三角形的性质与判定,熟练掌握等腰三角形的性质及全等三角形的性质与判定是解题的关键.21.(2021·江苏九年级)如图,在四边形ABCD 中,①B =90°,AC 平分①DAB ,DE ①AC ,垂足为E ,且AE =AB . (1)求证:BC =DE ;(2)若①DAC =40°,求①CDE 的度数.【答案】(1)见解析;(2)20° 【分析】(1)根据ASA 证明①ABC ①①AED ,由全等三角形的性质即可求证;(2)根据①ABC ①①AED 可得AC =AD ,根据等腰三角形的性质即可解决问题. 【详解】证明:①DE ①AC ,①B =90°, ①①B =①AED =90°, ①AC 平分①DAB , ①①BAC =①EAD ,21 在①ABC 和①AED 中,BAC EADAB AE B AED∠∠⎧⎪⎨⎪∠∠⎩===,①①ABC ①①AED (ASA ),①BC =DE ;(2)①①ABC ①①AED ,①AC =AD ,①①ACD =①ADC ,①①DAC =40°,DE ①AC ,①①ACD =①ADC =70°,①ADE =50°,①①CDE =20°.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质,等腰三角形的判定与性质.22.(2021·浙江九年级二模)已知:如图,在五边形ABCDE 中,AB AE =,B E ∠=∠,BC ED =.(1)求证:ABC AED ≌△△.(2)当//AC DE ,40ADE ∠=︒时,求ACD ∠的度数.【答案】(1)见解析;(2)70︒【分析】(1)利用SAS 即可证明结论;(2)结合(1)可得AC =AD ,根据等腰三角形的性质即可求出①ACD 的度数.【详解】(1)证明:①AB AE =①B E ∠=∠①BC ED =①()ABC AED SAS ≌△△(2)①//AC DE ,40ADE ∠=︒①40CAD ADE ∠=∠=︒①ABC AED ≌△△①AC AD = ①()1180702ACD CAD ∠=︒-∠=︒ 【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是利用边角边证明①ABC ①①AED . 23.(2021·温州市第十二中学九年级)已知:如图,点A 、B 、C 、D 在一条直线上,//FB EA 交EC 于H 点,EA FB =,AB CD =.(1)求证:ACE BDF ≌;(2)若CH BC =,50A ∠=︒,求D ∠的度数.【答案】(1)见解析;(2)80°【分析】(1)由//EA FB ,利用同位角相等可得EAC FBD ∠=∠.由AB CD =,利用等式性质可得AC BD =,可证()ACE BDF SAS ≌;(2)由//FB EA 可得=50EAC FBD ∠=∠︒,由CH BC =利用等角对等边,可求50HBC BHC ∠=∠=︒.利用三角形内角和可得80ECA ∠=︒.利用ACE BDF ≌性质,可得80ECA D ∠=∠=︒.【详解】(1)证明:①//EA FB ,①EAC FBD ∠=∠.①AB CD =,①AB BC CD BC +=+,即AC BD =,在ACE 和BDF 中,①AC BD EAC FBD EA FB =⎧⎪∠=∠⎨⎪=⎩,①()ACE BDF SAS ≌.23 (2)解://FB EA ,①=50EAC FBD ∠=∠︒,①CH BC =,①50HBC BHC ∠=∠=︒.①180505080ECA ∠=︒-︒-︒=︒.①ACE BDF ≌,①80ECA D ∠=∠=︒.【点睛】本题考查平行线性质,等腰三角形性质,三角形全等判定与性质,三角形内角和,掌握平行线性质,等腰三角形性质,三角形全等判定与性质,三角形内角和是解题关键.。
北师大版八年级数学下册 等腰三角形(基础)巩固练习 含答案解析

【巩固练习】一.选择题1.(2016•曲靖一模)等腰三角形中一个外角等于100°,则另两个内角的度数分别为()A.40°,40°B.80°,20°C.50°,50°D.50°,50°或80°,20°2. 用反证法证明命题:如果AB⊥CD,AB⊥EF,那么CD∥EF,证明的第一个步骤是()A. 假设CD∥EF ;B. 假设AB∥EFC. 假设CD和EF不平行D. 假设AB和EF不平行3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是(A. 4个B. 3个C. 2个)D. 1个4. 已知实数 x,y 满足|x−4|+(y−8)2=0,则以 x,y 的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对5. 如图,D是AB 边上的中点,将沿过D的直线折叠,使点A落在BC上F处,若AB CB 50,则BD F度数是()A.60°B.70°C.80°D.不确定6.(2015•永州模拟)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8.(2015•嘉峪关模拟)等腰三角形的两边长分别是2和5,那么它的周长是.9.用反证法证明“如果同位角不相等,那么这两条直线不平行“的第一步应假设_________.10. 等腰三角形的一个角是70°,则它的顶角的度数是.11.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△AB C是等腰三角形的是_________ .(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.12. 如图,△ABC 的周长为32,且AB=AC ,AD⊥BC 于D,△ACD 的周长为24,那么AD 的长为.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.15.用反证法证明:等腰三角形的底角是锐角.【答案与解析】一.选择题1. 【答案】D;【解析】解:∵外角等于100°,∴这个内角为80°,=50°,此时另两个内角的度当这个80°角为顶角时,则底角为数分别为50°,50°;当这个80°角为底角时,则另一个底角为80°,顶角为20°,此时可得另两个内角的度数分别为80°,20°;故选D.2.【答案】C;【解析】用反证法证明CD∥EF时,应先假设CD与EF不平行.故选C.3.【答案】B;4.【答案】B;【解析】根据题意得4=0x,y 8=0解得4x.y 8(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.5.【答案】C;BDF【解析】AD=DF=BD,∠B=∠BFD=50°,=180°-50°-50°=80°.6.【答案】D;【解析】解:如图,∵以点O为圆心,以OA为半径画弧,交x轴于点B、C;以点A为圆心,以AO为半径画弧,交x轴于一点D(点O除外),∴以OA为腰的等腰三角形有3个;作OA的垂直平分线,交x轴于一点,∴以OA为底的等腰三角形有1个,综上所述,符合条件的点P共有4个,故选:D.二.填空题7.【答案】20;【解析】∠A=∠ABD=40°,∠BDC=∠C=80°,所以∠CBD=20°.8.【答案】12;【解析】解:①2是腰长时,三角形的三边分别为2、2、5,∵2+2=4<5,∴不能组成三角形,②2是底边长时,三角形的三边分别为2、5、5,能组成三角形,周长=2+5+5=12,综上所述,它的周长是12.故答案为:12.9.【答案】两直线平行;【解析】根据已知条件和反证法的特点进行证明,即可求出答案.10.【答案】70°或40°;【解析】解:(1)当70°角为顶角,顶角度数即为70°;(2)当70°为底角时,顶角=180°-2×70°=40°.故答案为:70°或40°.11.【答案】②③④;【解析】:②当∠B A D=∠C A D时,∵A D是∠B A C的平分线,且A D是BC边上的高;则△A B D≌△A C D,∴△B A C是等腰三角形;③延长D B至E,使BE=A B;延长D C至F,使CF=A C;连接AE、A F;∵A B+B D=C D+A C,∴DE=DF,又AD⊥B C;∴△AEF是等腰三角形;∴∠E=∠F;∵A B=BE,∴∠A B C=2∠E;同理,得∠A C B=2∠F;∴∠A B C=∠A C B,即A B=A C,△A B C是等腰三角形;④△A B C中,A D⊥BC,根据勾股定理,得:2222A B﹣B D=A C﹣C D,即(A B+B D)(A B﹣B D)=(A C+C D)(A C﹣C D);∵A B﹣B D=A C﹣C D,∴A B+B D=A C+C D;∴两式相加得,2A B=2A C;∴A B=A C,∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形基础练习题
一、填空题
1.一个等腰三角形可以是________三角形,________三角形,_________三角形.
2.一个等腰三角形底边上的_____、________和顶角的_________互相重合.
3.如图,已知AB=AC,∠1=∠2,BD=5cm.那么BC________.
4.如图,已知△ABC中,∠BAC=90°,AD是高,∠C=30°,BD=3cm,那么
BC=________.
5.“等腰三角形的两个底角相等”的逆命题是________________.
6.三角形一个角的平分线垂直于对边,那么,这个三角形是_____________.
7.等边三角形两条中线相交所成的钝角的度数为_________.
8.已知等腰三角形一个角为75°,那么,其余两个角的度数是_________.
9.一个等腰三角形的周长是35cm,腰长是底边的2倍.那么腰长是,底边长是
_______.
10.如图,已知AB=AC,∠ABC与∠ACB的平分线交于F点,过F点作DE∥BC,那么图中的等腰三角形有____个,它们是_________.
11.如图,已知△ABC中,∠ACB=90°,∠B=30°,那么______AB,如果D 是AB的中点,那么____是等腰三角形,_______是等边三角形.
12.如图,已知△ABC的边AB、BC的垂直平分线DE、MN交于O点,那么有OA=___=______,如果OH⊥AC,H为垂足,那么直线OH是AC的________.
13.如图,已知AB=BC=CD=CE,∠CAE=25°,那么∠CEN=_______,∠MCE=_____.
14.已知等腰三角形顶角是底角的10倍,腰长为10cm,那么这个三角形腰上的高为______.
.15.在线段、角、等腰三角形、直角三角形中,轴对称图形是________.
二、选择题
1、如图1-4-21,已知∠ABC=∠C=72°,BD是△ABC的平分线,那么图中等腰三角形有().
(A)1个(B)2个(C)3个(D)4个
2、如图,已知△ABC中,∠B=∠ACB,CD⊥AB于D,那么下列两角关系正确的是().
(A)∠A=∠B(B)∠A=∠ACD(C)∠A=∠DCB(D)∠A=2∠BCD 3.等腰三角形的两边长分别为8cm和6cm,那么它的周长为(). (A)20cm(B)22cm(C)20cm或22cm(D)都不对4.如图,已知AB=AC,DE分别为AB、AC的中点,BE、CD交于G,AG的延长线交BC于F,那么图中全等三角形对数有().
(A)4对(B)5对(C)6对(D)7对
5.如图,AC=BC,∠1=∠2,那么AM是等腰三角形△ABC的(). (A)顶角平分线(B)底角平分线(C)一腰的中线(D)底边上的中线
6.如图,已知在△ABC中,AB=AC,∠B=50°,AD、AE分别是BA、CA的延长线,∠D=20°,那么△DEA是().
(A)等腰三角形(B)等边三角形(C)等腰直角三角形(D)以上结论都不对7.如图,已知在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长是13cm,那么△ABC的周长是().
(A)11.5cm(B)13cm(C)16cm(D)19cm
8.下列图形中,不是轴对称图形的是().
(A)等边三角形(B)等腰直角三角形(C)线段(D)三角形的内角平分线
9.等腰三角形一底角的余角等于().
(A)顶角(B)顶角的2倍(C)底边高与一腰所成的角(D)一腰上的高与另一腰所成的角
10.如果三角形的三边a、b、c满足(a-b)(b-c)(c-a)=0,那么这个三角形是(). (A)等腰三角形(B)直角三角形(C)等边三角形(D)锐角三角形
11.一个等腰三角形,但不是等边三角形,它的角平分线、高、中线总数共有().
(A)9条(B)7条(C)6条(D)5条
12.等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是(). (A)25°(B)40°(C)25°或40°(D)以上都不对13.等腰三角形一边长为2,周长为4+7,那么,这个等腰三角形腰长为().
(A)3.5+(B)2(C)3.52(D)以上都不对14.已知等腰三角形的一个外角等于70°,那么底角的度数是().
(A)110°(B)55°(C)35°(D)以上都不对
15.满足下列条件的图形是轴对称图形的是().
(A)全等的两个图形
(B)能互相重合的两个图形
(C)沿一条直线对折,能互相重合的两图形
(D)绕某点旋转180°后,能互相重合的两图形.
三、计算、证明题
1、如图,已知在△ABC中,AB=AC,∠A=40°,∠ABC的平分线BD交AC于
D.
求:∠ADB和∠CDB的度数.
2、如图,已知AD⊥BC,垂足为D,△BDE和△ADC都是等腰直角三角形,CE=5cm,求AB的长.
3、如图,已知CE平分∠ACB,CE⊥DB.∠DAB=∠DBA,AC=18cm,△CDB的周长是28cm.求DB的长.
4、如图,已知在△ABC中,AB=AC,∠BAD=30°,AD=AE
.求:∠EDC的度数.
5、如图,已知△ABC是等边三角形,在AC、BC上各取一点D、E,使AD=CE,AE,BD相交于O.求∠BOE的度数.
6、如图,已知在△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC,DE=2cm.求BC的长.
7、如图,已知在△ABC中,AB=AC,∠1=∠2.求证:AD⊥BC.
8、如图,已知△ABC是等边三角形,AD是∠BAC的平分线,△ADE是等边三角形.求证:BD=BE.
9.如图,已知在△ABC和△DBC中,∠1=∠2,∠3=∠4,E是BC上一点.
求证:∠5=∠6.
10.如图,已知AB=AC,∠ABD=∠ACD. 求证:AD垂直平分BC.
11.如图,已知在三角形ABC中,AB=AC,以AB,AC向上作等边三角形△ABD 和△ACE.求证:DE∥BC.
12.如图1-4-38,已知在△ABC中,AB=AC,D为AB上一点,E为AC延长线上一点,BD=CE,DE交BC于F.
求证:DF=EF.。