七年级数学不等式与不等式组单元测试(后附答案)

合集下载

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。

七年级下册数学不等式与不等式组单元测试题(含答案)

七年级下册数学不等式与不等式组单元测试题(含答案)
(1)请你设计该企业有几种购买方案;
(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)
9、三角形三边长分别为4,a,7,则a的取值范围是
10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输局比赛
二、选择题(每小题2分,共20分)
11、在数轴上表示不等式 ≥-2的解集,正确的是()
不等式与不等式组单元测试题(含答案)
一、填空题
1、-2<x<12、x≤-23、-2、-1、0 4、<5、5
6、x>-6 7、5x+1≥ 8、m<3 9、3<a<1110、2
二、选择题
11、A 12、B 13、A 14、A 15、C 16、B 17、C 18、D 19、D 20、A
三、解答题
1(1)x>4 (2)x≤2 (3)x>3 (4)x>3
4、若不等式组 的解集为-1<x<1,求(a+1)(b-1)的值。
5、为了保护环境,某企业决定购买10台污水处理设备。现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:
A型
B型
价 格(万元/台)
12
10
处理污水量 (吨/月)
240
200
年消耗费 (万元/台)

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组一、单选题1.以下表达式:①4x+3y≤0;②a>3;③x2+xy;④a2+b2=c2;⑤x≠5.其中不等式有()A.4个B.3个C.2个D.1个2.关于m的不等式−m>1的解为().A.m>0B.m<0C.m<−1D.m>−13.若(m−2)x2m+1−1>5是关于x的一元一次不等式,则该不等式的解集为()A.m=0B.x<−3C.x>−3D.m≠24.设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<a B.b<c<a C.c<a<b D.b<a<c5.若式子3a−4的值不小于2,则a的取值范围是()A.a≥−23B.a≥2C.a<−23D.a<26.已知x<y,则下列不等式一定成立的是().A.x+5<y+2B.−2x+5<−2y+5C.x3>y3D.2x−3<2y−37.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为()A.52<x<72B.3<x<72C.3<x≤72D.52≤x<728.八年级某小组同学去植树,若每人平均植树7棵,则还剩9棵,若每人平均植树9棵,则有1位同学有植树但植树棵数不到3棵.则同学人数为()A.8人B.9人C.10人D.11人9.若不等式组{x +a−22≥−1,3x−22<x−12无解,则实数a 的取值范围是( )A .a ≥−1B .a <−1C .a ≤1D .a ≤−110.对一实数x 按如图所示程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次后停止,则x 的取值范围是( )A .x <64B .x >22C .22<x ≤64D .22<x <64二、填空题11.不等式3x +22<x 的解集是 .12.不等式2x>3的最小整数解是 .13.不等式组{2x−4≥0x 3<2的解集是.14.已知a <b,用“<”或“>”号填空: a−3 b−3; −4a −4b .15.用不等式表示“x 的一半减去3所得的差不大于1” .16.某品牌衬衫的进价为120元,标价为240元,如果商店打折销售但要保证利润不低于30%,则最少可以打折出售.17.若不等式组{2x +a−1>02x−a−1<0的解集为0<x <1,则a 的值为 .18.若整数m 使得关于x 的不等式组{2x +1≥5x +m ≤2无解,且使得关于x ,y 二元一次方程组{x +2y =2,3x−y =m +1 的解x ,y 均为正数,则符合条件的整数m 的和是 .三、解答题19.(1)解不等式:x +12−x−13≤1,并把它的解集在数轴上表示出来.(2)解不等式组:{3x +2≥4x−54x−3<2120.已知二元一次方程组{x+y=3a+9x−y=5a+1的解x,y均为正数.(1)求a的取值范围;(2)化简:|5a+5|−|a−4|21.如图,有一高度为20cm的容器,在容器中倒入100cm3的水,此时刻度显示为5cm,现将大小规格不同的两种玻璃球放入容器内,观察容器的体积变化测量玻璃球的体积.若每放入一个大玻璃球水面就上升0.5cm.(1)求一个大玻璃球的体积;(2)放入27个大玻璃球后,开始放入小玻璃球,若放入5颗,水面没有溢出,再放入一颗,水面会溢出容器,求一个小玻璃球体积的范围.22.关于x,y的二元一次方程组ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当{x=3y=1时,求c的值.(2)当a=1时,求满足|x|<5,|y|<5的方程的整数解.2(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.23.为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:甲种消毒液(瓶)乙种消毒液(瓶)总费用(元)第一次4060660第二次8030690(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,,请你帮助学校计算购买时最低费用为多少?并且甲的数量不少于乙数量的3224.5月22日是第28个国际生物多样性日,为联合国《生物多样性公约》第十五次缔约方大会(COP15)在昆明顺利召开.营造良好氛围,昆明市在植物园举办主题宣传活动.某班开展了此项活动的知识竞赛.小明为班级购买奖品后与小颖对话如下:(1)请用方程的知识帮助小明计算一下,为什么小颖说他搞错了;(2)小明连忙拿出发票,发现自己的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?参考答案1.B 2.C 3.B 4.A 5.B 6.D 7.B 8.A 9.D 10.C 11.x <-212.213.2≤x <614.< >15.12x−3≤116.6.517.118.1019.(1)x ≤1(2)x <620.(1)−54<a <4;(2)当−5<a ≤−1时,−4a−9;当−1<a <4时,6a +121.(1)一个大玻璃球的体积为10cm 3;(2)一个小玻璃球体积的大于5cm 3且不大于6cm 3.22.c =73;(2){x =2y =1 ,{x =−1y =2 {x =−4y =323.(1)甲种消毒每瓶6元,乙种消毒液每瓶7元;(2)最低费用1900元.24.2元或6元。

七年级数学下册《不等式与不等式组》单元测试卷(附答案解析)

七年级数学下册《不等式与不等式组》单元测试卷(附答案解析)

七年级数学下册《不等式与不等式组》单元测试卷(附答案解析)一、单选题1.下列各式中,是一元一次不等式的是()A. x2>1B. 2x−5>xC. 3x+3⩾1 D. x+y<02.下列各式中不是一元一次不等式组的是()A. B. C. D.3.P、Q、R、S四人去公园玩跷跷板,由下面的示意图,判断这四人的轻重正确的是()A. S>P>R>QB. R>S>P>QC. R>Q>S>PD. S>Q>R>P4.如果x−1大于0,那么x的取值范围是()A. x>1B. x<1C. x<0D. x>05.若不等式组{x+m>2n−x>−4的解集为1<x<2,则(m+n)2022的值为()A. −1B. 0C. 1D. 26.不等式x−22−(x−1)⩽1的最小整数解为()A. −5B. 4C. −2D. −17.不等式−2x⩽−2的解集在数轴上表示正确的是()A. B.C. D.8.已知点P(3a−3,1−2a)关于x轴的对称点在第三象限,则a的取值范围在数轴上表示正确的是().A. B.C. D.二、填空题9.已知2−3x3+2k>1,关于的一元一次不等式,则k= ______ .10.对于三个数a、b、c中,我们给出符号来表示其中最大(小)的数,规定min{a,b,c}表示这三个数中最小的数,max{a,b,c}表示这三个数中最大的数.例如min{1,2,−3}=−3,max{1,2,−3}=2.若max{1,x+1,2x}=2x,则x的取值范围是 ______.11.不等式2x+4⩽0的解集为 ______.三、解答题12.(1)计算:√9+(−3)2+3−2−|−19|.(2)解不等式9x−2⩽7x+3,并把解集表示在数轴上.13.解一元一次不等式组{2x<x+2①x+1<2②.14.解不等式:2x−16⩾1−x+23.15.解不等式6−4x⩾3x−8,并写出其正整数解.16.若关于x、y的二元一次方程组{2x+y=−4m+5x+2y=m+4的解满足{x−y>6x+y<8,求m的取值范围.17.若关于x,y的方程组{mx+2ny=4,x+y=1与{x−y=3,nx+(m−1)y=3有相同的解.(1)求这个相同的解;(2)求m,n的值.18.{5x−1>3(x+1) x−22⩽7−3x2.19.解不等式组:{4x−3<3(2x+1) 12x−1>5−32x.20.求不等式组{5x−1>3(x+1)①12x−1⩽7−32x②的所有整数解的和.21.某校计划安排初三年级全体师生参观黄石矿博园,现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园?(2)请你帮该校设计一种最省钱的租车方案.22.为更好践行党史学习活动,某学校计划租用汽车送部分团员学生和党员教师共206人到革命英雄纪念馆开展党史学习教育,其中团员的人数比党员人数的13倍还多10人.现在甲乙两种客车(不能超员),它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)3322租金(元/辆)3002002名教师.如果学校预算此次活动的租金总费用不超过2000元,请解答下列问题:(1)参加此次活动的团员和党员各多少人?(2)设租用x辆甲种客车,租车总费用为y元.①学校共有哪几种租车方案?②写出y与x的函数关系式并求租车总费用y的最小值.参考答案和解析1.【答案】B;【解析】解:A、x2>1,未知数的次数不是1,不符合一元一次不等式的定义,不合题意;B、2x−5>x,符合一元一次不等式的定义,符合题意;+3⩾1,未知数的次数不是1,不符合一元一次不等式的定义,不合题意;C、3xD、含有两个未知数,不符合一元一次不等式的定义,不合题意;故选:B.直接根据一元一次不等式的定义解答即可.此题主要考查的是一元一次不等式的定义,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.2.【答案】D;【解析】∵D选项中存在两个未知数,∴它不是一元一次不等式组;其它选项符合一元一次不等式组的定义. 故选:D.3.【答案】B;【解析】解:由题意得:{P<S①Q+S<P+R②Q+R=P+S③,由③得:R=P+S−Q④,把④代入②中得:Q+S<P+P+S−Q,∴2Q<2P,∴Q<P,∴Q−P<0,由③得:Q−P=S−R,∴S−R<0,∴S<R,∴Q<P<S<R,故选:B.根据题意可得:{P<S①Q+S<P+R②Q+R=P+S③,然后进行计算即可解答.此题主要考查了不等式的性质,熟练掌握不等式的性质是解答该题的关键.4.【答案】A;【解析】解:由题意,得:x−1>0,解得x>1.故选:A.根据题意列出不等式,再解不等式即可.此题主要考查了解一元一次不等式,根据题意列出不等式是解答本题的关键.5.【答案】C;【解析】解:{x+m>2①n−x>−4②,解不等式①得:x>2−m,解不等式②得:x<n+4,∴原不等式组的解集为:2−m<x<n+4,∵不等式组的解集为1<x<2,∴2−m=1,n+4=2,∴m=1,n=−2,∴(m+n)2022=[1+(−2)]2022=(−1)2022=1,故选:C.按照解一元一次不等式组的步骤,进行计算可得2−m<x<n+4,从而可得2−m=1,n+4=2,然后求出m,n的值,再代入式子中,进行计算即可解答.此题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解答该题的关键.6.【答案】C;【解析】解:(x−2)−2(x−1)⩽2,x−2−2x+2⩽2,x−2x⩽2,−x⩽2,x⩾−2∴不等式x−2−(x−1)⩽1的最小整数解是−2,2故选:C.去分母、去括号、移项、合并同类项,系数化为1,求出不等式的解集,即可得出答案.此题主要考查了一元一次不等式,一元一次不等式的整数解的应用,关键是求出不等式的解集.7.【答案】C;【解析】解:解不等式−2x⩽−2,得:x⩾1,故不等式−2x⩽−2的解集在数轴上表示正确的是:.故选:C.化系数为1求出不等式的解集,表示在数轴上即可.此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.8.【答案】B;【解析】【分析】本题考查的是直角坐标系点的坐标,在数轴上表示解集有关知识,直接利用关于x轴对称点的性质结合第二象限内点的坐标特点得出a的取值范围进而得出答案.【解答】解:∵点P(3a−3,1−2a)关于x轴的对称点在第三象限,∴P点在第二象限,∴{3a−3<01−2a>0,解得:a<12如图所示:故选B.9.【答案】-1;【解析】解:由2−3x 3+2k >1,关于的一元一次不等式,得3+2k =1,解得k =−1,故答案为:−1.根据一元一次不等式的定义,未知数的次数是1,所以3+2k =1,求解即可.本题主要是对一元一次不等式定义的“未知数的最高次数为1次”这一条件的考查.10.【答案】x ≥1;【解析】解:∵max{1,x +1,2x}=2x ,∴{2x ⩾2①2x ⩾x +1②, 解①得:x ⩾1,解②得:x ⩾1,故不等式组的解集是:x ⩾1.故答案为:x ⩾1.直接根据题意得出不等式组进而得出答案.此题主要考查了解一元一次不等式组,正确得出不等式组是解题关键.11.【答案】x ≤-2;【解析】解:移项,得:2x ⩽−4,系数化为1,得:x ⩽−2,故答案为:x ⩽−2.移项、系数化为1即可得出答案.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.【答案】解:(1)√9+(-3)2+3-2-|-19|=3+9+19-19=12;(2)9x-2≤7x+3,移项,得:9x-7x≤3+2,合并同类项,得:2x≤5,系数化为1,得:x≤2.5,其解集在数轴上表示如下:.;【解析】(1)根据算术平方根、有理数的乘方、负整数指数幂和绝对值可以解答本题;(2)先解出不等式的解集,再在数轴上表示出其解集即可.此题主要考查实数的运算、解一元一次不等式,解答本题的关键是明确实数运算的运算法则和解一元一次不等式的方法.13.【答案】解:解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为x<1.;【解析】分别解这两个一元一次不等式,然后根据求不等式组解集的规律即可得出答案.此题主要考查了解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解答该题的关键.14.【答案】解:去分母,得:2x-1≥6-2(x+2),去括号,得:2x-1≥6-2x-4,移项,得:2x+2x≥6-4+1,合并同类项,得:4x≥3,系数化为1,得:x≥3.;4【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.【答案】解:移项得:-4x-3x≥-6-8,合并同类项得:-7x≥-14,系数化为1得:x≤2,∴正整数解为1,2.;【解析】移项,合并同类项,系数化为1即可求解,再找出对应正整数解即可.此题主要考查解一元一次不等式,解题关键是熟悉解一元一次不等式的基本步骤.16.【答案】解:{2x+y=−4m+5①, x+2y=m+4②,①-②,得x-y=-5m+1,①+②,得3x+3y=-3m+9,∴x+y=-m+3.由题意可得{−5m+1>6③−m+3<8④,解不等式③,得m<-1,解不等式④,得m>-5,∴m的取值范围是-5<m<-1.;【解析】①−②得x+y=−5m+1,①+②求得x+y=−m+3,而后解不等式组即可.此题主要考查了二元一次方程组的解法、不等式组的解法,解含参数的方程组时,若求解的是两个未知数的和或差,要先观察方程组中未知数系数若成交错相等,则可直接整体加或减.17.【答案】解:(1)联立得:{x+y=1 x−y=3,解得:{x=2y=−1;(2)把x=2,y=−1代入得:{m−n=22n−m=2,解得:m=6,n=4.;【解析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.(1)联立两方程中不含m,n的方程求出相同的解即可;(2)把求出的解代入剩下的方程中求出m与n的值即可.18.【答案】;【解析】先求出两个不等式的解集,再求其公共解.此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【答案】解:{4x−3<3(2x+1)①12x−1>5−32x②,解不等式①得:x>-3,解不等式②得:x>3,则不等式组的解集为x>3.;【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:解不等式①,得:x>2,解不等式②,得:x≤4,则2<x≤4,∴整数解的和为3+4=7.;【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,继而得出答案.此题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答该题的关键.21.【答案】解:(1)设租用36座客车x辆,根据题意,得:{36x−48(x−2)>30 36x−48(x−2)<48,解得:4<x<112,∵x为整数,∴x=5,36x=180,答:该校初三年级共有师生180人参观黄石矿博园;(2)方案①:租36座车5辆的费用:5×400=2000(元).方案②:租48座车4辆的费用:4×480=1920(元);方案③∵18048=3…36,余下人数正好36座,可以得出:租48座车3辆和36座车1辆的总费用:3×480+1×400=1840(元).∵1840<1920<2000,∴方案③:租48座车3辆和36座车1辆最省钱.;【解析】(1)设租36座的车x辆,则租48座的客车(x−1)辆.根据不等关系可列出一元一次不等式组,则可得出答案;(2)根据(1)中求得的人数,进一步计算三种方案的费用:①只租36座客车;②只租48座客车;③合租两种车.再进一步比较得到结论即可.本题考查了一元一次不等式组的应用.正确理解此题中的不等关系是解决此题的重点,特别注意要能够分别求得每一种方案的价钱,再作比较.22.【答案】解:(1)设参加此次活动的党员有m人,则团员有(206-m)人,根据题意得,13m+10=206-m,解得:m=14,206-14=192(人),答:参加此次活动的党员有14人,则团员有192人;(2)①∵(192+14)÷33=6(辆)…8(人),∴保证206名师生都有车坐,汽车总数不能小于7;∵只有14名教师,∴要使每辆汽车上至少要有2名教师,汽车总数不能大于7;综上可知:共需租7辆汽车,设租甲种客车x辆、则租乙种客车(7-x)辆、依题意,得{33x+22(7−x)≥206 300x+200(7−x)≤2000,解得5211≤x≤6,∵x为正整数,∴x=5或6,∴共有2种租车方案:方案一:租甲种客车5辆、乙种客车2辆;方案二:租甲种客车6辆、乙种客车1辆;②由题意,得y=300x+200(7-x)=100x+1400,∵100>0,∴y的值随x值的增大而增大,∴当x=5时,y取得最小值,最小值为100×5+1400=1900.答:y与x的函数关系式为y=100x+1400,租车总费用y的最小值为1900元.;【解析】(1)设参加此次活动的党员有m人,则团员有(206−m)人,根据团员的人数比党员人数的13倍还多10人列方程即可求解;(2)①由师生总数为206人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有2名教师,即可得出共需租多少辆汽车,根据题意列出不等式组,得出x的取值范围,进而求出租车方案;②根据题意列出函数解析式,根据函数的性质,结合x的取值范围,求得y有最小值即可.此题主要考查了一次函数与一次不等式组的综合应用,由题意得出租用x辆甲种客车与总租金用y的函数关系是解决问题的关键.。

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。

人教版数学七年级第九章不等式与不等式组单元卷三(含答案)

人教版数学七年级第九章不等式与不等式组单元卷三(含答案)

【参考答案】
答案:-4. 解:
解方程组,得 , , x=
16−8m
12
y=
8−m
8−m
因为要使解为正数,
16−8m
所以
x>0
{
即,
{
>0
8−m

y>0
12
>0
8−m
解得m<2,
要使方程组的解为正整数,则y= 12 应为正整数,
8−m
所以,8-m可取1、2、3、4、6、12,
即m的值可为7、6、5、4、2、-4, 由于当m<2时,方程组的解为正数,
( ) x+1
2
≥3(x-1)-4.
2
【参考答案】
解: (1)去括号,得3x-2>4+2x-4, 移项,得3x-2x>4-4+2, 合并同类项,得x>2. 将不等式的解集在数轴上表示如图所示.
(2)去分母,得x+1≥6(x-1)-8, 去括号,得x+1≥6x-6-8, 移项,合并同类项得-5x≥-15, 系数化为1,得x≤3. 将不等式的解集表示在数轴上如下.
解得:m≤4. 答:彩色地砖最多能采购4块.
23.春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大 镜和5个B型放大镜152元.
(1)求每个A型放大镜和每个B型放大镜各多少元;
(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型 放大镜?
已知 > ,则 (填 > 或 < ) 18.
ab
-4a+5
-4b+5.
“ ”“=” “ ”
【参考答案】
答案:<. 解: ∵a>b, ∴ < , -4a -4b ∴ < - 4 a + 5 - 4 b + 5 .

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测题(包含答案解析)

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测题(包含答案解析)

一、选择题1.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 2.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .24.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个 5.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( )A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a 6.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D . 7.下列说法中不正确的是( )A .若a b >,则a 1b 1->-B .若3a 3b >,则a b >C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- 8.不等式325132x x ++≤-的解集表示在数轴上是( ) A . B .C .D .9.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m 10.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( ) A . B .C .D .11.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤12.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=-C .a 4?≥-D . a 4>- 二、填空题13.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________. 14.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________.15.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -.(1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.16.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.17.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分. 18.若||2x =,||3y =,且0x y +<,则x y -值为______.19.不等式组12153114x x -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.三、解答题21.某商场销售A 、B 两种型号的计算器,两种计算器的进货价格分别为每台15元,20元.商场销售5台A 型号和1台B 型号计算器,可获利润38元;销售6台A 型号和3台型号计算器,可获利润6元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于1250元的资金购进A 、B 两种型号计算器共70台,且全部售出后至少获利460元.问:最少需要购进A 型号的计算器多少台?最多可购进A 型号的计算器多少台?22.为了积极争创“天府旅游名县”,鼓励全民参与健身运动,2019年12月29日,广汉市在城北全民健身中心举行了“2019年广汉市三星堆迷你马拉松(10公里)”比赛.组委会为了奖励活动中取得了好成绩的参赛选手,计划购买一批纪念品发放.已知甲、乙两商场以同样价格出售同样的纪念品,并且又各自推出不同的优惠方案:在甲商场累计购买该纪念品超过1000元后,超出1000元的部分按90%收费;在乙商场累计购买该纪念品超过500元后,超出500元的部分按95%收费,组委会到哪家商场购买花费少?23.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.24.工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件.已知生产一件A 种产品需要甲种原料9千克,乙种原料3千克;生产一件B 种产品需要甲种原料4千克,乙种原料10千克.则安排A 、B 两种产品的生产件数有几种方案?25.解不等式组:263235x x x x +>-⎧⎨->-⎩①② 26.解不等式或不等式组(1)2132x x +≤ (2)2113112x x x +≥-⎧⎪⎨-<+⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.D解析:D【分析】根据程序操作进行了1次后就停止,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】依题意,得:3126x ->,解得:9x >.∵x 为整数,∴x 的最小值为10.故选:D .【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.3.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-,∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.4.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x ,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x 的正整数解有:1,2共2个.故选:B .【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.5.C解析:C【分析】根据不等式a+b >0得a >-b ,-a <b ,再根据b <0得b <-b ,再比较大小关系即可.【详解】解:∵a+b >0,∴a >-b ,-a <b.∵b <0,∴b <-b ,∴-a <b <-b <a.故选C.【点睛】本题考查了不等式的性质与有理数的知识点,解题的关键是熟练的掌握有理数与不等式的性质.6.A解析:A【分析】先解出不等式组的解集,然后再根据选项解答即可.【详解】解:由题意可得:不等式组的解集为:21x,在数轴上表示为:故答案为A.【点睛】本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.7.C解析:C【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A、∵a>b,∴a-1>b-1,故本选项正确,不符合题意;B、∵3a>3b,∴a>b,故本选项正确,不符合题意;C、∵a>b且c≠0,当c >0时,ac>bc;当c<0时,ac<bc,故本选项错误,符合题意;D、∵a>b,∴-a<-b,∴7-a<7-b,故本选项正确,不符合题意.故选:C.【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.8.B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.9.D解析:D【分析】根据点P(m,1m-)在第四象限列出关于m的不等式组,解之可得.【详解】∵点P(m,1m-)在第四象限,∴10mm>⎧⎨-<⎩,解得m>1,故选:D.【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.10.C解析:C【分析】先解不等式组求出其解集,然后根据不等式的解集在数轴上的表示方法进行判断即可.【详解】解:对不等式组32153 xx->⎧⎨-<-⎩,解不等式3x-2>1,得x>1,解不等式x-5<﹣3,得x<2,∴不等式组的解集是1<x<2,不等式组的解集在数轴上表示为:.故选:C.【点睛】本题考查了一元一次不等式组的解法和不等式的解集在数轴上的表示,属于基础题目,熟练掌握解一元一次不等式组的方法是解题的关键.11.B解析:B【分析】根据数轴图像即可求出解集.【详解】根据数轴可知表示的解集为12x -<≤,即数轴上表示的是不等式组12x -<≤的解集故选B .【点睛】本题考查在数轴表示不等式组的解集,解答本题的关键是明确题意,利用数形结合的思想解答.12.C解析:C【分析】先解出第一个不等式的解集,再根据题意确定a 的取值范围即可.【详解】解:2x 1x 3x a +<-⎧⎨>⎩①②解①的:x ﹤﹣4,∵此不等式组无解,∴a≥﹣4,故选:C .【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题13.【分析】先求出不等式组中第二个不等式的解再结合数轴根据不等式组有解即可得【详解】解得:在数轴上表示两个不等式的解如下:要使不等式组有解则解得故答案为:【点睛】本题考查了一元一次不等式组的解熟练掌握不 解析:1a <-【分析】先求出不等式组中第二个不等式的解,再结合数轴,根据不等式组有解即可得.【详解】解103x a ->得:3x a >, 在数轴上表示两个不等式的解如下:要使不等式组有解,则33a <-,解得1a <-,故答案为:1a <-.【点睛】本题考查了一元一次不等式组的解,熟练掌握不等式组的解法是解题关键.14.3<a≤4【分析】先求出不等式的解集然后再根据只有3个正整数解确定出a 的取值范围即可【详解】解:∵∴x <a ∵关于的不等式的正整数解只有3个∴3<a≤4故答案为:3<a≤4【点睛】本题主要考查了解一元解析:3<a≤4【分析】先求出不等式0x a -<的解集,然后再根据只有3个正整数解,确定出a 的取值范围即可.【详解】解:∵0x a -<∴x <a∵关于x 的不等式0x a -<的正整数解只有3个,∴3<a≤4.故答案为:3<a≤4.【点睛】本题主要考查了解一元一次不等式和一元一次不等式的整数解的相关知识点,根据不等式的解集得到关于m 的不等式组成为解答本题的关键.15.【分析】(1)-2<3满足时点的坐标为据此写出即可;(2)分和两种情况讨论解答【详解】(1)∵-2<3满足∴的变换点坐标是故填::(2)当≥时≥此时该点的变换点坐标是≤;当<时<此时该点的变换点坐标解析:()2,3--43 【分析】(1)-2<3,满足a b <时,点的坐标为(,)a b -,据此写出即可;(2)分a b 和a b <,两种情况讨论解答.【详解】(1)∵-2<3,满足a b <,∴(2,3)-的变换点坐标是()2,3--,故填:()2,3--:(2)当a ≥0.52a -+时,a ≥43,此时该点的变换点坐标是(0.52,)a a -+-, 0.52m a =-+≤43;当a <0.52a -+时,a<43,此时该点的变换点坐标是(,0.52)a a -, m a =<43, 故m 的最大值是43, 故填:43. 【点睛】 本题考查不等式的应用、点的坐标特征,读懂“变换点”的坐标定义是关键.16.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案 解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①② 由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.17.15【分析】设至少答对x 道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.18.1或5【分析】由已知可以得到x=2或-2y=3或-3然后对xy的取值进行分类讨论找出使x+y<0的取值组合即可求得x-y的值【详解】解:∵|x|=2|y|=3∴x=2或-2y=3或-3(1)当x=2解析:1或5【分析】由已知可以得到x=2或-2,y=3或-3,然后对x、y的取值进行分类讨论,找出使x+y<0的取值组合,即可求得x-y的值.【详解】解:∵|x|=2,|y|=3,∴x=2或-2,y=3或-3,(1)当x=2时,要使x+y<0 ,必须y=-3,此时x-y=2-(-3)=2+3=5;(2)当x=-2时,要使x+y<0 ,必须y=-3,此时x-y=-2-(-3)=-2+3=1;故答案为1或5.【点睛】本题考查绝对值、不等式和有理数加减法的综合应用,熟练掌握绝对值、不等式、有理数加减法及分类讨论的思想是解题关键.19.23【分析】分别求出每一个不等式的解集根据口诀:同大取大同小取小大小小大中间找大大小小无解了确定不等式组的解集进而可得所有正整数解【详解】解不等式①得:x≤3解不等式②得:x<5则不等式组的解集为x解析:2、3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.进而可得所有正整数解.【详解】12153114x x -⎧≥-⎪⎨⎪-<⎩①②, 解不等式①,得:x≤3,解不等式②,得:x <5,则不等式组的解集为x≤3,∴不等式组的正整数解为:1、2、3.故答案为1、2、3.【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,关键是能根据不等式的解集找出不等式组的解集.20.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的 解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.(1)A 、B 两种型号计算器的销售价格分别为21元、28元;(2)最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台【分析】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A 型号和1台B 型号计算器,可获利润38元;②销售6台A 型号和3台B 型号计算器,可获利润6元,由①②等量关系列出方程组,解方程即可; (2)根据题意表示出所用成本,进而得出不等式组求出即可.【详解】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:551520386361532060x y x y +-⨯-=⎧⎨+-⨯-⨯=⎩, 解得:2128x y =⎧⎨=⎩答:A 、B 两种型号计算器的销售价格分别为21元、28元;(2)设购进A 型号的计算器z 台,则B 种计算器为(70-z )台,依题意得:1520(70)1250(2115)(2820)(70)460z z z z +-≤⎧⎨-+--≥⎩, 解得:3050z ≤≤,∴最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.答:最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.【点睛】考查了二元一次方程组和一元一次不等式组的应用,解题关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式组求解.22.见解析【分析】设顾客累计花费x 元,然后根据x 的不同取值范围分类讨论哪家的花费更少,利用不等式列式求解.【详解】解:设顾客累计花费x 元,根据题意得:(1)当x ≤500时,两家商场都不优惠,则花费一样;(2)若500<x ≤1000,去乙商场花费少;(3)若x >1000,在甲商场花费1000+(x -1000)×90%=0.9x +100(元),在乙商场花费500+(x -500)×95%=0.95x +25(元),①到甲商场花费少,则0.9x +100<0.95x +25,解得x >1500;∴x >1500到甲商场花费少②到乙商场花费少,则0.9x +100>0.95x +25,解得x <1500;∴1000<x <1500时,去乙商场购物花费少③到两家商场花费一样多,则0.9x +100=0.95x +25,解得x =1500,∴x =1500时,到两家商场花费一样多.【点睛】本题考查不等式的应用,解题的关键是根据题意列出不等式进行求解,需要注意进行分类讨论.23.(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.24.有3种方案.【分析】设A 种产x 件,B 种产品(50-x)件,根据题意列出不等式组,解不等式组求出x 值,从而得出方案数.【详解】解:设A 种产x 件,B 种产品(50-x)件()()9450360{31050290x x x x +-≤+-≤ 3032x ≤≤因为x 为整数所以x=30,31,32所以有3种方案方案1,A 产品30件,B 产品20件;方案2,A 产品31件,B 产品19件;方案3,A 产品32件,B 产品18件.答:有3种方案.【点睛】本题考察一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语及所求的量的等量关系.25.392x -<<- 【分析】先求出两个不等式的解集,再求其公共解.【详解】解:263235x x x x +>-⎧⎨->-⎩①②由①得,x >-9, 由②得,x <32-, 所以不等式组的解集是392x -<<-. 【点睛】 本题考查的是一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 26.(1)2x -≤;(2)13x -≤<【分析】(1)去分母,然后去括号、移项、合并同类项、系数化成1即可求解;(2)首先解每个不等式,两个不等式的解集得公共部分就是不等式组的解集.【详解】(1)去分母,得:2(21)3x x +≤去括号得:423x x +≤移项合并同类项得:2x -≤;(2)2113112x x x +≥-⋯⎧⎪⎨-<+⋯⎪⎩①②, 解①得:1x ≥-解②得:x <3故原不等式组的解集是:13x -≤<.【点睛】本题考查的是一元一次不等式组的解.通过观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间,注意等价转化,考查运算能力,属于基础题和易错题.。

新七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案解析)

新七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案解析)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级下数学单元测试卷 第九章 不等式与不等式组 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、填空题:(每小题3分,共30分)1、若一个三角形两边的长分别为3cm 和5cm ,那么第三边的长x 的取值范围 是 。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 3.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 4.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 10.不等式1322x x -+>的解在数轴上表示正确的是( )A .B .C .D . 11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 二、填空题13.a b ≥,1a -+_____1b -+14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 16.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题21.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和. 24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 26.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.3.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故选:A.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.10.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.12.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.15【分析】设至少答对x道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.15.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a的取值范围是解答的关键,必要时可借助数轴更直观.16.【分析】根据题意可得2m﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m-5)⊕3=3∴2m﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得 2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.(1)2x ≤;(2)1≤x <4,数轴见详解.【分析】(1)通过去分母,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,分别求出两个不等式的解,进而即可求解,然后再数轴上表示不等式组的解,即可.【详解】(1)2132x x -≤, 2(21)3x x -≤,423x x -≤,432x x -≤,2x ≤;(2)3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①② 由①得:x≥1,由②得:x <4,∴不等式组的解为:1≤x <4,在数轴上表示如下:【点睛】本题主要考查解一元一次不等式(组),熟练掌握解一元一次不等式的基本步骤,是解题的关键.22.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。

新七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)(1)

新七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)(1)

人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。

1.下列式子中,是不等式的有( ).①2x=7;②3x+4y;③-3<2;④2a-3≥0;⑤x>1;⑥a-b>1.A.5个B.4个C.3个D.1个2.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b23.不等式3x+2≥5的解集是()A.x≥1 B.x≥C.x≤1 D.x≤﹣14.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.5.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤76.不等式组的正整数解的个数是()A.5 B.4 C.3 D.27.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<18.下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>09.不等式组的最小整数解是()A.﹣1 B.0 C.1 D.210.已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k 是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1二.填空题1.不等式0103≤-x 的正整数解是_______________________.2.2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a3.把关于x 的不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 . 4.若不等式组⎩⎨⎧><bx ax 的解集是空集,则,a b 的大小关系是_______________.5.若代数式3x -15的值不小于代数式1510x+的值,则x 的取值范围是__________.6.不等式组的解集为 .7.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x ﹣1的所有解,其所有解为 . 三、解答题1.解不等式组,并将解集在数轴上表示出来.2.求不等式组的正整数解.3.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?4.某中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?6.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.参考答案:一、选择题。

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。

七年级数学(下)第九章《不等式与不等式组》单元检测卷含答案

七年级数学(下)第九章《不等式与不等式组》单元检测卷含答案

七年级数学(下)第九章《不等式与不等式组》单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共33分)1.如果a<b ,那么下列不等式中一定正确的是()A. a﹣2b<﹣bB. a2<abC. ab<b2D. a2<b22.2x﹣4≥0的解集在数轴上表示正确的是().A. B.C. D.3.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是()A. a<1B. a<﹣1C. a>1D. a>﹣14.关于x的不等式(m+1)x≥m+1,下列说法正确的是()A. 解集为x≥1B. 解集为x≤1C. 解集为x取任何实数D. 无论m取何值,不等式肯定有解5.某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.6.不等式x﹣1≤1的解集在数轴上表示正确的是()A. B.C. D.7.如果不等式无解,则b的取值范围是()A. b>-2B. b<-2C. b≥-2D. b≤-28.若a<0关于x的不等式ax+1>0的解集是()A. x>B. x<C. x>-D. x<-9.在x=﹣4,﹣1,0,3中,满足不等式组的x值是()A. ﹣4和0B. ﹣4和﹣1C. 0和3D. ﹣1和010.若m<n,则在下列各式中,正确的是().A. m-3>n-3B. 3m>3nC. -3m>-3nD.11.不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0二、填空题(共8题;共32分)12.不等式﹣x+3<0的解集是________.13.若不等式组的整数解共有三个,则a的取值范围是________.14.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是________15.“x的与5的差不小于-4的相反数”,则用不等式表示为________.16.若a<3,则关于x的不等式ax>3x+a﹣3的解集为________.17.若不等式组无解,则m的取值范围是________.18.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则________ ________ .19.当x________时,式子3x﹣5的值大于5x+3的值.三、解答题(共3题;35分)20.解不等式:≥ ﹣1.21.解不等式组,并把解集在数轴上表示出来.22.园林部门用3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,挂放在迎宾大道两侧,搭配每个造型所要花盆数如表,综合上述信息,解答下列问题.造型甲乙A 90盆 30盆B 40盆 100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个乙种造型的成本为1200元,选(1)中那种方案的成本最低?参考答案一、选择题A CB D BCD D D C D二、填空题12.x>6 13.5≤a<6 14.m<215.x-5≥416.x<1 17.m≥818.85% a;92% a 19.x<﹣4三、解答题20.解:去分母,得:3(x﹣2)≥2(2x﹣1)﹣6,去括号,得:3x﹣6≥4x﹣2﹣6,移项,得:3x﹣4x≥﹣2﹣6+6,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2.21.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:22.(1)解:设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,则有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(2)解:总成本为:1000x+1200(50﹣x)=60000﹣2x.显然当x取最大值32时成本最低,为60000﹣2×32=53600 答:第一种方案成本最低,最低成本是53600。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

人教版七年级下册数学单元练习卷:第九章 不等式与不等式组一、填空题(本大题共10小题,每小题3分,共30分) 1.如果1<x <2,那么(x –1)(x –2)__________0.(填写“>”、“<”或“=”)2.写出一个解集为x <–1,且未知数的系数为2的一元一次不等式:__________. 3.当x __________时,式子–2(x –1)的值小于8.4.不等式组1023x x x -<⎧⎨+>⎩的解集是__________.5.不等式2x +5>4x –1的正整数解是__________.6.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打__________折.7.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是__________.8.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围__________.9.2x ≥的最小值是a ,6x ≤-的最大值是b ,则a +b =__________. 10.已知不等式组1x a x b ≥--⎧⎨-≥-⎩①②在同一条数轴上表示不等式①②的解集如图,则b –a的值为__________.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 11.不等式x +1>3的解集是 A .x >1B .x >–2C .x >2D .x <212.在数轴上表示不等式x –1≤0的解集,正确的是 A .B .C .D .13.x 与3的和的一半是负数,用不等式表示为A .12x +3>0 B .12x +3<0 C .12(x +3)<0D .12(x +3)>014.下列说法中,错误的是 A .x =1是不等式x <2的解B .–2是不等式2x –1<0的一个解C .不等式–3x >9的解集是x =–3D .不等式x <10的整数解有无数个 15.若–12a ≥b ,则a ≤–2b ,其根据是 A .不等式的两边加(或减)同一个数(或式子),不等号的方向不变 B .不等式的两边乘(或除以)同一个正数,不等号的方向不变 C .不等式的两边乘(或除以)同一个负数,不等号的方向改变 D .以上答案均不对16.下列不等式中,不含有1x =-这个解的是 A .213x +≤- B .213x -≥-C .213x -+≥D .213x --≤17.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为A .8B .6C .5D .418.关于x 的不等式组()3141x x x m⎧->-⎨<⎩的解集为x <3,那么m 的取值范围为A .m =3B .m >3C .m <3D .m ≥319.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?则小明至少答对的题数是 A .11道 B .12道C .13道D .14道20.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a cad bc b d=-,例如1324=1423=2⨯-⨯-,如果231xx-0>,则x 的取值范围是A .x >1B .x <–1C .x >3D .x <–3三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解不等式()2263x x -≤-,并写出它的正整数解.22.解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.23.已知关于x 的不等式x a <7的解也是不等式2752x a a->–1的解,求a 的取值范围.24.解不等式组:()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答.(1)解不等式①,得__________,依据是:__________. (2)解不等式③,得__________.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.25.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:(1)若a –b >0,则a __________b ; (2)若a –b =0,则a __________b ; (3)若a –b <0,则a __________b .这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题:比较4+3a 2–2b +b 2与3a 2–2b +1的大小.26.分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式253xx+->0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①25030xx+>⎧⎨->⎩或②25030xx+<⎧⎨-<⎩,解不等式组①,得x>3,解不等式组②,得x<–5 2 .所以原分式不等式的解集为x>3或x<–5 2 .请你参考小亮思考问题的方法,解分式不等式342xx--<0.27.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x–1=0,②2103x+=,③x–(3x+1)=–5中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________;(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可);(3)若方程3–x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m的取值范围.28.为降低空气污染,启东飞鹤公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次.请你设计一个方案,使得购车总费用最少.参考答案1.【答案】<2.【答案】2x <–2(答案不唯一) 3.【答案】>–3 4.【答案】31x -<< 5.【答案】1,2 6.【答案】9 7.【答案】440≤x ≤480 8.【答案】4<a ≤7 9.【答案】–4 10.【答案】1311.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】C 16.【答案】A 17.【答案】C 18.【答案】D 19.【答案】D 20.【答案】A21.【解析】去括号得:2x –4≤6–3x ,移项得:2x +3x ≤6+4, 整理解得:x ≤2, 正整数解为1,2.22.【解析】由不等式2x –6<6–2x 得:x <3.由不等式2x +1>32x +得:13x >. ∴不等式组的解集为133x <<.又x 为整数,∴x =1,2.∴原不等式组的整数解为1,2.23.【解析】解不等式27152x a a-->人教版七年级数学下册第九章不等式与不等式组单元测试题一、 选择题。

七年级下册数学不等式与不等式组单元试卷(含答案)

七年级下册数学不等式与不等式组单元试卷(含答案)

A .50页B .60页C .80页D .100页二、填空题11.若关于x 的不等式的解集在数轴上表示如图,则其解集为 .12.如图,请任意选取一幅图,根据图中信息,写出一个关于温度x (℃)的不等式: .13.数轴上实数b 的对应点的位置如图所示.比较大小:b +1 0(用“<”或“>”填空).1214.在一次课外知识竞赛中,一共有30道判断题,答对一道题得4分,不答或答错一道题扣1分,如果在这次竞赛中得分要超过72分,那么至少应答对 道题.15.若关于x 的不等式3x -a ≤0只有两个正整数解,则a 的取值范围是 .三、解答题16.解不等式:5(x -2)+8<6(x -1)+7.17.解不等式组,并在数轴上表示其解集.{>0,①x +132(x +5)≥6(x −1),②A .B .C .D .【参考答案】答案:C .解:由题意得P (2a -1,1-a )在第一象限,∴解得:0.5<a <1,在数轴上表示为:故选C .{2a −1>01−a >09.若不等式组有解,则a 的取值范围是()A .a ≤3B .a <3C .a <2D .a ≤2【参考答案】答案:B .解:由1+x >a 得,x >a -1;由2x -4≤0得,x ≤2,∵此不等式组有解,∴a -1<2,解得a <3.故选B .{1+x >a ,2x −4≤0{1+x >a2x −4≤010.小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第6天起平均每天至少要读()A .50页B .60页C .80页D .100页【参考答案】答案:C .解:设从第6天起平均每天要读x 页,才能按计划读完,则:100+(10-5)x ≥500;解得x ≥80;所以从第六天起,平均每天至少要读80页才能按计划读完.故选C .二、填空题11.若关于x 的不等式的解集在数轴上表示如图,则其解集为 .【参考答案】答案:-3<x ≤5.解:结合数轴可得-3处是空心,5处是实心,故这个不等式的解集为-3<x ≤5.12.如图,请任意选取一幅图,根据图中信息,写出一个关于温度x (℃)的不等式: .【参考答案】答案:x ≥-8.(x <30或x ≤110)解:根据题意,得第一个图:x ≥-8;第二个图:x <30或x ≤110.13.数轴上实数b 的对应点的位置如图所示.比较大小:b +1 0(用“<”或“>”填空).【参考答案】答案:>.解:因为-2<b <-1,所以-2×<b <-1×,即-1<b <-,所以-1+1<b +1<-+1,即0<b +1<.故b +1>0.121212121212121212121214.在一次课外知识竞赛中,一共有30道判断题,答对一道题得4分,不答或答错一道题扣1分,如果在这次竞赛中得分要超过72分,那么至少应答对 道题.【参考答案】答案:21.解:设应答对x 道题,根据题意得4x -(30-x )≥72,解得x ≥,∴至少答对21道题目.102515.若关于x 的不等式3x -a ≤0只有两个正整数解,则a 的取值范围是 .【参考答案】答案:6≤a <9.解:由3x -a ≤0,得x ≤.∵不等式的正整数解有2个,只能是1,2,∴2≤<3,∴6≤a <9.a3a 3三、解答题16.解不等式:5(x -2)+8<6(x -1)+7.【参考答案】解:去括号得,5x -10+8<6x -6+7,移项得,5x -6x <-6+7+10-8,合并同类项得,-x <3,化系数为1得,x >-3.故此不等式的解集为:x >-3.17.解不等式组,并在数轴上表示其解集.【参考答案】解:由①得x >-1;由②得x ≤4,∴不等式组的解集为-1<x ≤4.用数轴表示为{>0,①x +132(x +5)≥6(x −1),②。

七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)

七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)

秋人教版七年级下《第9章不等式与不等式组》单元测试题一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<02.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤84.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±36.下列各式不是一元一次不等式组的是()A.B.C.D.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.110.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.15.请写出一个一元一次不等式.16.不等式x+3<2的解集是.17.不等式组的解集为.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.三.解答题(共7小题)19.利用数轴确定不等式组的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.21.列式计算:求使的值不小于的值的非负整数x.22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+23+1﹣3﹣1﹣5﹣21﹣24+1(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.秋人教版七年级下册《第9章不等式与不等式组》单元测试题参考答案与试题解析一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.2.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则【分析】根据不等式的性质,可得答案.【解答】解:A、两边乘以不同的数,故A不符合题意;B、x,y无法比较,故B不符合题意;C、两边都除以﹣2,不等号的方向改变,故C符合题意;D、x,y无法比较,故D不符合题意;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤8【分析】依据小大大小中间找,可确定出m的取值范围.【解答】解:∵不等式组有解,∴m<5.故选:C.【点评】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±3【分析】根据一元一次不等式的定义,|m|﹣3=1,m+4≠0,分别进行求解即可.【解答】解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.故选:A.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.【分析】抓住题干中的“不小于﹣7”,是指“大于”或“等于﹣7”,由此即可解决问题.【解答】解:根据题干“a的一半”可以列式为:a;“不小于﹣7”是指“大于等于﹣7”;那么用不等号连接起来是:a≥﹣7.故选:A.【点评】此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得不等式的解集,继而可得其正整数解.【解答】解:移项,得:x<2+1,合并同类项,得:x<3,所以不等式的正整数解为1、2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.1【分析】首先设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小红最多能买甲种饮料的瓶数是3瓶.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.10.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3【分析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.【解答】解:∵点M在第三象限.∴,解得1<a<3,因为点M的坐标为整数,所以a=2.故选:C.【点评】主要考查了平面直角坐标系中第三象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【点评】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.12.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【分析】根据不等式的性质,在不等式的两边同时乘以一个负数,不等号的方向改变,即可得出答案.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.【点评】此题考查了不等式的性质,掌握不等式的基本性质是本题的关键,不等式的基本性质是:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是﹣3.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.请写出一个一元一次不等式x﹣1>0(答案不唯一).【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:一元一次不等式有:x﹣1>0.故答案为:x﹣1>0(答案不唯一).【点评】本题考查不等式的定义;写出的不等式只需符合条件,越简单越好.16.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.17.不等式组的解集为6<x<9.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买16个.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共7小题)19.利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.【分析】与4的和不小于6与x的差.可表示为x+4≥6﹣x,由此可得出不等式,然后求解即可.【解答】解:根据题意可得:x+4≥6﹣x,解得:x≥1.【点评】本题考查了由实际问题抽象一元一次不等式的知识及解一元一次不等式的知识,属于基础题,注意掌握解不等式的法则.21.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴>2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).【分析】(1)根据示例可知,一个式子减去另一个式子,如果结果大于0,则前面的式子大于后边的式子,故>2,(2)用2(x2﹣3xy+4y2)﹣3减去3x2﹣6xy+8y2﹣2,将得到的式子化简,发现总<0,则2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【解答】解:(1)根据题意可知:若A﹣B>0,则A>B,∵﹣(2﹣)>0,∴>2答案为:>,(2)2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)=2x2﹣6xy+8y2﹣3﹣3x2+6xy﹣8y2+2=﹣x2﹣1.∵﹣x2﹣1<0,∴2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)<0.∴2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【点评】本题考查不等式的性质和实数的大小比较,掌握比较实数大小的方法是解决本题的关键.23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+2>3+1﹣3﹣1>﹣5﹣21﹣2<4+1(2)一般地,如果那么a+c>b+d(用“<”或“>”填空).请你说明上述性质的正确性.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明;【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点评】本题考查不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.【分析】(1)根据新定义列式计算可得;(2)根据新定义得出x*(﹣2)=﹣2x﹣2,由“x*(﹣2)的值大于﹣6且小于9”列出关于x的不等式组,解之可得.【解答】解:(1)2*(﹣5)=﹣5×[2﹣(﹣5)]﹣(﹣5)=﹣5×(2+5)+5=﹣35+5=﹣30;(2)x*(﹣2)=﹣2×(x+2)+2=﹣2x﹣4+2=﹣2x﹣2,由题意可得,解得:﹣5.5<x<2,不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.【分析】(1)先解方程组,根据解为非负数,得出a的取值范围;(2)根据a的取值范围化简|2a+4|﹣|a﹣1|即可;(3)根据2ax+3x<2a+3解集为x>1,得出a的值即可.【解答】解:(1)由得,,∵方程组的解为非负数,∴,得﹣2≤a≤﹣1;(2)∵﹣2≤a≤﹣1,∴|2a+4|﹣|a﹣1|=2a+4﹣(1﹣a)=2a+4﹣1+a=3a+3;(3)∵2ax+3x<2a+3解集为x>1,∴2a+3<0,∵﹣2≤a≤﹣1,∴若a为整数,则a=﹣2,即在a的取值范围内,a=﹣2时,使得2ax+3x<2a+3解集为x>1.【点评】本题考查一元一次不等式的整数解、绝对值、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.。

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
x D C
B A 3七年级数学不等式与不等式组单元测试(后附答案)
(时限:100分钟 满分:100分)
一、选择题(本大题共12小题,每小题2分,共24分)
1.下列不等式是一元一次不等式的是( )
A. x 2-9x ≥x 2+7x -6
B. x +1
x <0 C. x +y >0 D. x 2+x +9≥0 2.x 的2倍减3的差不大于1,列出不等式是( )
A. 2x -3≤1
B. 2x -3≥1
C. 2x -3<1
D. 2x -3>1
3.根据下列数量关系,列出相应的不等式,其中错误的是( )
A. a 的13与2的和大于1:1
3a +2>1 B. a 与3的差不小于2:a -3>2 C. b 与1的和的5倍是一个负数:5(b +1)<0
D. b 的2倍与3的差是非负数:2b -3≥0
4.如图,在数轴上表示-1≤x <3正确的是( )
5.若a 为有理数,则下列结论正确的是( )
A. a >0
B. -a ≤0
C. a 2>0
D. a 2+1>0
6.下列四个命题中,正确的有( )
①若a <b ,则a +1<b +1;②若a <b ,则a -1<b -1;③若a <b ,则-2a >-2b ; ④若a <b ,则2a >2b.
③②①
□▲○○○A. 1个 B. 2个 C. 3个 D. 4个
7.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两
次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小的顺序排列为( )
A.○□△
B.○△□
C.□○△
D.△□○ 8.若不等式ax >b 的解集是x >b
a ,则a 的取值范围是( )
A. a ≥0
B. a ≤0
C. a >0
D. a <0
9.若a >b ,且c 是有理数,则下列各式正确的是( )
① ac >bc ②ac <bc ③ac 2>bc 2 ④ac 2≥bc 2 ⑤ a c >b
c
A. 1个
B. 2个
C. 3个
D. 4个
10.3x -7≥4(x -1)的解集是( )
A. x ≥3
B. x ≤3
C. x ≥-3
D. x ≤-3
11.若不等式组{x >3
x >a 的解集为x >a ,则a 的取值范围是( )
A. a <3
B. a =3
C. a >3
D. a ≥3
12.已知不等式①、②、③的解集在数轴上表示如图所示,则它们公共部分的解集是( )
A.-1≤x <3
B. 1≤x <3
C. -1≤x <1
D. 无解
二、填空题(本大题共8小题,每小题3分,共24分)
13.不等式1-2x <6的负整数解为 .
14.若mx >my ,且x >y 成立,则m 0.
15.下列结论:①若a >b ,则ac 2>bc 2;②若ac >bc ,则a >b ;③若a >b ,且c =d ,则ac >bd ;④若ac 2>bc 2,则a >b.其中正确的有 (填序号).
16.三角形三边长分别为4,a ,7,则a 的取值范围是 .
17.不等式5x -9≤3(x +1)的解集是 .
18.不等式1≤3x -7<5的整数解是 .
19.一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了 道题.
20.如果一元一次不等式组{x >3x >a
的解集为x >3,则a 的取值范围是 . 三、解答题(本大题共52分)
21.(本小题5分)x 是什么值时,代数式5x +15的值不小于代数式4x -1的值?
22.(每小题3分,计12分)解下列不等式,并把它们的解集在数轴上表示出来: ⑴ 3(2x +5)>2(4x +3) ⑵ 10-4(x -4)≤2(x -1)
⑶x−3
2

2x−5
3

x+1
6

2x−5
4
+1
23.(每小题4分,计16分)解下列不等式组:
⑴{2x>1−x
x+2<4x−1⑵{
4(x−1)≤x+5
7+2x≤3(x+2)
⑶{x−1
5
<x+2
2
1−x
2>x−1
3
⑷{
x>−2
x>0
x<1
24.(本小题5分)解不等式组{x−3
2
+3≥x+1
1−3(x−1)<8−x
,并写出不等式组的整数解.
25.(本小题5分)已知关于x,y的方程组{
x−y=k
x+3y=3k−1
的解满足{
x>0
y<0

求k的取值范围.
26.(本小题5分)星期天,小华和7名同学共8人去郊游,途中,他用20元钱去买饮
料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.有几种购买方式?每种方式可乐和奶茶各多少杯?
27.(本小题4分)先阅读,再练习.
⑴ ① 如果a -b <0,那么a <b ;
② 如果a -b =0,那么a =b ;
③ 如果a -b >0,那么a >b.
⑵由⑴中的结论你能归纳比较a ,b 大小的方法吗?请你用文字语言叙述出来. ⑶试用⑴中的方法比较 3x 2-2x +7与4x 2-2x +7的大小.
参考答案:
一、1.A ;2.A ;3.B ;4.D ;5.D ;6.C ;7.A ;8.C ;9.A ;10.D ;11.D ;12.B ;
二、13. -2,-1;14.m >0;15. ④;16.3<a <11;17.x ≤6;18. 3;19. 24;20.a ≥3; 三、21. x ≥16;22.①x ≤-92 ,②x ≥143,③x >1,④x ≤54 ;
23.①x >1,②1≤x ≤3,③-4<x <89 ,④0<x <1;
24.不等式组的解集是-2<x ≤1,整数解为-1,0,1;
25. 1
6
<k<1
2

26.解:设购买可乐x杯,奶茶y杯
则2x+3y=20
整数解为: {x=1
y=6
,{
x=4
y=4
,{
x=7
y=2
∴有三种购买方式. 一种是购买1杯可乐和6杯奶茶,二种是购买4杯可乐和4杯奶茶,三种是购买7杯可乐和2杯奶茶.
27.⑵我们通常把两个要比较的对象数量化,再求它们的差,根据差的正负判断对象的
大小.
⑶(3x2-2x+7)-(4x2-2x+7)=-x2≤0
∴3x2-2x+7≤4x2-2x+7.。

相关文档
最新文档