16.2二次根式的乘除第1课时(公开课)
人教版八年级数学下册二次根式的乘除
方法二:
∵
2 5 2 =22
5
2
=20,
3
3
2 =32
2
3 =27
,2
5>0, 3
3>0
,
又∵20<27,∴ 2
5 2 < 3
2
3
,即2
5<3
3.
16
探究新知
16.2 二次根式的乘除/
(2)- 2 13 与 - 3 6
解:(2)∵ 2 13= 22 13= 52 ,
3 6= 32 6= 54 ,
53 28 53 28
x3 6x2 y 9xy2
x(x 3y)2
33
课堂检测
16.2 二次根式的乘除/
拓广探索题
2.已知 7 a, 70 b,试着用a, b表示 4.9 .
解:
4.9 100 10 4.9,
又
ab 10 4.9,
34
课堂小结
16.2 二次根式的乘除/
二次根式 乘法
又∵52<54, ∴ 52< 54 ,
两个负数比较大小, 绝对值大的反而小
∴ 52> 54 ,即 2 13>-3 6.
17
探究新知
16.2 二次根式的乘除/
方法点拨
比较两个二次根式大小的方法: (1)被开方数比较法,即先将根号外的非负因数移到根号内, 当两个二次根式都是正数时,被开方数大的二次根式大.
6.计算: (1)2 3 5 21
解:(1)2 3 5 21
25 321
10 32 7 30 7
(2)3 3 (- 18 )
4
(2) 3 3 (- 18 )
4
3-14 3 18
3 32 6 4
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿一. 教材分析《二次根式的乘法》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教授的。
二次根式的乘法是数学中基本的运算之一,它在数学问题的解决中有着广泛的应用。
通过学习这部分内容,可以使学生进一步理解和掌握二次根式的性质,提高他们的数学运算能力。
二. 学情分析在八年级的学生已经具备了一定的数学基础,对于二次根式的性质和加减法运算已经有了一定的了解。
但是,学生在进行二次根式的乘法运算时,可能会对如何正确处理根号下的乘法运算感到困惑。
因此,在教学过程中,需要引导学生正确理解二次根式的乘法运算规则,并通过大量的练习来巩固他们的理解。
三. 说教学目标1.知识与技能目标:使学生理解和掌握二次根式的乘法运算规则,能够正确进行二次根式的乘法运算。
2.过程与方法目标:通过教师的引导和学生的自主探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 说教学重难点1.教学重点:使学生理解和掌握二次根式的乘法运算规则。
2.教学难点:如何引导学生正确理解二次根式的乘法运算规则,并能够灵活运用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和探究法相结合的教学方法。
在讲解二次根式的乘法运算规则时,我将通过生动的例子和清晰的解释,帮助学生理解和掌握。
同时,我将引导学生进行自主探究,通过解决实际问题,来加深他们对二次根式乘法运算的理解。
此外,我还将运用多媒体教学手段,如PPT等,来辅助教学,使教学内容更加生动和直观。
六. 说教学过程1.导入:通过一个实际问题,引发学生对二次根式乘法运算的思考,激发他们的学习兴趣。
2.讲解:讲解二次根式的乘法运算规则,并通过大量的例子来解释和巩固。
3.练习:让学生进行二次根式乘法运算的练习,及时发现和纠正他们的错误。
二次根式的乘法 公开课获奖教案
16.2 二次根式的乘除第1课时 二次根式的乘法1.掌握二次根式乘法法则和积的算术平方根的性质;(重点) 2.会用积的算术平方根的性质对二次根式进行化简.(难点) 一、情境导入计算:(1)4×25与4×25; (2)16×9与16×9. 思考:对于2×3与2×3呢?从计算的结果我们发现2×3=2×3,这是什么道理呢? 二、合作探究探究点一:二次根式的乘法【类型一】 二次根式的乘法法则成立的条件式子x +1·2-x =(x +1)(2-x )成立的条件是( ) A .x ≤2 B .x ≥-1C .-1≤x ≤2D .-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x ≥0,解得-1≤x ≤2.故选C.方法总结:运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0),必须注意被开方数均是非负数这一条件.【类型二】 二次根式的乘法运算计算:(1)3×5;(2)14×64; (3)627×(-33); (4)3418ab ·⎝⎛⎭⎫-2a6b 2a . 解析:有理式的乘法运算律及乘法公式对二次根式同样适用,计算时注意最后结果要化为最简形式.解:(1)3×5=3×5=15; (2)14×64=14×64=16=4;(3)627×(-33)=-1827×3=-1881=-18×9=-162;(4)3418ab ·⎝⎛⎭⎫-2a6b 2a =-34·2a·18ab ·6b 2a =-32a·36×3b 3=-32a ·6b 3b =-9ba3b . 方法总结:在运算过程中要注意根号前的因数是带分数时,必须化成假分数,如果被开方数有能开得尽方的因数或因式,可先将二次根式化简后再相乘.探究点二:积的算术平方根的性质化简: (1)(-36)×16×(-9); (2)362+482; (3)x 3+6x 2y +9xy 2.解析:主要运用公式ab =a ·b (a ≥0,b ≥0)和a 2=a (a ≥0)对二次根式进行化简.解:(1)(-36)×16×(-9)=36×16×9=62×42×32=62×42×32=6×4×3=72;(2)362+482=(12×3)2+(12×4)2=122×(32+42)=122×52=12×5=60;(3)x 3+6x 2y +9xy 2=x (x +3y )2=(x+3y)2·x=|x+3y|x.方法总结:利用积的算术平方根的性质可以对二次根式进行化简.探究点三:二次根式乘法的综合应用小明的爸爸做了一个长为588πcm,宽为48πcm的矩形木相框,还想做一个与它面积相等的圆形木相框,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据矩形的面积公式、圆的面积公式,构造等式进行计算.解:设圆的半径为r cm.因为矩形木相框的面积为588π×48π=168π(cm2),所以πr2=168π,r=242cm(r=-242舍去).答:这个圆的半径是242cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想.三、板书设计1.二次根式的乘法法则:a·b=ab(a≥0,b≥0)2.积的算术平方根:ab=a·b(a≥0,b≥0)在教学安排上,体现由具体到抽象的认识过程.对于二次根式的乘法法则的推导,先利用几个二次根式的具体计算,归纳出二次根式的乘法运算法则.在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,这样安排有助于学生缜密思考和严谨表达,更有助于学生合作精神的培养.17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE +S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。
16.2二次根式的乘除第1课时公开课
解:原式 16 81 49 36
解:原式 0.49 121 0.49 121
解:原式 22 a2 b2 b
0.711
22 a2 b2 b
2ab b
7.7
二次根式乘法运算规律公式
a b a b(a 0,b 0)
a b× a b
(4)(9)× 4 9 9 16× 9 16 62 32 × 62 32
(1) 3 3
解:原式 32 3
(2)x 3 x
解:原式 x2 3 x
27
3x
知识点4
比较下面两个数的大小。
5 6与 6 5
解: 5 6 52 6
180 150
150 6 5 62 5
即: 6 5 5 6
180 over
必做题: (第1、2题每题10分、第3题每空10分、第4、5题每小题15分)
5.化简
(1) 4 49
(2) 300
必做题答案:
1.D 2.B 3. 2 3 4 2
4.计算
5.化简
解 : (1)( 24 27 解 : (2) 6 ( 15)
解:(1) 4 49
24 27
615
4 49
42339
90
27
22 92 2 22 92 2 18 2
36 6
6 x4 6x2
解:原式 5 2 8 4
2 58 4
2 10
一般的:
a b ab(a 0,b 0)
反过来:
ab a b (a 0,b 0)
提醒:如果没有特别说明,本章中所有的字 母都表示正数.
知识点2
(1) 16 81
(2) 4a2b3 (3) (0.49)(121)
16.2二次根式的乘除(第1课时)
a b
(a 0, b 0)
非 负 数
例题3 计算:
1.
14 7
2.3
5 2 10
1 3. 3x xy 3
同学们自己来算吧! 看谁算得既快又准确!
化简二次根式的步骤: 1.将被开方数尽可能分解成几个平方数.
2.应用 ab
3.将平方项应用
a b
a a (a 0) 化简.
2
a
-a
(a≥0)
(a≤0)
读书指导 内容:课本 P6-7
要求:
1.填写“探究”内容,总结二次根式的乘法法则
2.二次根式的乘法公式的逆运用的作用是什么?
3.例2你有其他解法吗?
4.完成P7练习1-3 时间:10分钟
合作学习 计算下列各式, 观察计算结果,你发现什么规律
思考:
1、 4 ×
9
=____ 6
2
练习:
1
1.化简:
2 5 xy
2
3 12
3 2
2.化简:
( 1) ( 3)
1 1 4 288 72 x
( 2) ( 4)
49 121 4y
225 16ab c
2 3
3. 矩形的面积。
1.本节课学习了算术平方根的积和积的算 术平方根。
2 3
解 : (1) 16 81 16 81 4 9 36
(2) 4a b 4 a b
2 3
2
3
2 a b b
2
2a b b 2ab b
2
想一想?
(4) (9) (4) (9)
成立吗?为什么?
ab
(4) (9) 36 6
人教初中数学八下 16.2 二次根式的乘除课件1
2020/6/10
9
计算: 24 32 (默3)
方法1: 24 32
找因数的最 大公因数,不 行再分解因 数
2432
方法2: 24 32
2 64 2
23 325 ( 8384) 8 2 3 2
16 3
16 3
2020/6/10
结果必须化为最简二次根式.
10
计算 : (1) 14 7 (2)3 5 2 10 (3) 3x • 1 xy 3
18
二次根式的乘除法: (默2)
根式和根式按公式相乘除。 根号外的系数与系数相乘除,积为结果的系数
二次根式乘除运算的一般步骤: 1.运用法则,化归为根号内的实数运算; 2.完成根号内相乘,相除(约分)等运算; 多项式先因式分解,再乘除 3.化简二次根式.
分子和分母乘除后,分别分解素因数,找平方的项开
20
43
二次根式的连乘除运算,从左向右依次计算 或系数相乘除作为系数;根式相乘除。
计算: 30 3 2 2 2 2 1 (默5)
23
2
解 : 原式 3 30 8 2 5 解 : 原式 3 2 30 8 5
2
3
2
2
32
( 3 2)( 10 8 5 )
2
2
( 3 1 )( 10 8 2 )
ab5 b ( 3
a 3b )
b 6a
a2
b ( 3) ab5 a a3b
3a 2
b
b a5b5 2a
2020/6/10
b a2b2 ab ab3 ab
23
2a
2
计算:(1)
7 3 14 3
解:
15 2
1 (2) ab3 (3 b ) (3
初中数学《二次根式的乘除(第1课时)》教学设计案例
《16.2 二次根式的乘除(第1课时)》教学设计案例一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.三、教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.四、教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
16.2二次根式的乘除 (教学课件)- 初中数学人教版八年级下册
解: ( 思考】乘法法则是如何得出的?二次根式的除法该怎样算呢2 除法有没有类似的法则?
学习 目标 3. 理解最简二次根式的概念,能熟练地将二 次根式化为最简二次根式。
2. 会运用除法法则及商的算术平方根进行简 单运算.
1. 掌 握二次根式的除法法则,会用法则进行计算.
探究新知 知识点1
二次根式的除法
探究新知
归纳总结 二次根式的乘法法则的推广: ①多个二次根式相乘时此法则也适用,即
√a·√b .....√n=√ab...n(a≥0,b≥0....n≥0)
②当二次根号外有因数(式)时,可以类比单项式乘单 项式的法则计算,即根号外的因数(式)的积作为根号 外的因数(式),被开方数的积作为被开方数,即
化简:
(1)√ 16×81;(2)√4a²b³(a≥0,b≥0).
解:(1)√ 16×81
(2)√4a²b³
(2 ) 中4 ²ab³ 含有 像 4 a²,b²,, 这
= √16×√81
=√4O√a²O√b³
样开的尽方的因 数或因式,把它
=4×9
=36;
=2OaO√b²Ob
们开方后移到根 号外.
巩固练习
计算:
(1)
(2)
●
解: (1) (2)
提示:像(2)中除式是分数或分(1)
(2)
(3)
●
解:(1)
探究新知
考点② 利用二次根式的除法法则计算根号外因数不是1的 二次根式
计算: (1) 解:(1)
假分数,再运用二次根式除法法则进行运算.
巩固练习 计算,看谁算的既对又快.
重
探究新知
方法点拨
化简二次根式的步骤:
1.把被开方数分解因式(或因数);
16.2二次根式的运算(第1课时)讲解与例题
二次根式的运算第1课时1.二次根式的乘法法则(1)二次根式的乘法法则(性质3):a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立.②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根. ③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4× 3.6;(2)545×3223. 分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法. 解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230. 2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a ≥0,b ≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a ,b 是限制公式右边的,对公式的左边,只要ab ≥0即可.②公式中的a ,b 可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab =a ·b (a ≥0,b ≥0)可以推广为abc =a ·b ·c (a ≥0,b ≥0,c ≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简: (1)300;(2)21×63;(3)(-50)×(-8);(4)96a 3b 6(a >0,b >0).分析:根据积的算术平方根的性质:ab =a ·b (a ≥0,b ≥0)进行化简. 解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a 3b 6=42·6·a 2·a ·(b 3)2=4ab 36a .3.二次根式的除法法则 对于两个二次根式a ,b ,如果a ≥0,b >0,那么a b =a b.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a ≥0,b >0,则有a b =a b .②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a ≥0,b >0与二次根式乘法的条件a ≥0,b ≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =m na b (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =a b,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用:(1)数学表达式:如果a ≥0,b >0,则有a b =a b ; (2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握)【例4】把下列各式中根号外的因数(式)移到根号内.(1)535; (2)-2a 12a; (3)-a -1a ; (4)x y x(x <0,y <0). 分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15. (2)∵12a>0,∴a >0. ∴-2a 12a =-(2a )2·12a=-(2a )2·12a=-2a . (3)∵-1a>0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a)=-a . (4)∵x <0,y <0,∴x y x =-(-x )2y x=-(-x )2·y x=-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式.①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式;②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +b b 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎪⎨⎪⎧ a +b =2,3a +b =b ,解得⎩⎪⎨⎪⎧a =0,b =2. 所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算(1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用.(3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件;②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上;④误认为形如a 2+b 2的式子是能开得尽方的二次根式.【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a). 分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除. 解:(1)9145÷(3235)×12223 =(9÷32×12)145÷35×83=(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12ab a 2b ·a b·a =-12ab a 4 =-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式. a 与a ;a +b 与a -b ;a +b 与a -b ;a b +c d 与a b -c d .③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab <0时,化简ab 2,得__________.(2)把代数式x -1x根号外的因式移到根号内,化简的结果为__________. (3)把-x 3(x -1)2化成最简二次根式是__________. (4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是( ). A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙的解法都正确D .甲、乙的解法都不正确解析:(1)在ab 2中,因为ab 2≥0,所以ab ·b ≥0.因为ab <0,b ≠0,所以b <0,a >0.原式=b 2·a =-b a .(2)因为-1x ≥0,又由分式的定义x ≠0,得x <0.所以原式=-(-x )-1x=-(-x )2(-1x)=--x . (3)化简时,需知道x ,x -1的符号,而它们的符号可由题目的隐含条件推出. ∵(x -1)2>0(这里不能等于0),∴-x 3≥0,即x ≤0,1-x >0. 故原式=(-x )2·(-x )(1-x )2=-x 1-x-x . (4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a (2)--x(3)-x 1-x-x (4)C 8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用.如:借助于计算器可以求得42+32=__________,442+332=__________,4442+3332=__________,4 4442+3 3332=__________,……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55,4442+3332=308 025=555,4 4442+3 3332=30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-x x -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值. 分析:式子a b =a b,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6. ∴6<x ≤9.∵x 为偶数,∴x =8.∴原式=(1+x )(x -4)(x -1)(x +1)(x -1) =(1+x )x -4x +1 =(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6.【例8-2】观察下列各式: 223=2+23,338=3+38. 验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23; 338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用. 解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415. (2)猜想:n n n 2-1=n +n n 2-1(n ≥2,n 为正整数). 证明:因为n n n 2-1=n 3n 2-1=n 3-n +n n 2-1=n (n 2-1)+n n 2-1=n +n n 2-1,所以nn n 2-1=n +n n 2-1.。
《二次根式的乘除》数学公开课PPT1人教版
,求a.
例3:设长方形的面积为S,相邻两边长分别为a,b,已知
解:原式 3 3 5 2 6 把下列二次根式化成最简二次根式:
二次根式定义:形如
的式子叫做二次根式
,
,求a
(2)被开方数中不含能开得尽方的因数或因式
................ 15 6 6 把下列二次根式化成最简二次根式:
分析:长方形的面积=长X宽
• 把下列二次根式化成最简二次根式:
(1) 32
(2) 40
(3)1.5
(4) 4 3
42
2 10
6
23
2
3
例题讲解
• 例3:设长方形的面积为S,相邻两边长分别为a,b,已知
• S 2 3 , b 10 ,求a b
分析:长方形的面积=长X宽
a
23
解: S ab
a S 2 3 2 3 10 2 30 30 b 10 10 10 10 5
分母有理化:通过适当的变形化去代数式分母中根号的运算
, ,求a.
,求a ................ 15
学以致用
• 计算:
(1) 7 3 14 3 2 1 15 2 2
(2)3 2 2 ( 1 ) 1 2 3 8 15 2 5
(1) 7 3 14 3 2 1 15 2 2
解:原式 1 7 15 3 5
(1) 2 5
(2) 3 (3) 5
2
11
例题讲解
• 例2:计算 (1)3 2 27
3 2 3 2 3 2 3 2 2 27 32 3 32 3 3 3 3
2 3
3 6 3 ( 3)2
6 3
2 3
23 33
八年级数学下册第十六章二次根式16.2《二次根式的乘除》课件
巩固新知 深化理解
1.下列运算正确的是( D ) A.2 18 3 5 6 80 B. 52 32 52 32 5 3 2 C. (4)(16) 4 16 (2)(4) 8 D. 52 32 52 32 53 15
用你发现的规律填空:
(1) 2 3 = 23; (2) 3 5 = 35.
(1) 4 9 = 4 9; (2) 16 25= 16 25; (3) 25 36 = 25 36.
实战演练 运用新知
例1 计算:
(1) 3 5; (2) 1 27; 3
(3) 2 3 5.
是 3 x5 .
巩固新知 深化理解
5.设长方形的面积为S,相邻两边分别为 a ,b . (1)已知 a 8 , b 12 ,求S;
解:由题意得:
S = *b = 8 12
= 8 12 = 42 23
= 4 6.
(2)已知 a 2 50 , b 3 32 ,求S.
4 2.
合作探究 获取新知 分母有理化
把分母中的根号化去,使分母变成有理数的这个过程就
叫做分母有理化.
化简: (1) 3 ; 5
解:(1) 3 3 5 5 5 5
(2) 1 . 3 2
(2) 1
1( 3+ 2)
3 2 ( 3 2)( 3+ 2)
15 . 5
归纳 有理化因式确定方法:形如
合作探究 获取新知 归纳总结
想一想:3 5 2 2 如何计算呢? 解:3 5 2 2=(3 2)( 5 2)=6 10.
二次根式的乘法扩充法则: m a n b =mn ab(a 0,b 0)
人教版八年级下册数学精品教学课件 第十六章 二次根式 二次根式的乘除 第1课时 二次根式的乘法
5
2
=20,
3
3
2 =32
3 2 =27,
又∵20<27,
∴ 2 5 2 < 3 3 2,即 2 5<3 3 .
(2) 2 13与-3 6.
解:∵ 2 13= 22 13= 52,
3 6= 32 6= 54, 又∵52<54,
∴ 52< 54 ,
两个负数比较 大小,绝对值 大的反而小
讲授新课
一 二次根式的乘法 计算下列各式:
(1) 4 9 = __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36= __5_×_6__=__3_0_; 25 36 =__9_0_0___30__.
( 2 ) 6 12 = __6__2___ ;
( 3 ) 32 2 __2_6__.
4. 比较下列两组数的大小(在横线上填“>”“<” 或“=”):
(1)5 4 > 4 5;(2) 4 2 < 2 7.
5.计算: ( 1 ) 2 3 5 21 ;
解: (1) 2 35 21
25 321 10 327 30 7;
3
解: (1) 3 5 15;
(2) 1 27 1 27 9 3.
3
3
可先用乘法结合 律,再运用二次 根式的乘法法则
(3) 2 3 5 ( 2 3) 5 6 5 30.
归纳 (3)只需其中两个结合就可实现转化进行计算, 说明二次根式乘法法则同样适合三个及三个以上的二
次根式相乘,即 a b k a b k(a 0,b 0,k 0) .
3.如果因式中有平方式(或平方数),应用关系式 a2 = a 把这个因式(或因数)开出来,将二次根 式化简 .
(公开课课件)二次根式的乘除(一)
16.2 二次根式的乘除
第1课时 二次根式的乘除(一)
2021/8/15
1
课前预习
1.二次根式的乘法法则:
__(_a_≥__0_,__b_≥__0_)___ (
填写a,b的取值范围),即两个二次根式相乘,把被开方数
___相__乘___,根指数__不__变____.
2.计算:
6 3.化简:
12
4.当a≤0,b<0时,
5.2021/8/15
6
15x2
2
知识清单
知识点1 二次根式的乘法法则 一般地,二次根式的乘法法则是 知识点2 积的算术平方根
这就是说,两个非负数的积的算术平方根,等于乘积中的这 两个非负因数的算术平方根的____积____. 利用上述结论可以 进行二次根式的化简.
2021/8/15
•
13、生气是拿别人做错的事来惩罚自 己。21.8.2621.8.2621:29:4021:29:40A,作最大的努力。2021年8月26日 星期四 下午9时29分40秒21:29:4021.8.26
•
15、一个人炫耀什么,说明他内心缺 少什么 。。2021年8月 下午9时29分21.8.2621:29August 26, 2021
这个公式的逆用也是成立的:
注:根据需要我们也可以将根号外的非负系数移到根号内.
这些系数进入到根号内时应变成它们的平方.
2021/8/15
4
课堂讲练
新知1 二次根式的乘法法则
典型例题
【例1】计算:
2021/8/15
5
1.计算:
举一反三
2
9
2021/8/15
6
新知2 积的算术平方根
数学八年级下册二次根式乘除法概念PPT公开课
例5 比较 3 5 与 4 3 的大小. 解:方法一: 3 5= 32×5= 45,4 3= 42×3= 48.
∵ 45< 48, ∴3 5<4 3;
方法二: ∵(3 5)2=45,(4 3)2=48,45<48,
∴3 5<4 3.
练习
1及6它.们2 的二1运次用.根.式教的乘除材P7练习第1,2,3题.
难点 发现规律,导出 a· b= ab(a≥0,b≥0).
三、教学设计
活动1 新课导入 1.回顾二次根式的性质和算术平方根的概念. 2.下列运算正确的是( A )
A.( 2)2=2 C.(- -2)2=2
B.(- 2)2=-2 D.- (-2)2=2
3.计算: (1) 4× 25=__1_0__, 4×25=__1_0__; (2) 16× 9=__1_2___, 16×9=__1_2___.
)
2.积的算术平方根的性质:
=__________(a≥0,b≥0).
解: (1) 3 5 15; 2.下列运算正确的是(
)
2.积的算术平方根的性质:
(3)
=__________(a≥0,b≥0).
2.下列运算正确的是(
)
(2) 1 27 127 93.
3
3
2.利用逆向思维,得出
(a≥0,b≥0),并运用它进行解题和化简.
与
的大小.
2.积的算术平方根的性质:
=__________(a≥0,b≥0).
(1)你能完成探究中的计算吗?
解:设铁桶的底面边长是x cm.
5.一个底面为30 cm×30 cm的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm,铁桶的底面边长是多少厘
八年级数学下册课件: 二次根式的乘除(第课时) 公开课一等奖课件
二、探究新知 3.你能化简下列二次根式吗?
3 (1) ; 100 75 (2) ; 27
3 (3) ; 5
3 2 (4) ; 27
8 (5) . 2a
二、探究新知 3.答案.
3 (1) ; 10 6 (4) ; 3
5 (2) ; 3
15 (3) ; 5
2 a (5) . a
二、探究新知 我们把被开方数不含分母且被开方数中 不含能开得尽方的因数或因式的二次根式叫 做最简二次根式. 在二次根式的运算中,最后结果中的二 次根式一般要写成最简二次根式的形式.
第十六章 二次根式
16.2 二次根式的乘除
第2课时
一、提出问题
计算下列各式,观察计算结果,你能发现 什么规律?
2 4 (1) ____; 3 4 16 5 (2) ____; 2 4 3 . ____
9
25
9 4 16 5 . ____ 25
6 36 7 . ____
6 36 7 (2) ____;
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
2.最简二次根式的意义. 3.二次根式化简的一般步骤.
六、布置作业 1.必做题: 教材习题16.2第2、3、4、10、11题. 2.选做题: 教材习题16.2第12、13题.
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补充说明1:
二次根式的乘法: 根式和根式按公式相乘。
m a n b mn ab(a≥0,b≥0)
根号外的系数与系数相乘,积 为结果的系数。
补充说明2:
公式推广:如果a1、a2、.....、. an 0 则:a1 a2 ... an a1 a2 ... an
知识点3
(1) 3 12 (2)3 x 2 x3
(3) 1 1 2 8 4
解:原式 312 解:原式 32 x x3
解:原式 5 2 8 4
36 6
6 x4 6x2
2 58 4
2 10
一般的:
a b ab(a 0,b 0)
反过来:
y 10 x 10 3
( 10 x) y
( 10 3)( 10 3) 10 9 1 答:这个纸包里有一元钱.
把下列各式中根号外的因式移到根号里面。
(1) 3 3
解:原式 32 3
(2)x 3 x
解:原式 x2 3 x
27
3x
知识点4
比较下面两个数的大小。
5 6与 6 5
解: 5 6 52 6
180 150
150 6 5 62 5
思考题答案:
星期天,小明的妈妈和小明做了一个小游戏.小明的妈妈说:“你现在学习了 二次根式,若x表示 10的整数部分,y表示它的小数部分,我这个纸包里的钱 是( 10 x) y元,你猜一下这个纸包里的钱有多少?若猜对了,纸包里的钱就 由你支配.”请你帮小明获得这些钱支配权.
解:3 10 4 10的整数部分为3 x 3
A. 5 3 B.5 3 C. 5 3 D. 75
3.化简:(1) 12
(2) 32
4.计算
(1)( 24 27 (2) 6 ( 15)
5.化简
(1) 4 49
(2) 300
必做题答案:
1.D 2.B 3. 2 3
427 解 : (2) 6 ( 15)
即: 6 5 5 6
180 over
必做题: (第1、2题每题10分、第3题每空10分、第4、5题每小题15分)
1.下列计算正确的是( )
A. 16 4 B.3 2 2 2 1
2.化简二次根式 52 3 (
C. 24 6 4
)
D. 2 6 2 3
ab a b (a 0,b 0)
提醒:如果没有特别说明,本章中所有的字 母都表示正数.
知识点2
(1) 16 81
(2) 4a2b3 (3) (0.49)(121)
解:原式 16 81 49 36
解:原式 0.49 121 0.49 121
16.2二次根式的乘除
第1课时
点击此处播放上课视频
学习目标
1.掌握二次根式乘法法则,并能运 用公式进行二次根式的乘法计算.
2.能逆用二次根式的乘法法则进行 二次根式的化简.
复习提问
1.什么叫二次根式?
形如 a (a 0)的式子叫做二次根式.
2.两个基本性质:
a 2 =a (a≥ 0)
a (a≥ 0)
解:原式 22 a2 b2 b 22 a2 b2 b 2ab b
0.711 7.7
二次根式乘法运算规律公式
a b a b(a 0,b 0)
a b× a b
(4)(9)× 4 9 9 16× 9 16 62 32 × 62 32
10 3
选做题:(10分)
化简:(1) 12ab 9a3 4
(2) x4 x2 (x 0)
思考题:(10分)
星期天,小明的妈妈和小明做了一个小游戏.小明 的妈妈说:“你现在学习了二次根式,若x表示 10的 整数部分,y表示它的小数部分,我这个纸包里的钱是 ( 10 x) y元,你猜一下这个纸包里的钱有多少?若 猜对了,纸包里的钱就由你支配.”请你帮小明获得这 些钱支配权.
a2 =∣a∣ =
-a(a<0)
探究
计算下列各式,观察计算结果,你 发现什么规律?
(1) 4 9 6 , 4 9 6 ; (2) 16 25 20 , 16 25 20
一般地,对二次根式的乘法规定
a b ab(a 0,b 0)
知识点1
a b ab(a 0,b 0)
解:(1) 4 49
24 27
615
4 49
42339
90
27
22 92 2 22 92 2 18 2
910 32 10 3 10
14 解:(2) 300
3100 3102
3 102
选做题答案:
化简:(1) 12ab 9a3 4
解:(1) 12ab 9a3 4
12ab 9a3 4
3 a4 32 b 3 (a2 )2 32 b 3a2 3b
(2) x4 x2 (x 0)
解:(2) x4 x2 x2 (x2 1) x2 x2 1 x x2 1