6.1用树状图或表格求概率(1)
用树状图和表格法求概率教案
用树状图和表格法求概率教案一、教学目标:1. 让学生掌握树状图和表格法的基本概念及应用。
2. 培养学生运用树状图和表格法求解概率问题的能力。
3. 培养学生分析问题、解决问题的能力。
二、教学内容:1. 树状图和表格法的定义及原理。
2. 树状图和表格法的绘制方法。
3. 树状图和表格法在求解概率问题中的应用。
三、教学重点与难点:1. 重点:树状图和表格法的绘制方法,及其在求解概率问题中的应用。
2. 难点:如何引导学生运用树状图和表格法分析问题,并求解复杂概率问题。
四、教学方法:1. 采用讲授法,讲解树状图和表格法的定义、原理及绘制方法。
2. 采用案例分析法,让学生通过实际案例体会树状图和表格法的应用。
3. 采用小组讨论法,引导学生分组讨论,共同解决问题。
4. 采用练习法,让学生在实践中巩固所学知识。
五、教学过程:1. 导入新课:通过一个简单的概率问题,引发学生对树状图和表格法的兴趣。
2. 讲解树状图和表格法的定义、原理及绘制方法。
3. 分析案例:举例讲解树状图和表格法在求解概率问题中的应用。
4. 小组讨论:让学生分组讨论,运用树状图和表格法分析问题。
5. 练习巩固:布置练习题,让学生在实践中运用树状图和表格法解决问题。
6. 总结反馈:对学生的练习情况进行点评,总结树状图和表格法的优点和注意事项。
7. 课后作业:布置课后作业,巩固所学知识。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,了解学生对树状图和表格法的掌握程度。
2. 练习题评价:对学生的练习题进行批改,评估学生运用树状图和表格法解决问题的能力。
3. 课后作业评价:查看学生的课后作业完成情况,检验学生对课堂所学知识的巩固程度。
七、教学资源:1. PPT课件:制作精美的PPT课件,展示树状图和表格法的定义、原理、绘制方法及应用案例。
2. 练习题库:准备一定数量的练习题,供学生在课堂练习和课后巩固使用。
《用树状图或表格求概率》概率的进一步认识
互斥事件概率
两个互斥事件同时发生的概率等于 每个事件发生的概率的和。计算公 式为P(A∪B)=P(A)+P(B)。
02
用树状图求概率
树状图的基本原理
在决策分析中,可以通过表格列出各种决策及其可能的结 果和对应的概率。
04
概率的进一步认识
条件概率
定义
在B发生的情况下,A发生的概 率称为A在B下的条件概率。
公式
P(A|B) = P(AB) / P(B)。
解释
条件概率衡量了在B发生的情况 下,A发生的可能性。它是基于 两个事件之间关系的一种概率
计算方法。
树状图的应用实例
掷骰子:可以用来表示掷两个骰子的结果及其概 率。
彩票:可以用来表示中奖的概率及其分支(例如 特等奖、一等奖等)。
天气预报:可以用来表示各种天气状况的概率。
通过使用树状图,可以更直观地理解概率的计算 方法,并清晰地展示事件之间的相互关系和概率 分配。这对于解决复杂的问题和进行决策分析非 常有帮助。
基因组学研究
在基因组学研究中,概率模型被用于分析基因变异、基因表达和蛋白质互作等数据,以深入了解生物体的遗传 机制。
06
概率中的哲学思考
偶然与必然
偶然性
在概率论中,偶然性是指随机事件发生的可能性。概率描述了随机事件发生的频率,即多次试验中事 件发生的比率。偶然性强调了概率的不确定性,即无法预测特定情况下事件的结果。
独立事件与互斥事件
01
独立事件
两个事件不相互依赖,一个事件的发生不影响另一个事件的发生。
02
互斥事件
3.1用树状图和表格求概率.1用树状图或表格求概率(一)
第三章概率的进一步认识3.1 用树状图或表格求概率(一)1.知识与技能目标:①进一步理解当试验次数较大时试验频率稳定于概率.②会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.2.方法与过程目标:合作探究,培养合作交流的意识和良好思维习惯.3.情感态度价值观积极参与数学活动,提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率.教学难点:理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率.三、教学过程分析第一环节:温故而知新,可以为师矣问题再现:小明和小凡一起做游戏。
在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。
(1)这个游戏对双方公平吗?(2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?遇到了新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。
三人决定一起做游戏,谁获胜谁就去看电影。
游戏规则如下:连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
你认为这个游戏公平吗?(如果不公平,猜猜谁获胜的可能性更大?)第二环节:一花独放不是春,百花齐放春满园活动内容:(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。
(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。
用树状图或表格求概率.1用树状图或表格求概率1
请将各自的试验数据汇总后,填写下面的表格:
教师启发
表格中的数据支持你的猜测吗?
探究体会:
由于硬币是均匀的,因此抛掷第一枚硬币出现 “正面朝上”和“反面朝上”的概率相同。无论抛掷 第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现 “正面朝上”和“反面朝上”的概率也是相同的。所 以,抛掷两枚均匀的硬币,出现的(正,正)(正, 反)(反,正)(反,反)四种情况是等可能的。
教师启发
第二环节:师导生学
活动内容:
(1)每人抛掷硬币20次,并记录 每次试验的结果,根据记录填写 下面的表格:
抛掷硬币 应注意什么 问题?
教师启发
活动内容:
(2)5个同学为一个小组,依次累计各组的试验数据, 相应得到试验100次、200次、300次、400次、500 次……时出现各种结果的频率,填写下表,并绘制成 相应的折现统计图。
教师启发
新问题:
小明、小凡和小颖都想去看 周末电影,但只有一张电影票。 三人决定一起做游戏,谁获胜谁 就去看电影。游戏规则如下: 连续抛掷两枚均匀的硬币, 如果两枚正面朝上,则小明获胜; 如果两枚反面朝上,则小颖获胜; 如果一枚正面朝上、一枚反面朝 上,小凡获胜。 你认为这个游戏公平吗?
如果不公 平,猜猜谁 获胜的可能 性更大?
第一环节:温故检测
问题再现:
小明和小凡一起做游戏。在 一个装有2个红球和3个白球(每个 球除颜色外都相同)的袋中任意摸 出一个球,摸到红球小明获胜, 摸到白球小凡获胜。 (1)这个游戏对双方公平吗? (2)如果是你,你会设计一个 什么游戏活动判断胜负?
在一个双 人游戏中, 你是怎样理 解游戏对双 方公平的?
活动内容2:一个盒子中装有一个红球、一个白球。
《用树状图或表格求概率》教案
《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是衡量事件发生可能性的数值,范围在0到1之间。
举例说明概率的应用,如抛硬币、掷骰子等。
1.2 样本空间和事件介绍样本空间是所有可能结果的集合,事件是样本空间的一个子集。
利用树状图展示样本空间和事件的关系。
第二章:树状图法求概率2.1 树状图的绘制讲解如何利用树状图表示事件的概率。
示范绘制树状图,展示单次试验和多次试验的树状图。
2.2 利用树状图求概率教授如何通过树状图计算概率。
练习计算简单事件的概率。
第三章:表格法求概率3.1 表格的绘制讲解如何利用表格表示事件的概率。
示范绘制表格,展示单次试验和多次试验的表格。
3.2 利用表格求概率教授如何通过表格计算概率。
练习计算简单事件的概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指一个事件的发生不影响另一个事件的发生。
利用树状图和表格展示独立事件的概率计算。
4.2 利用树状图和表格求独立事件的概率教授如何通过树状图和表格计算独立事件的概率。
练习计算独立事件的概率。
第五章:条件概率5.1 条件概率的定义解释条件概率是在某一事件已发生的情况下,另一事件发生的概率。
利用树状图和表格展示条件概率的计算。
5.2 利用树状图和表格求条件概率教授如何通过树状图和表格计算条件概率。
练习计算条件概率。
第六章:组合与排列6.1 组合的定义解释组合是指从n个不同元素中取出m(m≤n)个元素的有序列的个数。
利用树状图和表格展示组合的计算。
6.2 排列的定义解释排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。
利用树状图和表格展示排列的计算。
第七章:概率的加法规则7.1 概率的加法规则讲解当两个事件互斥时,可以使用概率的加法规则计算它们的概率。
利用树状图和表格展示概率的加法规则的计算。
7.2 应用概率的加法规则教授如何应用概率的加法规则解决实际问题。
练习计算互斥事件的概率。
6.1.1用树状图或表格求概率
小明、小颖和小凡都想去看周末电影,但只有一 张电影票,三人决定一起做游戏,谁获胜谁就去 看电影,游戏规则如下: 连续掷两枚质地均匀的硬币, 若两枚正面朝上,则小明获胜; 若两枚反面向上,小颖获胜; 若一枚正面朝上、一枚反面朝上,则小凡获胜。 你认为这个游戏公平吗?
由于硬币质地均匀,因此掷第一枚硬币时出现 “正面朝上”和“反面朝上”的概率相同;无论 掷第一枚硬币出现怎样的结果,掷第二枚硬币时 出现“正面朝上”和“反面朝上”的概率都是相
1
2
1 2
(1,1) (1,2) (2,1) (2,2)
从上面的树状图或表格可以看出: (1)一次试验可能出现的结果共有4种: (1,1),(1,2),(2,1),(2,2), (2)每种结果出现的可能性相同.也就是说, 每种结果出现的概率都是1/4. (3)两张卡片上的数字之和是2、3、4的概 率分别是1/4、1/2、1/4
概率是研究大量同类随机现象的 统计规律的数学学科。 概率是随机事件发生的可能性的数量指标。 对于任何事件的概率值一定介于0和1之间
0≤概率值P≤1
概率的计算: 一般地,若一件实验中所有可能结果出现 的可能性是一样,那么事件A发生的概率为 事件A可能出现的结果数 P(A)=
所有可能出现的结果数
求事件发生的一种常用方法就是将所有可能 的结果都列出来,然后计算所有可能出现的结 果总数及事件中A可能出现的结果数,从而求 出所求事件的概率。
1 2
1 2
A
B
问题
两张卡片上的数字之和为3的概率是多少?1 2ຫໍສະໝຸດ 1 2AB
解法1:用树状图来研究上述问题
开始
第一张卡片 上的数字
1 1 2 1
2 2
第二张卡片 上的数字
【实用】用树状图或表格求概率PPT资料
温故知新
• 随机事件:在随机试验中, 可能出现也可能不出现,而 在大量重复试验中具有某种 规律性的事件叫做随机事件 ,简称事件。
。 • 频数:又称“次数” 即某
个对象出现的次数。
• 频率:频数除以总数据的个 数。
• 概率:概率是对随机事件发 生的可能性的度量,以一个 在0到1之间的实数表示一个 事件发生的可能性大小。越 接近1,该事件更可能发生; 越接近0,则该事件更不可 能发生。
在一个双 人游戏中, 你是怎样理 解游戏对双 方公平的?
教师启发
第一环节:温故而知新,可以为师矣
新问题:
小明、小凡和小颖都想去看 周末电影,但只有一张电影票。 三人决定一起做游戏,谁获胜谁 就去看电影。游戏规则如下:
连续抛掷两枚均匀的硬币, 如果两枚正面朝上,则小明获胜; 如果两枚反面朝上,则小颖获胜; 如果一枚正面朝上、一枚反面朝 上,小凡获胜。 你认为这个游戏公平吗?
如果不公 平,猜猜谁 获胜的可能 性更大?
教师启发
第二环节:一花独放不是春,百花齐放春满园
活动内容:
(1)每人抛掷硬币20次,并记录 每次试验的结果,根据记录填写 下面的表格:
抛掷硬币应注意什么 问题?
教师启发
第二环节:一花独放不是春,百花齐放春满园
活动内容:
(2)5个同学为一个小组,依次累计各组的试验数据, 相应得到试验100次、200次、300次、400次、500次 ……时出现各种结果的频率,填写下表,并绘制成相 应的折现统计图。
所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的。 它们发生的可能性是否一样? 即某个对象出现的次数。 如果两枚反面朝上,则小颖获胜; ① 游戏前,每人选一个数字:
《用树状图或表格求概率》示范公开课教学设计【北师大版九年级数学上册】第1课时
第三章概率的进一步认识3.1 用树状图或表格求概率第 1 课时教学设计一、教学目标1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,记录数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生频率与概率的关系,并能用试验频率估计事件发生的概率,加深对概率意义的理解.3.能运用画树状图和列表的方法计算一些简单事件的概率.4.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.5.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《掷一枚质地均匀的骰子》动画,《用列举法求概率——画树状图法》动画.五、教学过程【复习引入】问题(1)具有何种特点的试验称为古典概型?(2)对于古典概型的试验,如何求事件的概率?师生活动:教师利用多媒体出示问题,学生回答:(1)一次试验中,可能出现的结果有有限多个;各种结果发生的可能性相等.具有以上特点的试验称为古典概型.(2)对于古典概型的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的种结果,那么事件A 发生的概率为. 设计意图:通过问答的方式,帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】列举法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.师生活动:教师讲授,学生聆听,掌握列举法的定义.设计意图:因为教材没有列举法的概念,通过教师讲授,使学生对列举法有初步的认识.小明、小颖和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上,一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件复习的频数与频率,并由此估计这三个事件发生的概率.师生活动:教师出示问题,学生分组进行试验,交流数据并累计各组数据后再计算. 设计意图:通过实际问题中的游戏背景引入,激发学生的学习兴趣.由学生亲自动手进行试验,经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性.学生通过交流与合作,体会到与他人合作交流的重要性,发展学生合作交流的意识与能力.当试验次数越多,频率稳定,用频率估计事件发生的概率.议一议:在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?n m ()m P A n(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.教师分析:由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.本题中掷第一枚硬币和掷第二枚硬币是两个相互独立的事件.解:(1)掷第一枚硬币可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(2)掷第二枚硬币也是可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现“正面朝上”和“反面朝上”;它们发生的可能性相同;如果第一枚硬币反面朝上也一样.利用树状图或表格列出所有可能出现的结果:总共有4种结果,每种结果出现的可能性相同.其中,小明获胜的结果有1种:(正,正),所以小明获胜的概率是14;小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是14;小凡获胜的结果有2种:(正,反),(反,正),所以小凡获胜的概率是24.因此,这个游戏对三人是不公平的.归纳利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.思考利用画树状图和列表的方法求概率时应注意些什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.答:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.设计意图:通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.如果学生用其他的方法不重复、不遗漏地列出所有的结果,也应给予鼓励,但引导学生对不同列举方法进行比较,使学生体会画树状图、列表这两种方法的优越性.【典例精析】例小颖有两件上衣,分别为红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:画树状图得:共有4种等可能的结果,恰好是白色上衣和白色裤子的有1种情况,恰好是白色上衣和白色裤子的概率是:1 4 .设计意图:指导学生如何规范应用列表法解决概率问题.此外,对于本题,教师也可以让学生用画树状图法解答.【课堂练习】1.不透明的袋子中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为().A.19B.16C.13D.122.在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为().A.116B.18C.316D.143.小明对小红说:“我们来做一个游戏,我向空中扔3个硬币,如果它们落地后全是正面朝上,你就得10分,如果它们全是反面朝上,你也得10分,但是,如果它们落地时是其他情况,我就得5分,得分多者获胜,好不好?”小红说:“让我考虑一分钟,至少有两枚硬币必定情况相同,因为如果有两枚情况不同,则第三枚一定会与这两枚硬币之一情况相同.而如果两枚情况相同,则第三枚与其他两枚情况相同或情况不同的可能性一样.因此,3枚硬币情况完全相同或情况不完全相同的可能性是一样的.但是小明是用5分来赌它们的,这分明对我有利,好吧,小明,我和你做这个游戏!”请问:小红的推理正确吗?参考答案1.C.2.C.3.解:首先利用树状图列出3枚硬币落地时的所有可能结果:由图可知总共有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)8种结果,每种结果出现的可能性都相等,其中3枚情况完全相同的概率是14,3枚情况不完全相同的概率是34.因为14×10<34×5,所以这个游戏规则不公平,对小明有利.小红的推理不正确.设计意图:让学生加深对所学知识的理解.六、课堂小结1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素(例如掷两枚骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.我们不妨把两枚骰子分别记为第1枚和第2枚,这样就可以用方形表格列举出所有可能出现的结果.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(1)1.列举法的定义2.用树状图或表格求概率。
用树状图或表格求概率课件(1)
课时1 用树状图或表格求概率 新课引入
问题 1. 还记得什么是等可能概型吗?
设一个实验的所有可能性的结果有 n 种,每次实验有且只有一种结 果出现,如果每种结果出现的可能性相同,那么我们就称这个实验的结 果是等可能的.
课时1 用树状图或表格求概率 新课引入 问题 2. 如何计算等可能概型的概率?
先分组进行实验,然后累计各组的实验数据,分别 计算这三个事件产生的频数与频率,并由此估计这 三个事件产生的概率.
如何得 知概率?
课时1 用树状图或表格求概率
思考
你认为这个游戏公平吗? 连续掷两枚质地均匀的硬币,“两枚正面朝上”,“两枚反面朝上”, “一枚正面朝上、一枚反面朝上”,这三个事件产生的概率相同吗? 通过大量重复实验我们发现, 在一般情况下,“一枚正面朝上、一枚反面朝上”产生的概率大于其他 两个事件产生的概率. 所以,这个游戏不公平. 它对小凡比较有利.
一般的,如果一个实验有 n 种等可能的结果,事件 A 包含其中 m 种结果,那么事件 A 产生的概率为:
P A =m. n
课时1 用树状图或表格求概率 新课引入
小明、小颖和小凡都想去看周末电影,但只有一张电影票,三人决定一 起做游戏,谁获胜谁就去看电影. 游戏规则如下: 连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反 面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.
课时1 用树状图或表格求概率
归纳
①总共有4种结果.每种结果出现的可能性相同. ②其中,小明获胜的结果有1种:(正,正). ③所以小明获胜的概率是 1 .
4
①写出总共有几种等可能结果. ②其中,要求的事件结果有几种. ③求出概率.
课时1 用树状图或表格求概率 针对训练
新北师大版九年级数学(上 )第三章概率的进一步认识 分节 练习
九(上)第三章概率的进一步认识分节练习 & 本章复习第1节 用树状图或表格求概率1、【基础题】有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢.(1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏。
1.1、【基础题】小颖有两件上衣,分别是红色和白色,有两条裤子,分别是黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?1.2、【基础题】将一枚质地均匀的硬币抛掷两次,第一次是正面,第二次是反面的概率是_______ .1.3、【基础题】在抛一枚质地均匀的硬币的实验中,如果没有硬币,则下列实验不能作为替代物的是( )A、一枚均匀的骰子,B、瓶盖,C、两张相同的卡片,D、两张扑克牌2、【基础题】准备两组相同的牌,每组两张且大小一样,两张牌的牌面数字分别是1和2,从每组牌中各摸出一张牌,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值?(2)两张牌的牌面数字之和等于3的概率是多少?2.1、【基础题】 如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张,是汉字“自”的概率是 ( )A、 B、C、 D、3、【基础题】一个盒子中有1个红球和1个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请问:(1)两次都摸到红球的概率;(2)两次摸到不同颜色的球的概率.3.1、【综合Ⅰ】某商场在“十一长假”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个,顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是 .3.2、【综合Ⅰ】从装有2个黄球、2个黑球的袋子里有放回地摸两次,两次摸到的都是黑球的概率是 .4、【基础题】小亮与小明一起玩“剪刀、石头、布”的游戏,两同学同时出“剪刀”的概率是 .4.1、【基础题】小明、小颖和小凡做“剪刀、石头、布”游戏,规则如下:由小明和小颖出“剪刀、石头、布”,如果两人手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀、剪刀胜布、布胜石头”的规则决定小明和小颖中的获胜者. 假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三个人公平吗?4.2、【综合Ⅲ】在上题中,小凡没有参与活动,有“任人宰割”的感觉,于是他们修改游戏规则如下:三人同时做“剪刀、石头、布”的游戏,如果三人的手势都相同或三人的手势都互不相同,那么三人不分胜负;如果有两个人的手势相同,那么按照“石头胜剪刀、剪刀胜布、布胜石头”的规则决定胜负(有可能有两个胜者),那么这个游戏对三人公平吗?为什么?4.3、【基础题】有三张大小一样儿画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子里,把下半部分都放在第二个盒子里,分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.5、【基础题】准备两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.(1)两张牌的牌面数字和等于1的概率是多少?(2)两张牌的牌面数字和等于2的概率是多少?(3)两张牌的牌面数字和大于3的概率是多少?5.1、【基础题】经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种的可能性相同,现有两人经过该路口,求下列事件的概率:(1)两人都左拐;(2)恰好有一人直行,另一人左拐;(3)至少有一人直行.6、【综合Ⅰ】掷两枚质地均匀的骰子,求下列事件的概率:(1)至少有一枚骰子的点数为1;(2)两枚骰子的点数和为奇数;(3)两枚骰子的点数和大于9;(4)第二枚骰子的点数整除第一枚骰子的点数.6.1、【综合Ⅰ】小明和小军做掷骰子的游戏,两人各掷一枚质地均匀的骰子.(1)若两人掷得的点数之和为奇数,则小军获胜,否则小明获胜,这个游戏对双方公平吗?为什么?(2)若两人掷得的点数之和为奇数,则小军获胜,否则小明获胜,这个游戏对双方公平吗?为什么?6.2、【综合Ⅰ】如图,小明和小红正在玩游戏,每人先掷骰子,骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物品. 现在轮到小明掷骰子,棋子在标有数字“1”的那一格,汽车在标有数字“8”的那一格,小明能一次就获得“汽车”吗?小红下一次掷骰子可能得到“汽车”吗?她下一次得到“汽车”的概率是多少?7、【基础题】小颖为学校联欢会设计了一个“配紫色”游戏:如左下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果;(2)游戏者获胜的概率是多少?7.1、【基础题】用右上图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,配得紫色的概率是多少?7.2、【综合Ⅰ】如图的两个转盘进行“配紫色”的游戏,列表或画树状图求出能够配成紫色的概率.7.3、【综合Ⅱ】如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?8、【综合Ⅰ】一个盒子里装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率.8.1、【综合Ⅰ】一个盒子里装有三个红球和两个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到相同颜色的球的概率.8.2、【基础题】有两组卡片,第一组卡片上写有A、B、B,第二组卡片上写有A、B、B、C、C,求从每组卡片中各抽出一张,都抽到B的概率.第2节 用频率估计概率9、【综合Ⅰ】一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,请你估计这个口袋中红球和白球的数量.9.1、【综合Ⅱ】在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A、28个B、30个C、36个D、42个9.2、【综合Ⅲ】为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.本章复习题10、【基础题】在一个有10万人的小镇,随机调查了2000人,其中250人看某电视台的早间新闻,在该镇随便问一个人,他看该台早间新闻的概率大约是多少?11、【综合Ⅰ】密码锁的密码是一个四位数字的号码,每位上的数字都可以是0到9中的任一个,某人忘了密码的最后一位号码, 此人开锁时,随意拔动最后一位号码正好能把锁打开的概率是______.若此人忘了中间两位号码,随意拔动中间两位号码正好能把锁打开的概率是______.12、【综合Ⅰ】将三张大小一样而画面不同的画片从中间剪开,变成六张小卡片,把它们放在一个盒子中,摇匀后,随机地抽取两张,求这两张恰好能拼成原来的一幅画的概率.12.1、【综合Ⅰ】将三张大小一样而画面不同的画片从中间剪开,变成六张小卡片,把它们放在一个盒子中,摇匀后,随机地抽取一张,然后放回,再随机抽取一张,求两次抽取的恰好能拼成原来的一幅画的概率.13、【基础题】如图两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.; B.; C.; D.13.1、【基础题】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?14、【综合Ⅰ】(1)一个盒子中有1个红球、2个白球和2个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率;(2)在上面的问题中,如果从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,那么两次摸到的球的颜色能配成紫色的概率又是多少?15、【提高题】同时掷三枚质地均匀的硬币,三枚硬币都是正面朝上的概率是多少?16、【2012年陕西中考第22题】小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.)九年级(上)第三章分节练习及本章复习题 【答案】第1节 答案1、【答案】(1)不公平,因为出现两个正面的概率为,出现一正一反的概率为,二者概率不等,所以不公平.(2)公平的规则一:若出现两个相同面,则甲赢;若出现一正一反(一反一正),则乙赢;公平的规则二:两个正面,则甲赢;两个反面,则乙赢;若一正一反,则甲、乙都不赢。
鲁教版九年级数学下册课件_6.1 用树状图或表格求概率
感悟新知
解:记袋中的4 个球为白1,白2,黑1,黑2. 根据题意列表如下:
知2-练
第一次 第二次
白1 白2 黑1 黑2
白1
白1 白2 白1 黑1 白1 黑2
白2 白2 白1
白2 黑1 白2 黑2
黑1 黑1 白1 黑1 白2
黑1 黑2
黑2
黑2 白1 黑2 白2 黑2 黑1
感悟新知
知2-练
共有12 种等可能的结果,符合题意的结果有8 种, 故取出的2 个球中有1 个白球,1 个黑球的概率
现的结果和次数,以及某一事件发生出现的结果和次数, 并求出概率的方法.
感悟新知
知2-讲
2. 适用条件 当一次试验涉及两个因素(同时进行两种相同的操作
或先后进行两次相同的操作,即两步试验),并且可能出 现的等可能结果数目较多时,为不重不漏地列出所有可能 的结果,常采用列表法.
感悟新知
知2-讲
特别提醒 1.列表法适用于求两步试验的概率,利用表格的行和列,
感悟新知
解:画树状图如图3-1-1. 由树状图知,共有4 种等可能 的结果,两次传球后,球恰 好在乙手中的结果只有1 种, 所以两次传球后,球恰好在乙手中的概率为14.
知1-练
感悟新知
知1-练
(2) 求三次传球后,球恰好在甲手中的概率.
解题秘方:先确定试验有几步,再确定每步的情 况,选用画树状图法.
感悟新知
解:画树状图如图3-1-2. 由树状图知,共有8 种等可能的 结果,三次传球后,球恰好在甲 手中的结果有2 种,所以三次传
球后,球恰好在甲手中的概率为
2 8
=
14.
知1-练
感悟新知
知1-练
1-1. 同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面
《用树状图或表格求概率》教案
《用树状图或表格求概率》教案教学目标1、理解每次实验的所有可能性(即概率)相同,和前次实验结果无关.2、会运用树状图和列表法计算简单事件发生的概率.3、经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.教学重点运用树状图和列表法计算事件发生的概率.教学难点树状图和列表法的运用方法.教学方法合作交流,共同探究.教学过程一、问题引入:(3分钟)(1)从黑桃1和2中摸一张牌,摸着几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?(学生交流讨论,由此引入知识要点1)二、合作交流、构建知识:(20分钟)(一)总结出知识要点1:每次实验具有的可能性相同.和前一次实验结果无关(二)思考交流:(3分钟)(3)同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?(三)分别用树状图和表格求概率(7分钟)开始第一张牌数字:12第二张牌数字:1212可能出现的结果(1,1)(1,2)(2,1)(2,2)(解释(1,1)的表示方法-------有序----类似点坐标)(1,1)(1,2)(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.总结出知识要点2:利用树状图或表格,可以比较方便地求出某些事件发生的概率.(四)例题解析(10分钟)例1:小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?例题处理(解题过程略):(1)学生先尝试完成,然后2个学生用两种方法板演,师生共同订正(2)让学生根据例1自己设计问题考其他同学,其他学生解答三、运用拓展(20分钟)(一)知识要点1强化练习----口答:(5分钟)1、小王夫妇第一胎生了女孩,如果政策允许生第二胎,那么他们第二胎生男孩和生女孩哪种可能性哪种大?生男孩的概率是多少?2、小明正在做扔硬币的试验,他已经扔了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次扔硬币,出现正面朝上的可能性和反面朝上的可能性哪种大?概率分别是多少?3、福利彩票“3D”中奖的概率是1/1000,小丽的爸爸买了999次都没中奖,那么他下次买彩票中奖的概率是多少?(二)知识要点1强化练习-----用树状图或表格求概率:(15分钟)4、袋中有外观相同的红球和白球各一个,随机摸出一球记下颜色,放回摇匀后再随机摸出一球,则两次摸到球的颜色不相同的概率是多少?5、左边有两张卡片分别标着数字1和2,右边有三张卡片分别标着数字3、4和5.鹦鹉随机从左边叼一张卡片作十位数,再从右边叼一张卡片作个位数.那么鹦鹉叼出的数字恰好是23的概率是多少?6、王俊杰有两套运动衣,一套是黄衣服、黄裤子,另一套是红衣服、红裤子.他在漆黑的夜晚随手穿上衣服和裤子.那么他刚好穿着红衣服和红裤子的概率是多少?(总结时强调解题规范性和下节重点研究放回)四、课堂小结:1、每一次试验具有的可能性相同2、利用树状图或表格可以方便地求出事件发生的概率.五、课外作业----先玩后做:(2分钟)小明和小丽在玩“棒子,老虎,鸡,虫”的游戏-----游戏规则:两人同时喊,其中棒子打老虎,老虎吃鸡,鸡吃虫,虫吃棒子,被吃或被打者输.(1)同桌试着玩几次(2)请用树状图或表格求出:小明赢的概率是多少?两人叫出来的名称一样的概率是多少?世上没有一件工作不辛苦,没有一处人事不复杂。
用树状图或表格求概率(1)
请将各自的试验数据汇总后,填写下面的表格: 抛掷第一枚硬币 抛掷第二枚硬币 正面朝上的次数正面朝上的次数 反面朝上的次数反面朝上的次数正面朝上的次数 反面朝上的次数表格中的数据支持你的猜测吗?总结经验:由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同。
无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的。
所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的。
因此,我们可以用下面的树状图或表格表示所有可能出现的结果:其中,小明获胜的结果有一种:(正,正)。
所以小明获胜的概率是41; 小颖获胜的结果有一种:(反,反)。
所以小颖获胜的概率也是41; 小凡获胜的结果有两种:(正,反)(反,正)。
所以小凡获胜的概率是42。
因此,这个游戏对三人是不公平的。
利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。
三、应用新知准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,称为一次试验。
(1)一次试验中两张牌的牌面数字和可能有哪些值? (2)(同位合作试验)依次统计试验30次、60次、 90次的牌面情况,填写下表:第一张牌的牌面数字 第二张牌的牌面数字 第一张牌的牌面数字为1的次数第二张牌的牌面数字为1的次数 第二张牌的牌面数字为2的次数 第一张牌的牌面数字为2的次数第二张牌的牌面数字为1的次数 第二张牌的牌面数字为2的次数(3)依次统计试验30次、60次、90次时两张牌的牌面数字和分别等于2,3,4的频率,填写下表。
试验次数3060 90 两张牌的牌面数字和等于2的频率 两张牌的牌面数字和等于3的频率 两张牌的牌面数字和等于4的频率(4)你认为两张牌的牌面数字和为多少的概率最大? (5)请你估计,两张牌的牌面数字和等于3个概率是多少? (6)请你利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于3个概率,验证(5)中你的估计。
6.1 用树状图或表格求概率第2课时课件(五四制)九年级数学下册
第2课时
基础主干落实 重点典例研析 素养当堂测评
基础主干落实
3
4
A 公平
重点典例研析
5
【重点1】游戏的公平性 【典例1】(2024·青岛市北区质检)在一个不透明的盒子中装有2枚白色棋子和2 枚黑色棋子,它们除颜色外其余均相同.从这个盒子中随机地摸出2枚棋子. (1)请用画树状图(或列表)的方法,求两次摸出的棋子是不同颜色的概率. 【自主解答】(1)列表如下:
项目 三峡大坝(D) 清江画廊(E) 三峡人家(F)
11
A
B
C1
C2
AD
BD
C1DC2DAE来自BEC1EC2E
AF
BF
C1F
C2F
12
B
13
2.如图,小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的 转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘.若其中一个 转盘转出了红色,另一个转出了蓝色,则可配成紫色.此时,配成紫色的概率是_____.
8
【技法点拨】 游戏公平性问题解决方法
1.分别计算概率:通过列表法或树状图法计算概率. 2.比较:比较两人或两种规则的概率. 3.确定结论:若概率相等,则游戏公平;若概率不相等,则游戏不公平.
9
10
【典例2】(教材再开发·P75“想一想”拓展)宜昌景色宜人,其中三峡大坝、清江画 廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定 在下设的A,B,C三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以 及选派部门、旅游景点等信息如图. (2)设选中C部门游三峡大坝的概率为P1,选中B部门游清江画廊或者三峡人家的概 率为P2,请判断P1,P2大小关系,并说明理由.
用树状图或表格求概率课件
3.1 用树状图或表格求概率
1
回顾与思考
频率与概率的关系
当试验次数很多时,一个事件 发生频率稳定在相应的概率附 近.因此,我们可以通过多次试验 ,用一个事件发生的频率来估计 这一事件发生的概率.
2
回顾与思考
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
19
问题探究 2.用树状图来研究上述问题
开始
第一次
红
白
第二次
红 白红 白
所有可能出 (红, 红) (红, 白) (白, 红) (白, 白) 现的结果
答: (1)两次都摸到红球的概率是1/4; (2)两次摸到不同颜色的球的概率是2/4或者1/2。
20
用树状图或表格求概率 P62
小明、小颖和小凡做“石头、剪子、布”的游 戏。游戏规则如下: 有小明和小颖做“石头、剪 子、布”的游戏如果两人的手势相同,那么小凡 获胜;如果两人手势不同,那么按照“石头胜剪 子,剪子胜布,布胜石头”的规则决定小明和小 颖中的获胜者。
在上面投掷硬币的实验中。
(3),在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果? 他们发 生的可能性是否一样? 如果第一枚硬币 反面朝上呢?
答: 一正一反 一样
答: 一正一反 一样
利用树状图或表格,可以比较方便地 求出某些事件发生的概率.
10
例题欣赏
例1 随机掷一枚均匀的硬币两次,至少有 一次正面朝上的概率是多少?
必然事件发生的概率为1(或100%),记作P(必然事件)=1;
不可能事件发生的概率为0,记作P(不可能事件)=0;
不确定事件发生的概率介于0~1之间,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
6.1 用树状图或表格求概率(1)
一、教学目标 1.知识与技能目标:
①进一步理解当试验次数较大时试验频率稳定于概率.
②会借助树状图和列表法计算涉及两步试验的随机事件发生的概率. 2.方法与过程目标:
合作探究,培养合作交流的意识和良好思维习惯. 3.情感态度价值观
积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.
教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率. 教学难点:理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率.
二、教学过程
第一环节:温故而知新,可以为师矣
1、问题再现:必然事件、不可能事件、不确定事件
2、概率的计算,引出“树状图”“表格”
活动目的:对于随机现象,学生一般都有一些朴素的想法,这些想法有的是正确的,有的是错误的,因此要让学生亲自经历对随机现象的探索过程,亲自经历猜测、试验、收集试验数据、设计试验方案、分析试验结果等活动过程,以获得事件发生的概率。
了解随机现象的特点,了解概率的意义,树立试验探究的观念,这是概率教学的核心思想。
第二环节:实践与猜想
1:准备两组相同的牌,每组两张,两张牌的牌面数字 分别是1和2.从每组牌中各摸出一张牌,称为一次试验。
2
(1)一次试验中两张牌的牌面数字和可能有哪些值?
(2)(同位合作试验)依次统计试验30次、60次、90次的牌面情况,填写下表:
(3)依次统计试验30次、60次、90次时两张牌的牌面数字和分别等于2,3,4的频率,填写下表。
(4)你认为两张牌的牌面数字和为多少的概率最大? (5)请你估计,两张牌的牌面数字和等于3个概率是多少?
(6)请你利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于3个概率,验证(5)中你的估计。
解:方法一:(1)一次试验中.两张牌的牌面数字的和等可能的情况有: 1+1=2;1+2=3;2+1=3;2+2=4.
共有四种情况.而和为3的情况有2种,因此, P(两张牌的牌面数字和等于3)=
42=2
1
. 两张牌的牌面数字的和有四种等可能的情况,而 两张牌的牌面数字和为3的情况有2次,因此.两张 牌的牌面数字的和为3的概率为
42=2
1. 方法二:两张牌的牌面数字的和有四种等可能的情况, 也可以用树状图来表示而两张牌的牌面数字和为3
3
的情况有2次,因此.两张牌的牌面数字的和为3
的概率为42=2
1
.
方法三:通过列表的方式
2:问题深入
准备两组相同的牌,每组三张,三张牌面的数字分别是1、2、3.从两组牌中各摸出一张为一次试验,上述结果又会是怎样呢? 第三环节:例题解析及练习 例1 随机掷一枚均匀的硬币两次,
(1)朝上的面一正、一反的概率是多少? (2)至少有一次正面朝上的概率是多少?
练习:袋中装有四个红色球和两个蓝色球,它们除了颜色外都相同; (1)随机从中摸出一球,恰为红球的概率是
(2)随机从中摸出一球,记录下颜色后放回袋中,充分混合后再随机摸出一球,两次都摸到红球的概率为
(3)随机从中一次摸出两个球,两球均为红球的概率是
例2 掷两枚同样大小且均匀的骰子,两枚骰子的点数和为几的概率最大?点数和为5的概率多少?
例3 :准备三张纸片,两张纸片上各画一个三角形,另一张纸片画一个正方形。
如果将三张纸片放在一个盒子里搅匀,那么,随机地抽取两张纸片,可能拼出一个菱形(取出的是两张画三角形的纸片),也可能拼成一个房子(取出的是一张画三角形、一张画正方形的纸片)。
这个游戏的规则是这样的:若拼成一个菱形,甲赢;若拼成一个房子,乙赢。
你认为这游戏公平吗?
活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概率,也
4
能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件.教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的. 第四环节:总结交流
同学们,通过本节的学习,你有什么收获呢? 第五环节:达标检测
1.袋子里有2个黄球和1个白球,每次从中摸出2个,摸到一黄一白的机会是多少?
2.一个均匀的小正方体,各面分别标有1~6六个数字,求下列事件的概率: 1、随机掷这个小正方体,落地后朝上面数字是6的概率是
2.随机掷这个小正方体两次,两次落地后朝上面数字之和为6的概率是
第六环节:作业 习题6.1第1、2、3题
四、教学反思
注意:在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性.以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.。