函数模型的应用实例1
3.2.2_函数模型的应用实例(一)
3.2.2函数模型的应用实例(一)1、某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用( )A.一次函数B.二次函数 C.指数型函数D.对数型函数2、某种植物生长发育的数量y与时间A.y=2x-1 B.y=x2-1 C.y=2x-1 D.y=1.5x2-2.5x+23、如图表示一位骑自行车者和一位骑摩托车者在相距80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③ C.②③D.①②4、长为4,宽为3的矩形,当长增加x,且宽减少x2时面积最大,此时x=________,面积S=________.5、某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km后,以120km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2h内行驶的路程.6、某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?7、.如果一辆汽车匀速行驶,1.5h行驶路程为90km,求这辆汽车行驶路程与时间之间的函数关系,以及汽车3h所行驶的路程.8、有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面积最大?9、某市一种出租车标价为1.20元/km,但事实上的收费标准如下:最开始4km内不管车行驶路程多少,均收费10元(即起步费),4km后到15km之间,每公里收费1.20元,15km后每公里再加收50%,即每公里1.80元.试写出付费总数f与打车路程x之间的函数关系.10、某游艺场每天的盈利额y元与售出的门票数x张之间的关系如图所示,试问盈利额为750元时,当天售出的门票数为多少?11、该经营者准备下月投入12. 请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).。
3.2.2函数模型应用实例1
h (t )
1
(t 3 5 0 ) 1 0 0
2
,所以当
t 300
8 7 .5
综上,由 1 0 0 8 7 .5 可知, h ( t ) 在 [0, 3 0 0 ] 上可以取得最大值 100,此时 t =50,即二月一日开始的第50天时,上市的西红柿纯收益 最大.
中学数学网(群英 学科)提供
3.2.2 函数模型的应用实例
第一课时
y kx b(k 0) 直 1.一次函数的解析式为__________________ , 其图像是一条 ____线,
当________时,一次函数在 ( ,) 上为增函数,当_______时, 一次函数在 (,) 上为减函数。
2
y ax bx c(a 0) 2.二次函数的解析式为_______________________,
v
90 80 70
60 50 40 30 20 10
1 2 3 4 5
解(1)阴影部分的面积为 50 1 80 1 90 1 75 1 65 1 360
阴影部分的面积表示汽车在这5小时内行驶的路程为360km (2)根据图形可得:
S
第三步:利用数学的方法将得到的常规数学问题(即数学模型) 予以解答,求得结果。 第四步:再转译为具体问题作出解答。
实际问题
抽象概括
数学模型 推理 演算
实际问题 的解
还原说明
数学模型的 解
布置作业 1 . (必做)课本第107页 习题1,2
2.(选做)甲乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查, 提供了两个方面的信息,如下图:
r6≈0.0223, r7≈0.0276, r8≈0.0222, r9≈0.0184. 可得,1951-1959年期间我国人口的平均增长率分为 r ( r1 r2 r9 ) 9 0 .0-1959年期间我国的人口增长模型为 0.0221 t y 55196 e , t N.
函数模型的应用实例 课件
解:由题意,知将产量随时间变化的离散量分别抽 象为 A(1,1),B(2,1.2),C(3,1.3),D(4,1.37)这 4 个 数据.
(1)设模拟函数为 y=ax+b 时,将 B,C 两点的坐标 代入函数式,得32aa+ +bb= =11..32, ,解得ab==01..1,
所以有关系式 y=0.1x+1. 由此可得结论为:在不增加工人和设备的条件下, 产量会每月上升 1 000 双,这是不太可能的.
过筛选,以指数函数模型为最佳,一是误差小,二是由于 厂房新建,随着工人技术和管理效益逐渐提高,一段时间 内产量会明显上升,但经过一段时间之后,如果不更新设 备,产量必然趋于稳定,而该指数函数模拟恰好反映了这 种趋势.因此选用指数函数 y=-0.8×0.5x+1.4 比较接近 客观实际.
类型 3 建立拟合函数解决实际问题(规范解答) [典例 3] (本小题满分 12 分)某个体经营者把开始六 个月试销 A、B 两种商品的逐月投资金额与所获纯利润列 成下表:
(3)设模拟函数为 y=abx+c 时,
将 A,B,C 三点的坐标代入函数式,
得aabb2++cc==11,.2,
① ②
ab3+c=1.3. ③
由①,得 ab=1-c,代入②③,
得bb2((11--cc))++cc==11.2.3,.
则cc==1111..32- ---bbbb22,,解得bc==10..45., 则 a=1-b c=-0.8. 所以有关系式 y=-0.8×0.5x+1.4. 结论为:当把 x=4 代入得 y=-0.8×0.54+1.4=1.35. 比较上述三个模拟函数的优劣,既要考虑到误差最 小,又要考虑生产的实际,如:增产的趋势和可能性.经
设 y=kx+b,取点(1,0.30)和(4,1.20)代入, 得01..32= =k4+ k+b, b,解得kb==00..3,所以 y=0.3x.(8 分) 设第 7 个月投入 A,B 两种商品的资金分别为 x 万元、 (12-x)万元,总利润为 W 万元, 那么 W=yA+yB=-0.15(x-4)2+2+0.3(12-x). 所以 W=-0.15(x-3)2+0.15×9+3.2.(10 分) 当 x=3 时,W 取最大值,约为 4.55 万元,此时 B 商品的投资为 9 万元.(11 分)
人教a版必修1学案:3.2.2函数模型的应用实例(含答案)
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
3.2.2函数模型应用实例
60266
61456
62828
64563
65994
67207
y y0e
n (1)如果以各年人口增长平均值l作为我国这一时期的人口增长 率(精确到0.0001),用马尔萨斯人口增长模型建立我国在 这一时期具体人口增长模型,并检验所得模型与实际人口数 据是否相符;
解:设1951~1959年的人口增长率分别为 r1 ,r 2 ,......,r 9 . 由
y 其中t表示经过的时间,y0表示t=0时的人口数, r表示人口 的年平均增长率。
0
y y0e
n
表3是1950~1959年我国的人口数据资料:
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/ 万人55196 Nhomakorabea56300
57482
58796
3.2.2 函数模型的应用实例
一辆汽车在某段路中的行驶速率与时间的关系 如图1所示,
(1)求图1中阴影部 分的面积,并说明所 求面积的实际含义; (2)假设这辆汽车的 里程表在汽车行行驶 这段路程前的读数为 2004km,试建立行 驶这段路程时汽车里 程表读数s km与时间t h的函数解析式,并作 出相应的图象。
由图4可以看出,所 得模型与 1950~1959年的实 际人口数据基本吻 合.
(2)如果按表3的增长趋势,大约在哪一年我国 的人口达到13亿?
将y=130000代入 y 55196e0.0221t .t N.
由计算可得
t 38.76
所以,如果按表3的增长趋势,那么大约在1950 年后的第39年(即1989年)我国的人口就已达到 13亿.由此可以看到,如果不实行计划生育,而是让 人口自然增长,今天我国将面临难以承受的人口压 力.
3.2.2 函数模型的应用实例训练
3.2.2函数模型的应用实例一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b<a),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为()答案 C解析由题意可知,s是关于时间t的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1 000 g以内的包裹的邮资标准如下表:如果某人在西安要快递800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是() A.5.00元B.6.00元C.7.00元D.8.00元答案 C解析由题意可知,当x=1 200时,y=7.00元.3.某机器总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为() A.30 B.40C.50 D.60答案 C解析 设安排生产x 台,则获得利润 f (x )=25x -y =-x 2+100x =-(x -50)2+2 500.故当x =50台时,获利润最大.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是 ( )A .75,25B .75,16C .60,25D .60,16答案 D解析 由题意知,组装第A 件产品所需时间为cA=15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入c A=15,得A =16. 5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +1102,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有 ( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30答案 A解析 设生产x 吨产品全部卖出,获利润为y 元,则y =xQ -P =x ⎝⎛⎭⎪⎫a +xb -⎝ ⎛⎭⎪⎫1 000+5x +110x 2 =⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎨⎧a =45,b =-30.6.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好. 答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元? 解 设报摊主每天买进报纸x 份,每月利润为y 元(x 为正整数). 当x ≤250时,y =0.1×30×x =3x . 当250≤x ≤400时,y =0.1×20×x +0.1×10×250-(x -250)×0.32×10 =2x +250-3.2x +800 =1 050-1.2x . 当x ≥400时,y =0.1×20×400+0.1×10×250-(x -400)×0.32×20-(x -250)×0.32×10 =800+250-6.4x +2 560-3.2x +800 =-9.6x +4 410.当x ≤250时,取x =250,y max =3×250=750(元). 当250≤x ≤400时,取x =250,y max =750(元). 当x ≥400时,取x =400,y max =570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元.二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50答案 C解析 由已知,得49a =a ·e -50k ,∴e -k=⎝⎛⎭⎪⎫49150.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1, ∴827=(e -k)t 1=⎝⎛⎭⎪⎫49t 150, ∴t 150=32,t 1=75. 9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________(已知lg 2≈0.301,lg 3≈0.477). 答案 36.72解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59144(lg 5-2lg 3)=36.72.10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t ,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等.其中正确的命题序号是________.答案①②解析由图象知,t=2时,y=4,∴a2=4,故a=2,①正确.当t=5时,y=25=32>30,②正确,当y=4时,由4=2t1知t1=2,当y=12时,由12=2t2知t2=log212=2+log23.t2-t1=log23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如下图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额.(2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L ,则由题设得: L =Q (P -14)×100-3 600-2 000.①由销量图易得:Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,(-32P +40)(P -14)×100-5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450(元), 此时P =19.5(元);当20<P ≤26时,L max =1 2503(元),此时P =613(元).故当P =19.5(元)时,月利润余额最大,为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫. 三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20 min ,那么降温到35℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝ ⎛⎭⎪⎫1220h , 即14=⎝ ⎛⎭⎪⎫1220h . 解之,得h =10.故T -24=(88-24)·⎝ ⎛⎭⎪⎫12t 10. 当T =35时,代入上式,得 35-24=(88-24)·⎝ ⎛⎭⎪⎫12t 10, 即⎝⎛⎭⎪⎫12t 10=1164.两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35℃.13.(2014·成都高一期末)今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P (t )=P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物. (1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.) 解 (1)由已知,当t =0时,P =P 0; 当t =5时,P =90%P 0. 于是有90%P 0=P 0e -5t .解得k =-15ln 0.9(或0.022).(2)由(1)得,知P =P 0e ⎝ ⎛⎭⎪⎫15ln 0.9t . 当P =40%P 0时,有0.4P 0=P 0e ⎝ ⎛⎭⎪⎫15t . 解得t =ln 0.415ln 0.9≈-0.9215×(-0.11)=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。
一次函数、二次函数、幂函数模型的应用实例
2.5 t 3.5,
150 50(t 3.5), 3.5 t 6.5.
它的图象如图:
2
车速v(km/h)与时间t(h)的函数关系式为:
60, v 0,
50,
它的图象如图:
0 t 2.5, 2.5 t 3.5, 3.5 t 6.5.
思路分析: 完成全部任务的时间就是两组中需要用时较多的那组所 用时间,因此要想最快完成任务,两组所用时间之差应 为0或最小。
5
解:设x名工人制作课桌,(30 名x)工人制作椅子,
由题意知,一个工人制作一张课桌与制作一把椅子用时 之比为10:7,则一个工人制7张桌子和制作10把椅子所 用时间相等,不妨设为1个时间单位,那么
7 13
g(13)
200
1.18
10(30 13)
所以 t(13) 1.18
因为 t(12) t(13)
所以 x 1时3用时最少。
答:用13名工人制作课桌,17名工人制作椅子完成任务 最快。
8
3
练习: 某人如果将进货价为8元的商品按每件10元售出时
每天可销售50件,现在他采用提高价格销售,减少进货量 的办法增加利润,己知商品每件售价每提高1元,其日销 售量就减少5件,为使每天赚得的利润最大,该商品的定 价应为多少元?
为使每天赚得的利润最大,该商品的定价应为14元.
4
例3:某车间有30名木工,要制作200把椅子和100张课桌,已知 制作一张课桌与制作一把椅子的工时之比为10:7,问30名工 人应当如何分组(一组制作课桌,另一组制作椅子),才能保 证完成全部任务最快?
解函数应用题的方法和步骤: 1.审题:(1)设出未知量;(2)找出量与量的关系. 2.建摸:建立函数关系式. 3.求解:用数学方法解出未知量.
函数模型的应用实例--优质获奖精品课件 (60)
1.用函数模型解应用题的四个步骤
审题
弄清题意,分清条件和结论,理顺数量关系, 初步选择模型.
建模
将自然语言转化为数学语言,将文字语言转化 为符号语言,利用数学知识,建立相应的数学 模型.
解模
求解数学模型,得出数学模型.
还原
将数学结论还原为实际问题的意义.
2.建立函数模型应把握的三个关口 (1)事理关:通过阅读、理解,明白问题讲什么,熟悉实际背 景,为解题打开突破口. (2)文理关:将实际问题的文字语言转化为数学的符号语言, 用数学式子表达数学关系. (3)数理关:在构建数学模型的过程中,对已有的数学知识进 行检验,从而认定或构建相应的数学问题.
【解析】1.设原来的生产总值为a,则12月底的生产总值为
a(1+P)12,故年平均增长率为a 1 P 12 a
a
=(1+P)12-1.
答案:(1+P)12-1
2.(1)由题意知第一次注射药物前病毒细胞个数y关于天数 n(n∈N*)的函数关系式为y=2n-1(n∈N*).为了使小白鼠在试验 过程中不死亡,则2n-1≤108,两边取对数,解得n≤27,即第 一次最迟应在第27天注射该种药物.源自对数函数模型 【技法点拨】
对数函数应用题的解题思路 有关对数函数的应用题一般都会给出函数关系式,要求根据实 际情况求出函数关系式中的参数,或给出具体情境,从中提炼 出数据,代入关系式求值,然后根据值回答其实际意义.
【典例训练】
1.大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现
鲑鱼的游速可以表示为函数v=
第2课时 指数型、对数型函数 模型的应用举例
1.了解指数函数模型、对数函数模型的广泛应用. 2.掌握求解函数应用题的基本步骤. 3.能够根据已有的数据建立拟合函数解决实际问题.
函数模型习题
学习目标
能利用所学的数学知识分析问题, 探索问题,解决问题。
例1.一辆汽车在某段路程中的行驶速 度与时间的关系如图: 并一 说 90 V(km/h) 明求 90 80 75 80 所图 65 70 求中 60 50 面阴 50 积影 40 的部 30 实分 20 际的 10 含面 T(h) 义积 4 5 1 2 3 , ( )
分层训练
1.一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解 析式为( ) A.y=20-2x (x≤10) B y=20-2x (x<10) C y=20-2x (5 ≤x≤10) D y=20-2x (5<x<10)
3. 某医药研究所开发一种新药,如果成人按规定的剂量服用, 据监测:服药后每亳升血液中的含药量y与时间t之间近似满足 如图所示的曲线。写出服药后y与t之间的函数关系式; 据测定:每毫升血液中含药量不少于4微克时治疗疾病有效。 假若某病人一天中第一次服药为7:00,问一天中怎样安排服 药的时间、次数,效果最佳。
Y(毫克)
6
1/6
8
X(小时)
作业 课本94 16
T(h)
1 2 4 5
例题2 某公司生产一种电子仪器的固定成本为20000元,每 生产一台仪器需增加投入100元。已知总收益满足函数:
1 2 400 x x R( x) , 0 x 400 2 80000, x 400
其中x是仪器的月产量。 (1)将利润表示为月产量的函数: (2)当月产量为何值时,公司利润最大?最大 利润为多少元?(总收益=总成本+利润)
(2)假设这辆汽车的里程表在行驶这段 路程前的读数为2004km,试建立汽车行 驶这段路程时汽车里程表读数 s km与时 间 t h的函数解析式,并作出相应的图像。
高一数学函数模型的应用实例1
记得小时候,我家也常会泡些有山果的酒,但最受欢迎的还是金樱子酒。金樱子是一种蔷薇科植物,在老家的大山里随处可见,结纺锤形状小果,果皮有毛并且会带上摘金樱子的工具,不让小孩子去摘,怕弄伤了手,也怕被刺挂破了衣服,到头来得不偿失。小孩们却常偷偷去摘,果子摘下 来后,放在地上,用鞋子搓去刺,剥开去籽,洗干净,放在嘴里嚼,味道酸酸甜甜,是我们孩提时一段美好的记忆。采摘回来的果子须先褪去毛刺,洗净后再用刀破成两半,剜掉 内籽再放进酒缸里泡,当然也有人家会将其晒干后,再放进酒缸泡上几个月的。母亲常跟我们说,金樱子酒是药酒,补脾健胃、补益肝肾,还能止咳平喘,但小孩子不能喝得太多, 说太补了。在老家的大山里,金樱子比较多,每年我家都会泡一两缸金樱子酒。在金樱子酒开封时,母亲也总会给我们三兄妹都倒上一点点,让我们尝一尝。我不能喝酒,每次喝
一点点,很快就脸红了,这时父亲就会在旁边得意地笑,说我没“酒福”。。 嘎嘎影视 。
我家的金樱子酒自己喝,也常分给别人喝,常常是别人喝得多,自己喝得反而少。在我记忆里,杀年猪时是我家喝金樱子酒比较多的时候。儿时的乡下,谁家杀年猪,邻居们 都会来帮忙,这也是这家人感谢邻居们一年来的帮助,祝福邻居们在接下来的一年里和和美美、顺顺利利的好时机。主人把刚刚杀的年猪,那还冒着热气的猪肉、猪血、猪肝、猪 杂……做成一碗碗丰盛的菜肴,拿出自家储藏的用来招待贵宾的好酒来招待邻居。我家杀年猪时,父亲就会拿出金樱子酒来招待邻居,餐桌上夹菜敬酒,推杯换盏,菜凉了再热,吃 了再添,酒喝了一碗又一碗,上了一瓶再上一瓶,喝得大家酣畅淋漓,面红耳赤,喜形于色,酒后乡亲们话匣子也彻底打开了,即使平时邻里之间有点小矛盾的,这时也在金樱子 酒里融化了,亲情、友情、乡情也在金樱子酒里升华。
指数函数模型的生活中的例子
指数函数模型的生活中的例子
指数函数模型在生活中有许多应用,以下是一些常见的例子:
1.指数增长模型:人口增长是一个经常被描述为指数增长的
例子。
随着时间的推移,人口数量以指数形式增加。
这意
味着每个时间段的增长量都与当前的总人口数量成正比,
而不是与固定值相等。
类似的情况还可以用于描述病毒传
播、社交媒体用户数量等。
2.化学反应速率:在化学反应中,一些反应的速率可以用指
数函数模型来描述。
例如,放射性衰变是一个常见的指数
过程。
放射性元素的衰变速率与其当前的数量成正比,因
此可以用指数函数来建模。
3.衰减过程:指数函数模型也可以用于描述衰减过程。
例如,
放置在室外的热液体将以指数形式冷却。
温度的变化量与
当前的温度差成正比,因此可以用指数函数来描述冷却过
程。
4.资产贬值:一些资产,如汽车、电子设备等,在使用过程
中会贬值。
资产值的减少可以用指数函数模型来描述,其
中资产价值每年以固定比例减少。
5.金融利率:指数函数模型在金融领域也有应用,例如利率
的复利计算。
在复利计算中,投资本金和利率成指数关系,可以利用指数函数模型来计算投资的增长。
这些只是一些常见的例子,指数函数模型在现实生活中的应用
非常广泛,可以涵盖许多不同的领域。
高中数学第三章函数的应用3.2.2.1一次函数、二次函数、幂函数模型的应用举例课件新人教A版必修1
(3)求出总运费最低的调运方案及最低的费用.
【解析】由甲、乙两地调运至A,B两地的机器台数及费
用列表如下:
调出地 调至地 台数 每台运 费 运费合 计 甲地 乙地
A地 10-x 400
B地 12-(10-x) 800
A地 x 300
B地 6-x 500 500·(6-x)
所以甲厂应该选取6千克/小时的生产速度,最大利润为
457500元.
【补偿训练】某工厂在甲、乙两地的两个分厂各生产
某种机器12台和6台,现销售给A地10台,B地8台.已知从 甲地调运1台至A地、B地的运费分别为400元和800元,
从乙地调运1台至A地、B地的运费分别为300元和500元.
(1)设从乙地调运x台至A地,求总运费y关于x的函数关
①当x=20×60=1200,即x>500时,
应付y=30+0.15×(1200-500)=135(元). ②90元已超过30元,所以上网时间超过500分钟,由
30+0.15(x-500)=90可得,上网时间为900分钟.
③令60=30+0.15(x-500),解得x=700.
故当一个月经常上网(一个月使用量超过700分钟)时选 择电脑上网,而当短时间上网(一个月使用量不超过700
x的取值范围. (2)要使生产900千克该产品获得的利润最大,问:甲厂
应该选取何种生产速度?并求最大利润.
【解析】(1)根据题意200 (5x 1 3 ) ≥3000⇒5x-14- 3
x x
≥0, 又1≤x≤10,可解得3≤x≤10.
3 900 (2)设利润为y元,则y= ·100 (5x 1 ) =9× x x 1 1 2 61 4 10 [3( ) ] ,故x=6时,ymax=457500. x 6 12
4.5.3函数模型的应用实例
练习:
1.某商人将进货单价为8元的某种商品按10元一个 销售时,每天可卖出100个,现在他采用提高售价, 减少进货量的办法增加利润,已知这种商品销售 单价每涨1元,销售量就减少10个,问他将售价每 个定为多少元时,才能使每天所赚的利润最大? 并求出最大值。
基本步骤:
第一步:阅读理解,认真审题
读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景 中概括出来的数学实质,尤其是理解叙述中的新名词、新概念, 进而把握住新信息。
第二步:引进数学符号,建立数学模型
设自变量为x,函数为y,并用x表示各相关量,然后根据问题已知 条件,运用已掌握的数学知识、物理知识及其他相关知识建立函 数关系式,将实际问题转化为一个数学问题,实现问题的数学式为___y____k_x____b_(_k____0, )其图像是一条__直__线,
当________时,一次函数在( , )上为增函数,当_______时,
一次函数在 (,)上为减函数。
2.二次函数的解析式为___y___a_x__2___b_x___c_(_a____0_), 其图像是一条 4ac b2
练习:
2.某市居民自来水收费标准如下:每户每月用水 不超过4吨时,每吨为1.80元,当用水超过4吨时, 超过部分每吨3.00元,某月甲、乙两户共交水费 y元,已知甲、乙两用户该月用水量分别为5x, 3x吨.
(1)求y关于x (2)若甲、乙两户该月共交水费26.4元,分 别求出甲、乙两户该月的用水量和水费
分段函数模型:
例2.某市出租车收费标 准如下:起步价为8元,起步里程为 3 km(不超过3 km按起步价收费);超过3 km但不超过8 km时, 超过部分按每千米2.15元收费;超过8 km时,超过的部分按每 千米2.85元收费,每次乘车还需付燃油附加费1元.
几种不同增长的函数模型+应用实例
抽象概括 实际问题
数学模型 推理 演算
实际问题 的解
还原说明
数学模型 的解
X
设第x天所得回报为x元
方案一 可以用函数 y 40( x N ) 进行描述 方案二 可以用函数 y 10 x( x N ) 进行描述
* *
方案三 可以用函数 y 0.4 2 进行描述
x 1
(x N )
*
函数图象是分析问 题的好帮手。为了 便于观察,我们用 虚线连接离散的点。
在同一坐标系画出函数 2 , y x , y log2 x y
x 2
的图象:
x y=2x y=x2 y=log2x 0.2 1.149 0.04 -2.322 0.6 1.516 0.36 -0.737 1.0 2 1 0 1.4 2.639 1.96 0.485 1.8 3.482 3.24 0.847 2.2 4.595 4.84 1.136 2.6 6.063 6.76 1.378 3.0 8 8 1.585 3.4 10.556 11.56 1.766 … … … …
我们看到,底为 2的指数函数模 型比线性函数模 型增长速度要快 得多。从中你对 “指数爆炸”的 含义有什么新的 理解?
图-1
三种方案的每日回报
三个投资方案日回报图 220 200 180 每 天 的 回 报 元 160 140 120 100 80 60 40 20 0 0 1 2 3 4 5 6 天数 7 8 9 10 11 y=40 y=10x 方案一 方案二 方案三 y=0.4*2x-1
其中哪个模型能符合公司的要求?
X
y
y 0.25x
8 7 6 5 4 3 2 1 0 200 400 600
高中数学必修一《函数模型的应用实例》优秀教学设计
课题:§3.2.2函数模型的应用实例(一)教材分析本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章的3.2.2函数模型的应用实例函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。
本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价学情分析学生在学习本节内容之前已经学习了几类不同增长的函数模型,学会了任何选择适当的函数模型分析和解决实际问题,对函数模型增长变化有了较深刻的认识。
这为建立函数模型解决实际问题提供了支持。
但学生对于从实际应用问题获取信息转化为数学问题的能力较薄弱,给建立函数模型带来了一定的难度。
因此在教学中应该给学生多阅读,多思考,由易到难逐层引导提问,理解问题的本质从而得出结论。
教学目标:知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.情感、态度、价值观体会数学在实际问题中的应用价值.教学重点、难点:重点利用给定的函数模型或建立确定性函数模型解决实际问题.难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.设计思想一、创设情境现实生活中有些实际问题所涉及的数学模型是确定的,但需要我们利用问题中的数据及其蕴含的关系建立数学模型,对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度,并对给定的数学模型进行适当的分析和评价.设计意图教师介绍现实生活中函数应用的典型题型,提出研究内容与研究方法引出问题.二、组织探究例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示.1)求图中阴影部分的面积,关说明所求面积的实际含义;2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s 与时间t 的函数解析式,并作出相应的图象.让学生主动参与,认真观察分析所给图象,独立思考后,讨论,教师可以作以下引导 首先引导学生写出速度v 关于时间t 的函数解析式其次引导学生写出汽车行驶路程y 关于时间t 的函数关系式,并作图象再次探索:1)将图中的阴影部分隐去,得到的图象什么意义?2)图中每一个矩形的面积的意义是什么?3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系?设计意图学会将实际问题转化为数学问题.学会用函数模型(分段函数)刻画实际问题.培养学生的读图能力,让学生理解图象是函数对应关系的一种重要表现形式例2.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:rt e y y 0其中t 表示经过的时间,0y 表示t =0时的人口数,r 表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人) 年份1950 1951 1952 1953 1954 人数55196 56300 57482 58796 60266 年份1955 1956 1957 1958 1959 人数 61456 62828 64563 65994 672071)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到/通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 v(km/h ) t (h )0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?认真阅读题目,教师指出本例的题型是利用给定的数学模型(指数函数模型rt e y y 0 )解决实际问题的一类问题,引导学生认识到确定具体函数模型的关键是确定两个参数0y 与r .学生独立思考后,教师作以下提问1) 本例中所涉及的数量有哪些?2) 描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?3) 根据表中数据如何确定函数模型?4) 对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应作出如何评价?5)如何根据所确定函数模型具体预测我国某个时期的人口数,实质是何种计算方法?学生根据教师引导,完成数学模型的确定,借助计算器,利用所确定的函数模型对我国的人口增长情况进行适当的预测教师在验证问题中的数据与所确定的数学模型是否吻合时,可引导学生利用计算器或计算机作出所确定函数的图象,并由表中数据作出散点图,通过比较来确定函数模型与人口数据的吻合程度.设计意图通过本例让学生认识到表格也是函数对应关系的一种表现形式.培养学生得阅读能力,分析能力三、探索研究引导学生分析例题,进行总结归纳利用给定函数模型或建立确定函数解决实际问题的方法:1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;2)利用待定系数法,确定具体函数模型;3)对所确定的函数模型进行适当的评价;4)根据实际问题对模型进行适当的修正.设计意图渗透数学思想方法,培养学生读图、分析已知数据、概括、总结等诸多方面的能力。
必修1课件3.2.2-1函数模型的应用实例(一)
年份 人数/ 万人
1950 55196
1951 56300
1952 57482
年份 人数/ 万人
1950 55196
1951 56300
1952 57482
1953 58796
1954 60266
1955 61456
1956 62828
1957 64563
1958 65994
1959 67207
思考3:用马尔萨斯人口增长模型,我国在1950~1959 年期间的人口增长模型是什么? 解:(3)令y0=55196,则我国在1950~1959年期间 的人口增长模型为:
( x 5) 5 x f ( x) ( x>5) 25 3( x 5)
从中可以知道,函数与现实世界有着紧密的联 系,有着广泛应用的,那么我们能否通过更多的实 例来感受它们的应用呢?若能的话,那么如何在实 际问题中建立函数模型呢?
例1.一辆汽车在某段路程中的行驶速率与时 间的关系如图3.2-7所示。 v (km/h) (1) 求图3.2-7中阴影部分的 面积,并说明所求面积的 实际含义; 解:(1)阴影部分的面积为
例2.人口问题是当年世界各国普通关注的问题。认识人 口数量的变化规律,可以为有效控制人口增长提供依 据。早在1798年,英国经济学家马尔萨斯就提出了自然 状态下的人口增长模型: y
y0e
rt
其中t表示经过的时间,y0表示t=0时的人口数,r表示 人口的年平均增长率。 表3-8是1950~1959年我国的人口数据资料:
高中数学-函数模型的应用实例
y 55196e0.0221t,t N
从该图可以看出,所得模型与1950~1959 年的实际人口数据基本吻合。
y
70000 65000 60000 55000 50000
0
2
4
6
8
t
(2)将y=130 000代入
y 55196e0.0221t
(1)如果以各年人口增长率的平均值作为我国这 一时期的人口增长率(精确到0.0001),用马尔萨 斯人口增长模型建立我国在这一时期的具体人口 增长模型,并检验所得模型与实际人口数据是否 相符;
(2)如果按表中数据的增长趋势,大约在哪一年 我国的人口达到13亿?
因为 Байду номын сангаасi
ai ai 1 ,所以可以得出 ai 1
路程前的读数为2004km,试建立汽车行
驶这段路程时汽车里程表读数 s km与时
间 t h的函y数解析式,并作出相应的图像。
90 80 70
60
50
40
30
20
10
t
123 45
y
2400 2300
2200
2100
2000
x
123 45
2:人口问题是当今世界各国普遍关注 的问题。认识人口数量的变化规律,可以 为有效控制人口增长提供依据。早在1798 年,英国经济学家马尔萨斯就提出了自然 状态下的人口增长模型:
函数模型的应用实例
1:一辆汽车在某段路程中的行驶速
度与时间的关系如图:
y (Km/h)
90
90
80
80
75
70
65
60 50 50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=y0ert
其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年 平均增长率。 下表是1950~1959我国的人口数据资料:
(1)如果以各年人口增长率的平均值作为我国这一时期的人口 增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在 这一时期的具体人口增长模型,并检验所得模型与实际人口数据 是否相符;
104页1题
1、解:)已知人口模型为y y0 e 其中y0 (1
rt
表示t 0时的人口数,r表示人口的年增长率 若按1650 年世界人口5亿,年增长率为0.3% 估计,则有y 5e
0.003t
当y 10时,解得t 231 所以, 年世界人口约为 1881 1650 年的2倍 同理可知, 年世界人口数约为 2003 1970 年的2倍
(2)由此看出,此模型不太适宜估计跨 度时间非常大的人口增长情况
函数模型的应用(二)
例5 某桶装水经营部每天的房租、人员工资等固定成本为200元, 每桶水的进价是5元,销售单价与日均销售量的关系如表所示
请根据以上数据作出分析,这个经营部这样定价才能获得更大利润?
单价与销售之间的关系题目是通过表格的形式给出的, 要求利润必须首先找到单价与销售量的关系,列出函数 关系式,再求函数最大值。
1 故平均增长率 r r r2 r9 0.0221
9
令y0=55196,则我国在1950~1959年期间的人口增长模型为 y=55196e0.0221t (t∈N)
根据表中的数据作出散点图,并作出函数y=55196e0.0221t(t∈N) 的图象,如图
如图可知,所得模型与实际情况基本吻合。 (2)将y=130000代入y=55196e0.0221t 由计数器可得t≈38.76 所以,如果按表中增长趋势,大约在1950年后的第39年,我国 人口会达到13亿
(2)如果按表中增长趋势,大约哪一年我国的人口达到13亿?
解:(1)设1951~1959年的人口增长率分别为r1,r2,…,r9 由表中数据可得
r1≈0.020 r3≈0.0229 r5≈0.0197 r7≈0.0276 r9≈0.0184
r2≈0.0210 r4≈0.0250
r6≈0.0223
r8≈0.0222
50t+2004, 80(t-1)+2054, 0≤t<1 1≤t<2 2≤t<3 3≤t<4 4≤t≤5
(2)据图有:S=
90(t-2)+2134, 75(t-3)+2224, 65(t-4)+2299,
函数图象如图所示:
教材:107页3题
5 60t ,0 t 2 5 7 3、 ) x { (1 150 , t 2 2 7 7 13 150 50 (t ), t 2 2 2
107页2题
20 1 2 2、解:由 3 =(60) a, 得a 3 10 36 5 10
50 1 2 由 3= x 得x 30 10 3 10 36 5 10
因为30 10 100
所以,这辆车没有超速。
107页4题
4、解:设长为x, 宽为y, 根据题意可得 6 xy 1200 .......... .......... (1)
二次函数
解:从表格上易知销售单价每增加1元,销售量就减 少40桶,设在进价基础上增加x元后,日均销售利润 为y元,则
y= =-40x2+520x-200(0<x<13)
易知:当且仅当x=6.5时,y有最大值即将单价定 为11.5元时,可获利最大
练习1:东风旅社有100张普通客床,若每床 每夜租费10元时,客床可以全部租出,若每床 每夜收费提高2元,便减少10张客床租出,若 再提高2元,便再减少10张客床租出,依此情 况变换下去,为了投资少而获利最多,每床每 夜应提高租金多少元?
5
y 0.90 10 分别代入y ce ,得到
5 kx
{ 5 k 4.805 10
c 1.01 10 5
。
所以,y 1.01 10 e
5
4.805105 x
当x 5596 m时, 5 5 y 0.772 10 ( Pa) 0.775 10 ( Pa)
(12 x 12 y) 95 135 xy 70000 ...( 2)
将(1)代入(2)可得 2400 (12 x ) 95 135 200 70000 x 解得6.4 x 31.3
107页5题
5解:将x 0, y 1.01 10 和x 2400 ,
答:这位游客的决定是冒险的决定
107页6题
6、解:根据题意可得如下关系
500 2500 (1 0.2) 1500
t
பைடு நூலகம்
解得2.3 t 7.2
答:应该在用药2.3小时后及7.2小时以前 补充药。
练习2:截止到1999年底,我国人口约13亿,如 果经过30年后,我国人口不超过18亿,那么人 口平均增长率不应超过多少(精确到0.01)?
函数模型的应用(一)
例3:一辆汽车在某段路程中的行驶速度与时间关系如图所示
(1)求图中阴影部分的面积,并说明所求面积的实际含义; (2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004km,试建立汽车行驶这段路程时汽车里程表读数skm, 与时间t h的函数解析式,并作出相应图象。
解:(1)阴影面积为: 表示汽车5小时内行驶的路程为360km。
5 60,0 t 2 5 7 3、 )v { 0, t (2 2 2 7 13 50, t 2 2
例4 人口问题是当今世界普遍关注的问题。认识人口数量的 变化规律,可以为有效控制人口增长提供依据。早在1798年, 英国经济学家马尔萨斯就提出自然状态下的人口增长模型:
阴影部分的面积表示汽 车在这5小时内行驶的路 程为360km
从图上很明显看出汽车在每一小时
都有固定速度,而进入下一小时后 速度则变为另一个固定值, 这是很明显的分段函数特征。
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004km,试建立汽车行驶这段路程时汽车里程表读数s km, 与时间t h的函数解析式,并作出相应图象。