2011年高三数学一轮复习精品导学案:第二章函数、导数及其应用(2.5对数函数与幂函数)
导数在函数中的应用(一轮复习听课导学案)
导数在函数中的应用一、总体要求【学习目标】1.理解导数在研究函数的单调性和极值中的作用;2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。
3.了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
【重点难点】1、利用导数求函数的单调区间;利用导数求函数的极值;利用导数求函数的最值;2、利用导数证明函数的单调性;数在实际中的应用;3、导数与函数、不等式、方程等知识相融合的问题;二、考点梳理知识点一 函数的导数与单调性的关系函数y =)(x f 在某个区间内可导, (1)若)(x f '>0,则()x f 在这个区间内_____________;(2)若)(x f '<0,则()x f 在这个区间内_____________;(3)若0)(='x f ,则()x f 在这个区间内_____________;知识点 二 函数的极值与导数(1)函数的极小值与极小值点:若函数y =f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值____,且f ′(a )=0,而且在点x =a 附近的左侧________,右侧________,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.(2)函数的极大值与极大值点:若函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值____,且f ′(b )=0,而且在点x =b 附近的左侧________,右侧________,则点b 叫做函数的极大值点,f (b )叫做函数的极大值,______和______统称为极值.3.函数的最值与导数:(1) 设y =)(x f 是定义在区间[a ,b ]上的连续函数,y =)(x f 在(a ,b )内有导数,则函数y =)(x f 在[a ,b ]上 有最大值与最小值.(2) 求最值可分两步进行:① 求y =)(x f 在(a ,b )内的 值; ② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.(3) 若函数y =)(x f 在[a ,b ]上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在[a ,b ]上单调递减,则)(a f 为函数的 ,)(b f 为函数的 .三.考点应用 典例解析考点一 利用导数研究函数的单调性例1.(2012辽宁高考)函数y =12x 2-ln x 的单调递减区间为( ).A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)归纳总结----求单调区间的一般步骤:容易忽视的问题:________________________________________________________ 例2.已知函数()R b a b ax x x f ∈++-=,)(23,若函数()x f 在区间[]2,0上单调递增。
高考数学一轮复习 第二章 函数、导数及其应用 . 对数与对数函数练习 理讲解
第二章 函数、导数及其应用 2.6 对数与对数函数练习 理[A 组·基础达标练]1.函数f (x )=log 0.5 4x -1 的定义域为( ) A.⎝⎛⎦⎥⎤-∞,12 B.⎣⎢⎡⎭⎪⎫12,+∞C.⎝ ⎛⎦⎥⎤14,12D.⎝ ⎛⎭⎪⎫14,+∞ 答案 C解析 由题意易知⎩⎪⎨⎪⎧log 0.5 4x -1 ≥04x -1>0整理得0<4x -1≤1,解得14<x ≤12,即函数f (x )=log 0.5 4x -1 的定义域为⎝ ⎛⎦⎥⎤14,12,故选C.2.[2015·重庆高考]“x >1”是“log 12 (x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件答案 B解析 由log 12 (x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12 (x +2)<0”的充分而不必要条件,故选B.3.[2015·石家庄一模]设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=( )A .-12B.12 C .2 D .-2答案 B解析 因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12,故选B.4.函数f (x )=2x +1和函数g (x )=log 2(x +3)的图象的交点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 函数f (x )=2x +1,g (x )=log 2(x +3)的图象可以由基本的指数函数f (x )=2x和对数函数g (x )=log 2x 的图象分别向左平移1个单位和3个单位得到,由f (x )=2x +1,g (x )=log 2(x +3)的图象可知,其交点在第二象限,选B.5.[2014·辽宁高考]已知a =2-13 ,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a答案 C解析 0<a =2-13 =12 13<1,b =log 213<0,c =log 12 13=log 23>1.∴c >a >b .6.[2014·福建高考]若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是()答案 B解析 由题图可知y =log a x 的图象过点(3,1), ∴log a 3=1,即a =3.A 项,y =⎝ ⎛⎭⎪⎫13x在R 上为减函数,错误;B 项,y =x 3符合;C 项,y =(-x )3=-x 3在R 上为减函数,错误; D 项,y =log 3(-x )在(-∞,0)上为减函数,错误.7.[2016·云南名校联考]设a >b >1,c <0,给出下列三个结论: ①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ), 其中所有的正确结论的序号是( ) A .① B .①② C .②③D .①②③答案 D解析 由a >b >1知1a <1b ,又c <0,所以c a >cb,①正确;由幂函数的图象与性质知②正确;由a >b >1,c <0知a -c >b -c >1-c >1,由对数函数的图象与性质知③正确,故选D.8.[2016·河北五校质监]函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n的最小值为( )A .2 2B .4 C.52 D.92答案 D解析 由函数y =log a (x +3)-1(a >0,且a ≠1)的解析式知:当x =-2时,y =-1,所以点A 的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,又m >0,n >0,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2=92,当且仅当m =n=23时等号成立.所以2m +1n 的最小值为92,故选D. 9.若f (x )=lg x ,g (x )=f (|x |),则g (lg x )>g (1)时,x 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫0,110∪(10,+∞)解析 当g (lg x )>g (1)时,f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x >1或lg x <-1,解得0<x <110或x >10.10.已知函数y =f (x )是周期为2的奇函数,当x ∈[2,3)时,f (x )=log 2(x -1),给出以下结论:①函数y =f (x )的图象关于点(k,0)(k ∈Z )对称; ②函数y =|f (x )|是以2为周期的周期函数; ③当x ∈(-1,0)时,f (x )=-log 2(1-x ); ④函数y =f (|x |)在(k ,k +1)(k ∈Z )上单调递增. 其中,正确结论的序号是________. 答案 ①②③解析 因为f (x )是周期为2的奇函数,奇函数的图象关于原点(0,0)对称,故函数y =f (x )的图象也关于点(2,0)对称,先作出函数f (x )在(1,3)上的图象,左右平移即得到f (x )的草图如图所示,由图象可知f (x )关于点(k,0)(k ∈Z )对称,故①正确;由y =f (x )的图象可知y =|f (x )|的周期为2,故②正确;当x ∈(-1,0)时,2<2-x <3,f (2-x )=log 2(1-x )=-f (x ),即f (x )=-log 2(1-x ),故③正确;y =f (|x |)在(-1,0)上为减函数,故④错误.11.[2015·珠海月考]函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x . (1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12 (-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12-x ,x <0.(2)因为f (4)=log 12 4=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以0<|x 2-1|<4,解得-5<x <5且x ≠±1, 又当x 2-1=0即x =±1时,f (0)=0>-2符合题意. ∴不等式的解集为(-5,5).12.已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )的图象上任意一点P 关于原点对称的点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.解 (1)设P (x ,y )为g (x )图象上任意一点,则Q (-x ,-y )是点P 关于原点的对称点,因为Q (-x ,-y )在f (x )的图象上,所以-y =log a (-x +1),即y =-log a (1-x )(x <1). 所以g (x )=-log a (1-x )(x <1). (2)f (x )+g (x )≥m ,即log a1+x1-x≥m . 设F (x )=log a 1+x1-x ,x ∈[0,1).由题意知,只要F (x )min ≥m 即可.因为F (x )在[0,1)上是增函数,所以F (x )min =F (0)=0.故m 的取值范围是(-∞,0].[B 组·能力提升练]1.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案 B解析 如图所示,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距,由图可知,当a >1时,直线y =-x +a 与y =f (x )只有一个交点.故选B.2.定义函数y =f (x ),x ∈D ,若存在常数c ,对任意x 1∈D ,存在唯一的x 2∈D ,使得f x 1 +f x 22=c ,则称函数f (x )在D 上的均值为c .已知f (x )=ln x ,x ∈[1,e 2],则函数f (x )=ln x 在x ∈[1,e 2]上的均值为( )A.12 B .1 C .e D.1+e 22答案 B解析 只有x 1x 2=e 2,才有x 1∈[1,e 2]时,x 2=e 2x 1∈[1,e 2],所以函数f (x )=ln x 在x∈[1,e 2]上的均值为ln x 1+ln x 22=ln x 1x 2 2=ln e22=1.3.[2016·山西质检]已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2 x -m ,x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.4.已知函数f (x )=3-2log 2x ,g (x )=log 2x .(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,求实数k 的取值范围.解 (1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (x )>k ·g (x ), 得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ;②当t ∈(0,2]时,k < 3-4t 3-t t 恒成立,即k <4t +9t -15,因为4t +9t≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3,综上,k ∈(-∞,-3).。
数学(文)一轮复习:第二章 基本初等函数、导数及其应用 第讲对数与对数函数
第6讲对数与对数函数,)1.对数概念如果a x=N(a〉0,a≠1),那么数x叫做以a 为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x负数和零没有对数1的对数是零:log a1=0底数的对数是1:log a a=1对数恒等式:a log a N=N运算性质log a(M·N)=log a M+log a N a>0,且a≠1, log a错误!=log a M-log a Nlog a M n=n log a M(n∈R)M >0,N〉0 2.对数函数的图象与性质a〉10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x〉1时,y〉0当0〈x〈1时,y<0当x〉1时,y〈0当0<x<1时,y〉在(0,+∞)上是增函数在(0,+∞)上是减函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.1.辨明三个易误点(1)在运算性质中,要特别注意条件,底数和真数均大于0,底数不等于1。
(2)对公式要熟记,防止混用.(3)对数函数的单调性、最值与底数a有关,解题时要按0〈a 〈1和a〉1分类讨论,否则易出错.2.对数函数图象的两个基本点(1)当a>1时,对数函数的图象“上升”;当0<a〈1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),错误!,函数图象只在第一、四象限.3.换底公式及其推论(1)log a b=错误!(a,c均大于0且不等于1,b〉0);(2)log a b·log b a=1,即log a b=错误!(a,b均大于0且不等于1);(3)log am b n=错误!log a b(a〉0且a≠1,b>0,m≠0,n∈R);(4)log a b·log b c·log c d=log a d(a,b,c均大于0且不等于1,d>0).1.函数y=错误!ln(1-x)的定义域为()A.(0,1) B.D.B 因为y=错误!ln(1-x),所以错误!解得0≤x〈1.2.错误!(log29)·(log34)=()A.错误!B.错误!C.2 D.4D原式=错误!·错误!=4。
2011年高考数学第二轮专题复习 导数教学案
2011年高考第二轮专题复习(教学案):导数考纲指要:导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
考点扫描:导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;[来源:]② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
考题先知:例1.设函数B A Cx Bx Ax x f ++++=6)(23,其中实数A 、B 、C 满足: ①9841218+≤+≤+-B C A B ; ②A B A 63≤-<。
(1)求证:49)1(,41)1(''≤-≥f f ; (2)设π≤≤x 0,求证:0)sin 2(≥x f 。
证明:(1)由9841218+≤+≤+-B C A B 得:,4123≥++C B A 4923≤+-C B A ,又C Bx Ax x f ++=23)(2',所以4123)1('≥++=C B A f ,4923)1('≤+-=-C B A f [来源:学.科.网Z.X.X.K](2)当π≤≤x 0时,0)sin 2(≥x f 等价于当20≤≤u 时,0)(≥u f ,所以只须证明当20≤≤x 时,0)(≥x f ,由②知:,0>A 且(]2,13∈-AB,所以C Bx Ax x f ++=23)(2'为开口向上的抛物线,其对称轴方程(]2,13∈-=ABx ,又由A B A 63≤-<得: 0)6)(3(≤++B A B A ,即AB A B 91822+≥-,所以,当20≤≤x 时,有B AC AABA AC AB AC A B f x f 363918312412)3()(22''++=++≥-=-≥[来源:学+科+网]B BC B A B A C B A +-+++≥++++=)21(23323=)]1()1([4121)1('''--⨯+f f f=049814189)1(81)1(89''=⨯-⨯≥--f f ,所以)(x f 为[0,2]上的增函数。
高考数学一轮总复习 第二章 函数、导数及其应用 2.6 对数与对数函数课件 理
D.①②④
13
第十三页,共四十五页。
解析:若 M=N=0,则 logaM,logaN,logaM2,logaN2 无意义,若 logaM2=logaN2, 即 M2=N2,则|M|=|N|,①③④不正确,②正确.
答案:C
14
第十四页,共四十五页。
2.写出下列各式的值: (1)log2 22=________; (2)log53+log513=________; (3)lg 52+2lg 2-12-1=________;
「应用提示研一研」 1.换底公式的两个重要推论
其中 a>0 且 a≠1,b>0 且 b≠1,m,n∈R.
11
第十一页,共四十五页。
2.对数函数的图象与底数大小的比较 如图,作直线 y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故 0 <c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.
12
第十二页,共四十五页。
「基础小题练一练」
1.对于 a>0 且 a≠1,下列结论正确的是( )
①若 M=N,则 logaM=logaN; ②若 logaM=logaN,则 M=N; ③若 logaM2=logaN2,则 M=N; ④若 M=N,则 logaM2=logaN2. A.①③
B.②④
C.②
5+(lg 5+lg 2)·lg 3=lg 5+lg 3=lg 15.
∴x=15.
答案:(1)81
5 (2)4
(3)15
23
第二十三页,共四十五页。
对数函数的图象(tú xiànɡ)及应用
[典 例 导 引] (1)函数 y=2log4(1-x)的图象大致是( )
(2)若不等式(x-1)2<logax 在 x∈(1,2)内恒成立,则实数 a 的取值范围为________.
高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件
结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.
高三数学一轮总结复习目录
高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文
高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文【最新考纲】 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点.会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数.1.对数的概念如果a x=N(a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b(a >0,且a≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a≠1,M >0,N >0,那么:①log a (M·N)=log a M +log a N ,②log a M N =log a M -log a N ,③log a M n=nlog a M (n∈R).3.对数函数的定义、图象与性质4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log2x2=2log2x.( )(2)函数y=log2(x+1)是对数函数.( )(3)函数y=lg(x+3)+lg(x-3)与y=lg[(x+3)(x-3)]的定义域相同.( )(4)当x>1时,若log a x>log b x,则a<b.( )答案:(1)×(2)×(3)×(4)√2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由图象可知y =log a (x +c)的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.答案:D3.(2015·四川卷)lg 0.01+log 216的值是________. 解析:lg 0.01+log 216=lg 1100+log 224=-2+4=2. 答案:24.(2015·北京卷)2-3,312,log 25三个数中最大的数是________.解析:因为2-3=123=18<1,1<312=3<2,log 25>log 24=2,所以三个数中最大的数是lo g 25. 答案:log 255.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析:当x≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2). 答案:(-∞,2)两种关系1.a b=N ⇔log a N =b(a >0,a ≠1,N >0).2.指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.两点注意1.在无M >0的条件下,log a M n=nlog a |M|(n∈N *,且n 为偶数).2.解决与对数函数有关的问题时,务必先研究函数的定义域.对数函数的单调性取决于底数a ,应注意底数的取值范围.两类方法1.对数值的大小比较方法:(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1).(4)化为同真数后利用图象比较.2.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定.一、选择题1.2lg 2-lg 125的值为( )A .1B .2C .3D .4 解析:2lg 2-lg 125=lg ⎝ ⎛⎭⎪⎫22÷125=lg 100=2.答案:B2.(2016·石家庄一模)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c解析:因为312>1,0<log 1312<1,c =log 213<0所以a >b >c. 答案:A4.函数f(x)=lg 1|x +1|的大致图象为( )解析:f(x)=lg 1|x +1|=-lg|x +1|的图象可由偶函数y =-lg|x|的图象左移1个单位得到.由y =-lg|x|的图象可知选D. 答案:D5.(2016·唐山统考)已知f(x)=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( ) A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12解析:要使函数f(x)的值域为R ,则有⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a<12.答案:C 6.设f(x)=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f(x)<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) 解析:由f(x)是奇函数可得a =-1, ∴f(x)=lg 1+x1-x 的定义域为(-1,1).由f(x)<0,可得0<1+x1-x <1,解得-1<x <0.答案:A二、填空题7.(2014·安徽卷)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.解析:⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=⎝ ⎛⎭⎪⎫23-3+log 31=278+0=278.答案:2788.函数y =log 12(x 2-6x +17)的值域是________.解析:x 2-6x +17=(x -3)2+8≥8,则y≤log 128=-3,即函数的值域为(-∞,-3].答案:(-∞,-3]9.(2015·天津卷)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b)取得最大值.解析:由于a >0,b >0,ab =8,所以b =8a.所以log 2a ·log 2(2b)=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a)=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b)取得最大值4. 答案:4 三、解答题10.已知函数f(x)=log a (x +1)-log a (1-x),a >0且a ≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)若a >1时,求使f(x)>0的x 的取值集合. 解:(1)f(x)=log a (x +1)-log a (1-x),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f(x)的定义域为{x|-1<x <1}. (2)由(1)知f(x)的定义域为{x|-1<x <1}, 且f(-x)=log a (-x +1)-log a (1+x) =-[log a (x +1)-log a (1-x)]=-f(x), 故f(x)为奇函数.(3)因为当a >1时,f(x)在定义域{x|-1<x <1}内是增函数,所以f(x)>0⇔x +11-x >1,解得0<x <1.所以使f(x)>0的x 的解集是{x|0<x <1}.11.设x∈[2,8]时,函数f(x)=12log a (ax)·log a (a 2x)(a >0,且a≠1)的最大值是1,最小值是-18,求a 的值.解:由题意知f(x)=12(log a x +1)·(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f(x)取最小值-18时,log a x =-32,又∵x∈[2,8],∴a ∈(0,1). ∵f(x)是关于log a x 的二次函数,∴函数f(x)的最大值必在x =2或x =8时取得. ①若12(log a 2+32)2-18=1,则a =2-13,此时f(x)取得最小值,x =(2-13)-32=2∉[2,8],舍去.②若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.。
2011年高三数学一轮复习精品导学案:第二章函数、导数及其应用(2.5对数函数与幂函数)
第二章 函数、导数及其应用2.5对数函数、幂函数【高考目标定位】一、考纲点击 1、对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化自然对数或常用对数;了解对数在简化运算中的作用。
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。
(3)知道对数函数是一类重要的函数模型。
(4)了解指数函数y=a x 与对数函数log x a y =互为反函数(0,1a a >≠且) 2、幂函数(1)了解幂函数的概念。
(2)结合函数y=x ,y=x 2,y=x 3,1y x=,12y x =的图象,了解它们的变化情况。
二、热点提示 1、对数函数(1)对数函数在高考的考查中,重点是图象、性质及其简单应用,同时考查数学思想方法,以考查分类讨论、数形结合及运算能力为主。
(2)以选择、填空的形式考查对数函数的图象、性质;也有可能与其他知识结合,在知识交汇点处命题,以解答形式出现,属中低档题。
2、幂函数(1)常以5种幂函数为载体,考查幂函数的图象及性质;(2)多以选择、填空题的形式出现,有时会与其他知识结合在知识交汇点处命题。
【考纲知识梳理】一、对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数 表格 12、对数的性质与运算法则(1)对数的性质(0,1a a >≠且): ①1log0a=,②log 1aa =,③log Na aN =,④log Na aN =。
(2)对数的重要公式: ①换底公式:log log (,1,0)log N Na bbaa b N =>均为大于零且不等于; ②1log log b a ab=,推广log log log log a b c a b c d d = 。
河北省2011年高考数学一轮复习 2.3函数的奇偶性 精品导学案
函数、导数及其应用2.3函数的奇偶性【高考目标定位】一、考纲点击1、结合具体函数,了解函数奇偶性的含义;2、会运用函数图象理解和研究函数的性质。
二、热点难点提示1、函数的奇偶性作为函数的一个重要性质,仍是明年高考考查的重点,常与函数的单调性、周期性等知识交汇命题。
2、在每年的高考试题中,三种题型都有可能出现,多以选择题、填空题的形式出现,属中、低档题。
【考纲知识梳理】定义域中,即说明奇偶函数的定义域必关于原点对称;2、存在既是奇函数,又是偶函数的函数,它们的特点是定义域关于原点对称,且解析式化简后等于零。
二、奇偶函数的性质1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填 “相同”、“ 相反”)。
2、在公共定义域内,(1)两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数;(2)两个偶函数的和函数、积函数是偶函数;(3)一个奇函数,一个偶函数的积函数是奇函数。
3、若是奇函数f(x)且在x=0处有定义,则f(0)=0.4、对称性:奇(偶)函数的定义域关于原点对称;5、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;6、可逆性: )()(x f x f =- ⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;7、等价性:)()(x f x f =-⇔0)()(=--x f x f)()(x f x f -=-⇔0)()(=+-x f x f8、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;9、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
【热点、难点精析】一、函数奇偶性的判定1、相关链接<1>判断函数奇偶性的一般步骤(1)首先确定函数的定义域,看它是否关于原点对称。
若不对称,则既不是奇函数又不是偶函数。
(2)若定义域关于原点对称,再判定f(-x)与f(x)之间的关系①若f(-x)=-f(x)(或f(-x) +f(x)=0),则为奇函数;②若f(-x)=f(x)(或 f(-x) -f(x)=0),则f(x)为偶函数;③若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数;④若f(-x) ≠f(x)且f(-x)≠- f(x),则f(x)既不是奇函数也不是偶函数。
江苏省2011届高三数学高考一轮复习导学案 对数式与对数函数 苏教版
对数式与对数函数[学习目标]1. 掌握对数的预算法则2. 理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,3.了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用.[学习重难点]①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点; ③知道对数函数是一类重要的函数模型;④了解指数函数x y a =与对数函数log a y x =互为反函数(),1a o a ≠[自主学习]1.对数:(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数.① 以10为底的对数称为常用对数,N 10log 记作___________.② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________.(2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log .(3) 运算性质:① log a (MN)=___________________________;② log a NM =____________________________;③ log a M n = (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)⑤ log m n a a n b b m = .2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为 __________________;2) 函数的值域为 _____________________;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数 )1,0(≠>=a a a y x且互为反函数.② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);3) 函数y =log a x 与 的图象关于x 轴对称.③ 函数值的变化特征及函数图像与性质:注:(1)同底的指数函数x y a =与对数函数log a y x =互为反函数(2)底大图低[典型例析]例1 计算: (1))32(log 32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-; (3)21lg 4932-34lg 8+lg 245.变式训练1:化简求值.(1)log 2487+log 212-21log 242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log 32+log 92)·(log 43+log 83).例2已知函数f (x )=log 2(x 2-ax-a)在区间(-∞, 1-3]上是单调递减函数.求实数a 的取值范围.例3.对于)32(log )(221+-=ax x x f ,(1)函数的“定义域为R ”和“值域为R ”是否是一回事;(2)结合“实数a 的取何值时)(x f 在),1[+∞-上有意义”与“实数a 的取何值时函数的定义域为),3()1,(+∞⋃-∞”说明求“有意义”问题与求“定义域”问题的区别;(3)结合(1)(2)两问,说明实数a 的取何值时)(x f 的值域为]1,(--∞(4)实数a 的取何值时)(x f 在]1,(-∞内是增函数。
高考数学一轮复习 第2章 函数、导数及其应用 2.1 函数及其表示学案 文-人教版高三全册数学学案
2.1 函数及其表示[知识梳理]1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.必记结论函数与映射的相关结论(1)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.(2)映射的个数若集合A中有m个元素,集合B中有n个元素,则从集合A到集合B的映射共有n m个.(3)与x轴垂直的直线和一个函数的图象至多有1个交点.[诊断自测]1.概念思辨(1)函数y=f(x)的图象与直线x=a最多有2个交点.( )(2)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.( )(3)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( )(4)f(x-1)=x,则f(x)=(x+1)2(x≥-1).( )答案(1)×(2)√(3)×(4)√2.教材衍化(1)(必修A1P23T2)下列四个图形中,不是以x为自变量的函数的图象是( )答案 C解析 由函数定义知,定义域内的每一个x 都有唯一函数值与之对应,A ,B ,D 选项中的图象都符合;C 项中对于大于零的x 而言,有两个不同的值与之对应,不符合函数定义.故选C.(2)(必修A1P 18例2)下列四组函数中,表示相等函数的一组是( ) A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 答案 A解析 A 项,函数g (x )=x 2=|x |,两个函数的对应法则和定义域相同,是相等函数;B 项,函数f (x )=x 2=|x |,g (x )=x (x ≥0),两个函数的对应法则和定义域不相同,不是相等函数;C 项,函数f (x )=x 2-1x -1的定义域为{x |x ≠1},g (x )=x +1的定义域为R ,两个函数的定义域不相同,不是相等函数;D 项,由⎩⎪⎨⎪⎧x +1≥0,x -1≥0,解得x ≥1,即函数f (x )的定义域为{x |x ≥1}.由x 2-1≥0,解得x ≥1或x ≤-1,即g (x )的定义域为{x |x ≥1或x ≤-1},两个函数的定义域不相同,不是相等函数.故选A.3.小题热身(1)(2018·广东深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]答案 C解析 由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0,x >0,ln x ≠0,解得0<x <1.故选C.(2)若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x-4,x >0,则f [f (1)]的值为( )A .-10B .10C .-2D .2答案 C解析 因为f (1)=-2,所以f (-2)=-2.故选C.题型1 函数的概念典例1 集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x用定义法.答案 C解析 依据函数概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应.选项C 不符合,因为当x =4时,y =83∉B .故选C.典例2 (2018·秦都区校级月考)判断下列各组中的两个函数是同一函数的是( ) ①y 1=(x +3)(x -5)x +3,y 2=x -5;②f (x )=x ,g (x )=x 2; ③f (x )=x ,g (x )=3x 3;④f 1(x )=(2x -5)2,f 2(x )=2x -5. A .①② B .②③ C .③D .③④用定义法.答案 C解析 对于①,y 1=(x +3)(x -5)x +3=x -5(x ≠-3),与y 2=x -5(x ∈R )的定义域不同,不是同一函数.对于②,f (x )=x ,与g (x )=x 2=|x |的对应关系不同,不是同一函数.对于③,f (x )=x (x ∈R ),与g (x )=3x 3=x (x ∈R )的定义域相同,对应关系也相同,是同一函数.对于④,f 1(x )=(2x -5)2=2x -5⎝ ⎛⎭⎪⎫x ≥52,与f 2(x )=2x -5(x ∈R )的定义域不同,不是同一函数. 综上,以上是同一函数的是③.故选C. 方法技巧与函数概念有关问题的解题策略1.判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.见典例1.2.两个函数是否是相等函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示相等函数.见典例2.冲关针对训练1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={x |0≤x ≤1}为值域的函数的是( )答案 C解析 A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.故选C.2.下列函数中一定是同一函数的是________. ①y =x 与y =a log ax;②y =2x +1-2x与y =2x;③f (u )=1+u1-u,f (v )= 1+v1-v; ④y =f (x )与y =f (x +1).答案 ②③ 解析 ①y =x 与y =a log ax定义域不同.②y =2x +1-2x=2x(2-1)=2x相同.③f (u )与f (v )的定义域及对应法则均相同. ④对应法则不相同.题型2 函数的定义域典例1 (2015·湖北高考)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]列不等式组求解.答案 C解析 依题意,知⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧|x |≤4,(x -3)(x -2)x -3>0,解之得2<x <3或3<x ≤4,即函数的定义域为(2,3)∪(3,4].故选C.典例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1)B .⎝ ⎛⎭⎪⎫-1,-12C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1已知f (x ),x ∈[a ,b ],求f [g (x )]的定义域,则a <g (x )<b .答案 B解析 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12.故选B. [结论探究] 典例2中条件不变,求函数g (x )=f (2x +1)+f (3x +1)的定义域. 解 函数f (3x +1)有意义,需-1<3x +1<0,解得-23<x <-13,又由f (2x +1)有意义,解得-1<x <-12,所以可知g (x )的定义域为⎝ ⎛⎭⎪⎫-23,-12.[条件探究] 若典例2中条件变为:“函数f (x -1)的定义域为(-1,0)”,则结果如何?解 因为f (x -1)的定义域为(-1,0),即-1<x <0,所以-2<x -1<-1,故f (x )的定义域为(-2,-1),则使函数f (2x +1)有意义,需满足-2<2x +1<-1,解得-32<x <-1.所以所求函数的定义域为⎝ ⎛⎭⎪⎫-32,-1.方法技巧1.求函数定义域的三种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解.见典例1. (2)抽象函数(见典例2)①若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出.②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.(3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求. 2.求函数定义域的注意点(1)不要对解析式进行化简变形,以免定义域变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.冲关针对训练1.(2017·临川模拟)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A .[-3,7]B .[-1,4]C .[-5,5]D .⎣⎢⎡⎦⎥⎤0,52答案 D解析 由y =f (x +1)定义域[-2,3]得y =f (x )定义域为[-1,4],所以-1≤2x -1≤4,解得0≤x ≤52.故选D.2.(2018·石河子月考)已知函数y =f (x )的定义域是(-∞,1),则y =f (x -1)+2-x2x 2-3x -2的定义域是( )A.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2 B .(-∞,1)C.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫12,1 D .(-∞,2)答案 A解析 ∵函数y =f (x )的定义域是(-∞,1),∴y =f (x -1)+2-x2x 2-3x -2中,自变量x 应满足⎩⎪⎨⎪⎧x -1<1,2-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x <2,x ≤2,x ≠-12或x ≠2,即x <2且x ≠-12,∴f (x )的定义域是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2.故选A. 题型3 求函数的解析式典例1已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式.配凑法.解 f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,故f (x )=x 2-2,且x ≤-2或x ≥2.典例2 已知f ⎝⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.换元法.解 令t =2x +1>1,得x =2t -1,所以f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).典例3 已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).待定系数法.解 设f (x )=ax 2+bx +c ,由f (0)=0,得c =0,对f (x +1)=a (x +1)2+b (x +1),f (x )+x +1=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,得a =b =12.所以f (x )=12x 2+12x (x ∈R ). 典例4 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,求f (x ).方程组法.解 由f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,消掉f ⎝ ⎛⎭⎪⎫1x ,可得f (x )=23x +13.方法技巧函数解析式的常见求法1.配凑法.已知f [h (x )]=g (x ),求f (x )的问题,往往把右边的g (x )整理成或配凑成只含h (x )的式子,然后用x 将h (x )代换.见典例1.2.待定系数法.已知函数的类型(如一次函数、二次函数)可用待定系数法.见典例3. 3.换元法.已知f [h (x )]=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元.应用换元法时要注意新元的取值范围.见典例2.4.方程组法.已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f ⎝ ⎛⎭⎪⎫1x,f (-x )等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).见典例4.冲关针对训练1.(2018·衢州期末)已知f (x )是(0,+∞)上的增函数,若f [f (x )-ln x ]=1,则f (e)=( )A .2B .1C .0D .e答案 A解析 根据题意,f (x )是(0,+∞)上的增函数,且f [f (x )-ln x ]=1,则f (x )-ln x为定值,设f (x )-ln x =t ,t 为常数,则f (x )=ln x +t 且f (t )=1, 即有ln t +t =1,解得t =1, 则f (x )=ln x +1,则f (e)=ln e +1=2.故选A.2.已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). 解 解法一:(换元法)令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).解法二:(配凑法)因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).解法三:(待定系数法)因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ).3.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x -1,求f (x ).解 (消元法)已知2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x -1,① 以1x代替①式中的x (x ≠0),得2f ⎝ ⎛⎭⎪⎫1x+f (x )=3x-1,②①×2-②得3f (x )=6x -3x-1,故f (x )=2x -1x -13(x ≠0).题型4 求函数的值域角度1 分式型典例 求f (x )=5x -14x +2,x ∈[-3,-1]的值域. 分离常数法.解 由y =5x -14x +2可得y =54-74(2x +1).∵-3≤x ≤-1, ∴720≤-74(2x +1)≤74, ∴85≤y ≤3,即y ∈⎣⎢⎡⎦⎥⎤85,3. 角度2 根式型典例 求函数的值域. (1)y =2x +1-2x ; (2)y =x +4+9-x 2.(1)用换元法,配方法;(2)用三角换元法.解 (1)令t =1-2x ,则x =1-t 22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54(t ≥0).∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝ ⎛⎦⎥⎤-∞,54.(2)令x =3cos θ,θ∈[0,π],则y =3cos θ+4+3sin θ=32sin ⎝⎛⎭⎪⎫θ+π4+4.∵0≤θ≤π, ∴π4≤θ+π4≤5π4, ∴-22≤sin ⎝⎛⎭⎪⎫θ+π4≤1.∴1≤y ≤32+4,∴函数的值域为[1,32+4].角度3 对勾型函数典例 求y =log 3x +log x 3-1的值域.用分类讨论法.解 y =log 3x +log x 3-1,变形得y =log 3x +1log 3x -1.①当log 3x >0,即x >1时,y =log 3x +1log 3x -1≥2-1=1,当且仅当log 3x =1,即x =3时取“=”. ②当log 3x <0,即0<x <1时,y ≤-2-1=-3. 当且仅当log 3x =-1,即x =13时取“=”.综上所述,原函数的值域为(-∞,-3]∪[1,+∞). 角度4 单调性型典例 函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)本题用复合函数“同增异减”的单调性原则求解.答案 A解析 根据对数函数的定义可知,真数3x+1>0恒成立,解得x ∈R . 因此,该函数的定义域为R ,原函数f (x )=log 2(3x+1)是由对数函数y =log 2t 和t =3x+1复合的复合函数, 由复合函数的单调性定义(同增异减)知道,原函数在定义域R 上是单调递增的. 根据指数函数的性质可知,3x>0,所以,3x+1>1, 所以f (x )=log 2(3x+1)>log 21=0.故选A. 角度5 有界性型典例 求函数y =1-2x1+2x 的值域.本题用转化法.解 由y =1-2x1+2x 可得2x=1-y 1+y . 由指数函数y =2x的有界性可知2x>0,∴1-y1+y>0,解得-1<y <1. 所以函数的值域为(-1,1). 角度6 数形结合型典例求函数y =sin x +1x -1,x ∈⎣⎢⎡⎦⎥⎤π2,π的值域.本题用数形结合法.解 函数y =sin x +1x -1的值域可看作由点A (x ,sin x ),B (1,-1)两点决定的斜率,B (1,-1)是定点,A (x ,sin x )在曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π上,如图.∴k BP ≤y ≤k BQ ,即1π-1≤y ≤4π-2.方法技巧求函数值域的常用方法1.分离常数法(见角度1典例) 2.配方法(见角度2典例(1)) 3.换元法(见角度2典例(2)) (1)代数换元; (2)三角换元.4.有界性法(见角度5典例) 5.数形结合法(见角度6典例)6.基本不等式法(见角度3典例) 7.利用函数的单调性(见角度4典例) 冲关针对训练 求下列函数的值域: (1)f (x )=⎝ ⎛⎭⎪⎫12x 2-2x +2; (2)y =(x +3)2+16+(x -5)2+4. 解 (1)∵x 2-2x +2=(x -1)2+1≥1, 0<⎝ ⎛⎭⎪⎫12x 2-2x +2≤12,∴函数f (x )=⎝ ⎛⎭⎪⎫12x 2-2x +2的值域是⎝ ⎛⎦⎥⎤0,12.(2)(数形结合法)如图,函数y =(x +3)2+16+(x -5)2+4的几何意义为平面内一点P (x,0)到点A (-3,4)和点B (5,2)的距离之和.由平面解析几何知识,找出B 关于x 轴的对称点B ′(5,-2),连接AB ′交x 轴于一点P ,此时距离之和最小,∴y min =|AB ′|=82+62=10,又y 无最大值,所以y ∈[10,+∞).题型5 分段函数角度1 求分段函数的函数值典例 (2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12确定自变量所在区间,代入相应解析式.答案 C解析 ∵-2<1,log 212>1,∴f (-2)=1+log 2[2-(-2)]=3;f (log 212)=2log 212-1=2log 26=6.∴f (-2)+f (log 212)=9.故选C. 角度2 求参数的值典例 (2018·襄阳联考)已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f [f (14-a )]=________.本题用方程思想求a ,再根据区间分类讨论,由内到外,逐层求解.答案 -158解析 当a ≤1时,f (a )=2a-2=-3无解;当a >1时,由f (a )=-log 2(a +1)=-3,得a +1=8,解得a =7,所以f [f (14-a )]=f [f (7)]=f (-3)=2-3-2=-158.角度3 分段函数与不等式的交汇典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]本题用数形结合思想方法、分离常数法.答案 D解析 由题意作出y =|f (x )|的图象:由图象易知,当a >0时,y =ax 与y =ln (x +1)的图象在x >0时必有交点,所以当a ≤0,x ≥0时,|f (x )|≥ax 显然成立;当x <0时,要使|f (x )|=x 2-2x ≥ax 恒成立, 则a ≥x -2恒成立,又x -2<-2,∴a ≥-2.综上,-2≤a ≤0.故选D. 方法技巧分段函数问题的常见类型及解题策略1.求函数值.弄清自变量所在区间,然后代入对应的解析式,求“层层套”的函数值,要从最内层逐层往外计算.见角度2典例.2.求参数.“分段处理”,采用代入法列出各区间上的方程或不等式.见角度2典例. 3.解不等式.根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提.见角度3典例.4.数形结合法也是解决分段函数问题的重要方法,在解决选择填空问题中经常使用,而且解题速度更快更准.见角度3典例.冲关针对训练1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2]答案 D解析 依题意可知⎩⎪⎨⎪⎧a ≥0,a 2-2a +(-a )2+2(-a )≤0或⎩⎪⎨⎪⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2].故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2,x ≤0,f (x -2)+1,x >0,则f (2018)=________.答案 1008解析 根据题意:f (2018)=f (2016)+1=f (2014)+2=…=f (2)+1008=f (0)+1009=1008.1.(2014·山东高考)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 答案 C解析 要使函数f (x )有意义,需使(log 2x )2-1>0,即(log 2x )2>1,∴log 2x >1或log 2x <-1.解之得x >2或0<x <12.故f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞).故选C. 2.(2018·河北名校联盟联考)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g [f (-8)]=( )A .-1B .-2C .1D .2答案 A解析 ∵函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,∴f (-8)=-f (8)=-log 39=-2,∴g [f (-8)]=g (-2)=f (-2)=-f (2)=-log 33=-1.故选A.3.(2018·工农区模拟)函数y =x +1-1-x 的值域为( ) A .(-∞,2] B .[0,2] C .[-2,2] D .[-2,0]答案 C解析 要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≥0,1-x ≥0,解得-1≤x ≤1,所以函数的定义域为[-1,1],根据函数的解析式,x 增大时,x +1增大,1-x 减小,-1-x 增大,所以y 增大,即该函数为增函数.所以最小值为f (-1)=-2,最大值为f (1)=2, 所以值域为[-2,2].故选C.4.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x >-14.[基础送分 提速狂刷练]一、选择题1.已知A ={x |x =n 2,n ∈N },给出下列关系式:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x 4;⑤f (x )=x 2+1,其中能够表示函数f :A →A 的个数是( )A .2B .3C .4D .5答案 C解析 对⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确.故选C.2.(2018·吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2(x >1),则f ⎣⎢⎡⎦⎥⎤1f (2)的值为( )A.1516B .89C .-2716D .18答案 A解析 f (2)=4,f ⎣⎢⎡⎦⎥⎤1f (2)=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.故选A.3.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg 132D.15lg 2 答案 D解析 令x 5=t ,则x =t 15 (t >0),∴f (t )=lg t 15 =15lg t .∴f (2)=15lg 2.故选D.4.(2017·山西名校联考)设函数f (x )=lg (1-x ),则函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞) D .[-9,1)答案 B解析 f [f (x )]=f [lg (1-x )]=lg [1-lg (1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0⇒-9<x <1.故选B.5.若函数y =f (x )的定义域是[0,1],则函数F (x )=f (x +a )+f (2x +a )(0<a <1)的定义域是( )A.⎣⎢⎡⎦⎥⎤-a 2,1-a 2 B .⎣⎢⎡⎦⎥⎤-a2,1-aC .[-a,1-a ] D.⎣⎢⎡⎦⎥⎤-a ,1-a 2答案 A解析 ⎩⎪⎨⎪⎧0≤x +a ≤1,0≤2x +a ≤1⇒-a 2≤x ≤1-a2.故选A.6.函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为( ) A.⎝ ⎛⎦⎥⎤-∞,12 B .⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫12,1D .⎣⎢⎡⎭⎪⎫12,+∞ 答案 C解析 由于x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,结合函数y =⎝ ⎛⎭⎪⎫12x 在(0,1]上的图象可知函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为⎣⎢⎡⎭⎪⎫12,1.故选C.7.(2018·黄冈联考)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f [f (-3)]=( )A .-2B .2C .3D .-3答案 B解析 由题意得f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f [f (-3)]=f (9)=log 39=2.故选B.8.(2018·银川模拟)已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③ D .①答案 B解析 对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.故选B.9.(2018·铜陵一模)若函数f (x )图象上任意一点P (x ,y )皆满足y 2≥x 2,则f (x )的解析式可以是( )A .f (x )=x -1xB .f (x )=e x-1 C .f (x )=x +4xD .f (x )=tan x答案 C解析 A 项,当x =1时,f (x )=1-1=0,02≥12不成立;B 项,当x =-1时,f (x )=1e -1∈(-1,0),⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立;D 项,当x =5π4时,f (x )=1,12≥⎝ ⎛⎭⎪⎫5π42不成立;对于C ,f 2(x )=x 2+16x2+8>x 2,符合题意.故选C.10.(2017·山东模拟)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 ①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1,故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a>1,f [f (a )]=22a,2f (a )=22a,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C.二、填空题11.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.12.(2018·厦门一模)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫0,12解析 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.13.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.答案 1解析 [a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1.14.(2018·绵阳二诊)现定义一种运算“⊕”:对任意实数a ,b ,a ⊕b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-2x )⊕(x +3),若函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,则实数k 的取值范围是________.答案 (-8,-7]∪(-3,-2)∪{1}解析 因为(x 2-2x )-(x +3)-1=(x -4)(x +1),所以f (x )=(x 2-2x )⊕(x +3)=⎩⎪⎨⎪⎧x +3,x ∈(-∞,-1]∪[4,+∞),x 2-2x ,x ∈(-1,4).作出函数y =f (x )的图象如图所示.函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,即函数y =f (x )的图象与直线y =-k 有两个公共点,结合图象可得-k =-1 或2<-k <3或7≤-k <8,所以实数k 的取值范围是k ∈(-8,-7]∪(-3,-2)∪{1}.三、解答题15.(2018·福建六校联考)已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1). (1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧x +2>0,4-x >0,解得-2<x <4,∴f (x )的定义域为(-2,4). (2)f (x )=log a (x +2)+log a (4-x ) =log a [(x +2)(4-x )],令t =(x +2)(4-x ),则可变形得t =-(x -1)2+9, ∵0≤x ≤3,∴5≤t ≤9, 若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去),若0<a <1,则log a 9≤log a t ≤log a 5, ∴f (x )min =log a 9=-2, 则a 2=19,又0<a <1,∴a =13.综上,得a =13.16.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2. (1)求f (2),f (3),f (4)的值; (2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)+f (2016)f (2015)+f (2018)f (2017)的值. 解 (1)∵∀x ,y ∈R ,f (x +y )=f (x )·f (y ),且f (1)=2,∴f (2)=f (1+1)=f (1)·f (1)=22=4,f (3)=f (1+2)=f (1)·f (2)=23=8, f (4)=f (1+3)=f (1)·f (3)=24=16.(2)解法一:由(1)知f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2018)f (2017)=2, 故原式=2×1009=2018.解法二:对∀x ,y ∈R 都有f (x +y )=f (x )·f (y )且f (1)=2,令x =n ,y =1,则f (n +1)=f (n )·f (1),即f (n +1)f (n )=f (1)=2,故f (2)f (1)=f (4)f (3)=…=f (2018)f (2017)=2,故原式=2×1009=2018.。
高考数学一轮复习专题教案—第二课时 导数在函数中的应用
① 确定函数 f (x) 的
;
② 求 f (x) ,令
,解此方程,求出它在定义区间内的一切实根;
③ 把函数 f (x) 的间断点(即 f (x) 的无定义点)的横坐标和上面的各个实根按由小到大的
顺序排列起来,然后用这些点把函数 f (x) 的定义区间分成若干个小区间;
④ 确定 f (x) 在各小开区间内的
2
2
2
2
2
2
两式相加可得公式⑴,两式相减可得公式⑵。
cos cos cos cos sin sin
2
2
2
2
2
2
cos
cos
cos
cos
sin
1 tan tan tan( ) tan tan
1 tan tan
五、二倍角公式
sin 2 2sin cos cos2 cos2 sin2 2cos2 1 1 2sin2 … ()
5
高中数学精品教学教案
⑴ 设 y= f (x) 是定义在区间[a ,b ]上的函数,y= f (x) 在(a ,b )内有导数,则函数 y
= f (x) 在[a ,b ]上 有最大值与最小值;但在开区间内
(2) 求最值可分两步进行:
① 求 y= f (x) 在(a ,b )内的
值;
有最大值与最小值.
② 将 y= f (x) 的各
高中数学精品教学教案
第二课时 导数在函数中的应用
【学习目标】
2011版数学一轮精品复习学案:第二章函数、导数及其应用(2.4指数函数)
2011版高三数学一轮精品复习学案:函数、导数及其应用第四节 指数函数【高考目标定位】一、考纲点击1.了解指数函数模型的实际背景;2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点; 4.知道指数函数是一类重要的函数模型。
二、热点、难点提示1.指数函数在高中数学中占有十分重要的地位,是高考重点考查的对象,热点是指数函数的图象与性质的综合应用.同时考查分类讨论思想和数形结合思想;2.幂的运算是解决与指数有关问题的基础,常与指数函数交汇命题。
【考纲知识梳理】1.根式(1)根式的概念(2).两个重要公式①(0)(0)an aa a n a a ⎧⎪=≥⎧⎨=⎨⎪-<⎩⎩为奇数为偶数;②()n a a =注意。
2.有理数指数幂 (1)幂的有关概念 ①正整数指数幂:()nn a a aa n N *=∈个;②零指数幂:01(0)a a =≠; ③负整数指数幂:1(0,);pp aa p N a-*=≠∈ ④正分数指数幂:0,,1)m na a m n N n *=>∈>、且;⑤负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。
高考数学一轮复习第2单元函数、导数及其应用听课学案
第二单元函数、导数及其应用第4讲函数概念及其表示课前双击巩固1.函数与映射的概念2.函数的三要素函数由、和对应关系三个要素构成.在函数y=f(x),x∈A中,x叫作自变量,x的取值范围A叫作函数的.与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的.3.函数的表示法函数的常用表示方法:、、.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的,这样的函数通常叫作分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.常用结论1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为.(6)函数f(x)=xα的定义域为{x|x∈R且x≠0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为;当a<0时,值域为.(3)y=(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.题组一常识题1.[教材改编]以下属于函数的有.(填序号)①y=±;②y2=x-1;③y=+;④y=x2-2(x∈N).2.[教材改编]已知函数f(x)=若f[f(e)]=2a,则实数a= .3.[教材改编]函数f(x)=的定义域是.4.[教材改编]已知集合A={1,2,3,4},B={a,b,c},f:A→B为从集合A到集合B的一个函数,那么该函数的值域C的不同情况有种.题组二常错题◆索引:对函数概念理解不透彻;对分段函数解不等式时忘记范围;换元法求解析式,反解忽视范围;对函数值域理解不透彻.5.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f不是函数的是.(填序号)①f:x→y=x;②f:x→y=x;③f:x→y=x;④f:x→y=.6.设函数f(x)=则使得f(x)≥1的自变量x的取值范围为.7.已知f()=x-1,则f(x)= .8.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有个.课堂考点探究探究点一函数的定义域考向1求给定函数解析式的定义域1 (1)[2017·洛阳调研]下列函数中,其定义域和值域分别与函数y=e ln x的定义域和值域相同的是()A.y=xB.y=ln xC.y=D.y=10x(2)[2017·揭阳二模]函数f(x)=+lg(6-3x)的定义域为()A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2][总结反思] 已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式(组)的解集即可.考向2求抽象函数的定义域2 (1)若函数y=f(x)的定义域为[-1,1),则函数y=f(x2-3)的定义域为. (2)已知f(2x)的定义域是[-1,2],则f(log2x)的定义域为.[总结反思] (1)若f(x)的定义域为[m,n],则在f[g(x)]中,m≤g(x)≤n,从中解得x的范围即为f[g(x)]的定义域;(2)若f[g(x)]的定义域为[m,n],则由m≤x≤n确定g(x)的范围,即为f(x)的定义域.考向3已知定义域求参数范围3 (1)设f(x)的定义域为[0,1],要使函数f(x-a)+f(x+a)有定义,则a的取值范围为()A.B.C.D.∪(2)已知函数y=的定义域为R,则实数m的取值范围是. [总结反思] 根据函数的定义域,将问题转化为含参数的不等式(组),进而求解参数范围.强化演练1.【考向2】已知函数y=f(x)的定义域是[-2,3],则y=f(2x-1)的定义域是()A.B.[-1,4]C. D.[-5,5]2.【考向2】若函数y=f(x)的定义域为[0,2],则函数g(x)=的定义域是()A.[0,1)B.[0,1]C.[0,1)∪(1,4]D.(0,1)3.【考向1】[2017·江西重点中学盟校联考]函数y=ln1++的定义域为.4.【考向3】函数f(x)=的定义域为R,则实数a的取值范围是.5.【考向3】记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.若B⊆A,则实数a的取值范围为.探究点二函数的解析式4 (1)已知f=ln x,则f(x)= .(2)已知f(x)是二次函数且f(0)=5,f(x+1)-f(x)=x-1,则f(x)= .(3)已知函数f(x)的定义域为(0,+∞),且f(x)=3·f+1,则f(x)= .[总结反思] 求函数解析式的常用方法:(1)待定系数法:已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f[g(x)]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f(x)与f(或f(-x))的关系式,可根据已知条件再构造出另外一个等式,两等式组成方程组,通过解方程组求出f(x).(4)配凑法:由已知条件f[g(x)]=F(x),可将F(x)改写成关于g(x)的解析式,然后以x替代g(x),便得f(x)的解析式.式题 (1)已知f(+1)=x+2,则f(x)= .(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x<0时,f(x)= .(3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)= .探究点三分段函数考向1分段函数的函数求值问题5 (1)[2017·河南新乡二模]已知函数f(x)=则f[f(-1)]= .(2)[2017·抚州七校联考]设函数f(x)=则f(3)+f(4)= .[总结反思] 求分段函数的函数值时务必要确定自变量所在的区间及其对应关系,对于复合函数的求值问题,应由里到外地依次求值.考向2分段函数的自变量求值问题6 [2017·湘潭一中、长沙一中等六校联考]已知f(x)=若f(a)=2,则a的取值为()A.2B.-1或2C.±1或2D.1或2[总结反思] 与分段函数有关的自变量的求值问题,求解关键是分类讨论思想的应用.考向3分段函数与方程、不等式问题7 (1)已知函数f(x)=若f(a)>,则实数a的取值范围是()A.(-1,0)∪(,+∞)B.(-1,)C.(-1,0)∪D.(2)[2017·渭南二模]设f(x)=若f[f(4)]=,则a= .[总结反思] 涉及与分段函数有关的不等式与方程问题,主要表现为解不等式(或方程).若自变量取值不确定,则要分类讨论求解;若自变量取值确定,则只需依据自变量的情况,直接代入相应解析式求解.强化演练1.【考向1】[2017·桂林中学三模]已知函数f(x)=则f(2+log32)的值为()A.-B.C. D.-542.【考向1】已知a>0且a≠1,函数f(x)=满足f(0)=2,f(-1)=3,则f[f(-3)]=()A.-3B.-2C.3D.23.【考向2】[2017·石家庄二中三模]已知函数f(x)=若f(2-a)=1,则a=()A.-2B.-1C.-1或-D.24.【考向3】已知函数f(x)=则满足f(a)≥2的实数a的取值范围是()A.(-∞,-2)∪(0,+∞)B.(-1,0)C.(-2,0)D.(-∞,-1]∪[0,+∞)5.【考向3】设函数f(x)=则满足f[f(a)]=2f(a)的a的取值范围是()A .B.[0,1]C .D.[1,+∞)第5讲函数的单调性与最值课前双击巩固1.单调函数的定义自左向右看图像是2.单调区间的定义如果函数y=f(x)在区间D上是,那么就说函数y=f(x)在这一区间具有(严格的)单调性, 叫作函数y=f(x)的单调区间.3.函数的最值常用结论1.复合函数的单调性函数y=f (u ),u=φ(x ),在函数y=f [φ(x )]的定义域上,如果y=f (u ),u=φ(x )的单调性相同,则y=f [φ(x )]单调递增;如果y=f (u ),u=φ(x )的单调性相反,则y=f [φ(x )]单调递减. 2.单调性定义的等价形式 设任意x 1,x 2∈[a ,b ],x 1≠x 2.(1)若有(x 1-x 2)[f (x 1)-f (x 2)]>0或>0,则f (x )在闭区间[a ,b ]上是增函数.(2)若有(x 1-x 2)[f (x 1)-f (x 2)]<0或<0,则f (x )在闭区间[a ,b ]上是减函数.3.函数单调性的常用结论(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数. (2)若k>0,则kf (x )与f (x )单调性相同,若k<0,则kf (x )与f (x )单调性相反.(3)函数y=f (x )(f (x )>0)在公共定义域内与y=-f (x ),y=的单调性相反.(4)函数y=f (x )(f (x )≥0)在公共定义域内与y=的单调性相同.题组一 常识题1.[教材改编] 函数f (x )=(2a-1)x-3是R 上的减函数,则a 的取值范围是 .2.[教材改编] 函数f (x )=(x-2)2+5(x ∈[-3,3])的单调递增区间是 ;单调递减区间是 .3.[教材改编]函数f(x)=(x∈[2,5])的最大值与最小值之和等于.4.函数f(x)=|x-a|+1在[2,+∞)上是增函数,则实数a的取值范围是.题组二常错题◆索引:求单调区间忘记定义域导致出错;对于分段函数,一般不能整体单调,只能分段单调;利用单调性解不等式忘记在单调区间内求解;混淆“单调区间”与“在区间上单调”两个概念.5.函数f(x)=ln(4+3x-x2)的单调递减区间是.6.已知函数f(x)=满足对任意的实数x1≠x2,都有<0成立,则实数a的取值范围为.7.函数y=f(x)是定义在[-2,2]上的减函数,且f(a+1)<f(2a),则实数a的取值范围是.8.(1)若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是.(2)若函数f(x)=x2+2(a-1)x+2的单调递减区间为(-∞,4],则a的值为.课堂考点探究探究点一函数单调性的判断与证明1 判断函数f(x)=(a>0),x∈(-1,1)的单调性,并加以证明.[总结反思] (1)定义法证明函数单调性的一般步骤:①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方);④定号(即判断f(x1)-f(x2)的正负);⑤下结论(即指出函数f(x)在给定的区间D上的单调性).(2)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”.式题 [2017·南阳一中月考]下列函数中,在(0,+∞)上单调递增的函数是()A.y=-x2+1B.y=|x-1|C.y=x3D.y=2-x探究点二求函数的单调区间2 (1)[2017·全国卷Ⅱ]函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)(2)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的单调递减区间是.[总结反思] 求函数单调区间的常见方法:(1)定义法;(2)图像法;(3)导数法.求复合函数单调区间的一般解题步骤为:①确定函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,其依据是“同增异减”.式题 (1) 函数y=的单调递增区间为()A.(1,+∞)B.C.D.(2)函数f(x)=(a-1)x+2在R上单调递增,则函数g(x)=a|x-2|的单调递减区间是. 探究点三函数单调性的应用考向1利用函数的单调性比较大小3 (1)[2017·吉林实验中学二模]设a=log52,b=,c=log73,则a,b,c的大小关系是()A.b>a>cB.a>c>bC.b>c>aD.a>b>c(2)[2017·达州二诊]已知f(x)是定义在(0,+∞)上的单调函数,且对任意x∈(0,+∞),f[f(x)-ln x]=e+1,设a=f,b=f,c=f(log2π),则a,b,c的大小关系是.(用“>”号连接表示)[总结反思] 比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.考向2利用函数的单调性解决不等式问题4 (1)已知函数f的定义域为R,对任意x1<x2,都有f-f<x1-x2,且f=-4,则不等式f>lo|3x-1|-1的解集为()A.B.C.∪D.∪(2)[2017·云南师大附中月考]已知函数f(x)=e x+x3,若f(x2)<f(3x-2),则实数x的取值范围是.[总结反思] 解函数不等式的理论依据是函数单调性的定义,具体步骤是:(1)将函数不等式转化成f(x1)>f(x2)的形式;(2)考查函数f(x)的单调性;(3)据函数f(x)的单调性去掉法则“f”,转化为形如“x1>x2”或“x1<x2”的常规不等式,从而得解.考向3利用函数的单调性求最值问题5 设函数f(x)=+2016sin x,x∈-,的最大值为M,最小值为N,那么M+N= .[总结反思] 若函数在区间[a,b]上单调,则必在区间的端点处取得最值;若函数在区间[a,b]上不单调,则最小值为函数在该区间内的极小值和区间端点值中最小的值,最大值为函数在该区间内的极大值和区间端点值中最大的值.考向4利用函数的单调性求参数6 [2017·南充三模]已知f(x)=是(-∞,+∞)上的增函数,那么实数a的取值范围是()A.(0,3)B.(1,3)C.(1,+∞)D.[总结反思] (1)根据函数的单调性,将题设条件转化为含参数的不等式(组),即可求出参数的值或范围;(2)若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.强化演练1.【考向1】已知函数f(x)满足对任意的x1,x2∈(0,+∞),恒有(x1-x2)·[f(x1)-f(x2)]<0成立.若a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<aB.b<a<cC.b<c<aD.a<b<c2.【考向2】已知函数f(x)=ln x+2x,若f(x2-4)<2,则实数x的取值范围是.3.【考向3】[2017·青岛一模]已知函数f(x)=则函数f(x)的最大值是.4.【考向4】若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.5.【考向4】[2017·武汉调研]若函数f(x)=ln(ax2+x)在区间(0,1)上单调递增,则实数a 的取值范围为.第6讲函数的奇偶性与周期性课前双击巩固1.函数的奇偶性2.函数的周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个,那么这个就叫作f(x)的最小正周期.常用结论1.奇(偶)函数定义的等价形式(1)f(-x)=f(x)⇔f(-x)-f(x)=0⇔=1⇔f(x)为偶函数;(2)f(-x)=-f(x)⇔f(-x)+f(x)=0⇔=-1⇔f(x)为奇函数.2.对f(x)的定义域内任一自变量的值x,最小正周期为T(1)若f(x+a)=-f(x),则T=2|a|;(2)若f(x+a)=,则T=2|a|;(3)若f(x+a)=f(x+b),则T=|a-b|.3.函数图像的对称关系(1)若函数f(x)满足关系f(a+x)=f(b-x),则f(x)的图像关于直线x=对称;(2)若函数f(x)满足关系f(a+x)=-f(b-x),则f(x)的图像关于点对称.题组一常识题1.[教材改编]函数f(x)=x2-1,f(x)=x3,f(x)=x2+cos x,f(x)=+|x|中,偶函数的个数是.2.[教材改编]若奇函数f(x)在区间[a,b]上是减函数,则它在[-b,-a]上是函数;若偶函数f(x)在区间[a,b]上是增函数,则它在[-b,-a]上是函数.3.[教材改编]已知f(x)为奇函数,当x>0时,f(x)=-1,则f(-2)= .4.[教材改编]已知函数f(x)满足f(x+3)=f(x),当x∈(0,1]时,f(x)=log4(x2+3),则f(2017)= .题组二常错题◆索引:判定奇偶性时,不化简解析式导致出错;找不到周期函数的周期从而求不出结果;性质应用不熟练,找不到解题方法;利用奇偶性求解析式时忽略定义域.5.函数f(x)=是(填“奇”“偶”“非奇非偶”)函数.6.具有性质f=-f(x)的函数,我们称为满足“倒负”变换的函数.有下列函数:①f(x)=x-;②f(x)=x+;③f(x)=其中满足“倒负”变换的函数是.(填序号)7.已知定义在R上的函数f(x)满足f(x)=-f,且f(1)=2,则f(2017)= .8.设函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+4x-3,则函数f(x)的解析式为f(x)=.课堂考点探究探究点一函数奇偶性的判断1 (1)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数(2)下列函数奇偶性的判断,正确的是()①f(x)=+;②f(x)=;③f(x)=A.①是奇函数,②是奇函数,③是偶函数B.①是偶函数,②是奇函数,③是偶函数C.①既是奇函数又是偶函数,②是奇函数,③是奇函数D.①既是奇函数又是偶函数,②是偶函数,③是偶函数[总结反思] 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域.(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0 (偶函数)是否成立.式题 (1)[2017·衡水中学三调]已知函数f(x)=,g(x)=,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)+g(x)是奇函数C.h(x)=f(x)g(x)是奇函数D.h(x)=f(x)g(x)是偶函数(2)下列函数中,既不是奇函数也不是偶函数的是()A.f(x)=x+sin 2xB.f(x)=x2-cos xC.f(x)=3x-D.f(x)=x2+tan x探究点二函数的周期性2 (1)已知函数f(x)满足f x-=f x+,当x∈0,时,f(x)=ln(x2-x+1),则函数f(x)在区间(0,6]上的零点个数是()A.3B.4C.5D.6(2) [2017·芜湖二模]已知定义在R上的函数f(x)满足f(4)=2-,且对任意的x都有f(x+2)=,则f(2018)=()A.-2-B.-2+C.2-D.2+[总结反思] (1)只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T.(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.式题已知函数f(x)是定义在R上的周期为3的周期函数,当x∈(1,4]时,f(x)=3x-1,则f(1)+f(2)+f(3)+…+f(100)= .探究点三函数性质的综合应用考向1奇偶性的应用3 (1)[2017·福建四地六校联考]设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=()A.-B.C.2D.-2(2)[2017·许昌二模]已知函数f(x)=的最大值为M,最小值为m,则M+m等于()A.0B.2C.4D.8[总结反思] 利用函数的奇偶性可以解决以下问题:(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出.(3)求解析式中的参数:利用待定系数法求解,根据f(x)±f(-x)=0得到关于参数的恒等式,由系数的对等性得出方程(组),进而得出参数的值.(4)画函数图像:利用奇偶性可画出函数在另一对称区间上的图像.(5)求特殊值:利用奇函数的最大值与最小值和为零可求一些特殊结构的函数值.考向2奇偶性与单调性4 (1)已知f(x)是奇函数,并且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A. B.C.-D.-(2)设偶函数f(x)满足f(x)=2x-4(x≥0),则满足f(a-2)>0的实数a的取值范围为()A.(2,+∞)B.(4,+∞)C.(0,4)D.(-∞,0)∪(4,+∞)[总结反思] (1)利用偶函数在关于坐标原点对称的区间上单调性相反、奇函数在关于坐标原点对称的区间上单调性相同,可以把函数不等式化为一般的不等式;(2)注意偶函数性质f(x)=f(|x|)的应用.考向3奇偶性与周期性5 (1)[2017·广州花都区二模]已知奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=1,则f(2016)+f(2017)=()A.-2B.1C.0D.-1(2)若偶函数y=f(x),x∈R满足f(x+2)=-f(x),且当x∈[0,2]时,f(x)=2-x2,则方程f(x)=sin |x|在[-10,10]内的根的个数为.[总结反思] 利用函数的奇偶性和周期性把所求的函数值转化到已知函数解析式的区间上的函数值,把未知区间上的函数性质转化为已知区间上的函数性质.考向4奇偶性﹑周期性与单调性6 (1)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10](2)[2017·哈尔滨六中二模]定义在R上的奇函数f(x)满足f x+=f(x),当x∈0,时,f(x)=lo(1-x),则f(x)在区间1,内是()A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<0[总结反思] 解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.强化演练1.【考向1】[2018·济南外国语学校月考]已知函数y=f(x),满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)=()A. B.C.πD.2.【考向2】[2017·大连二模]已知定义在R上的偶函数f(x)在[0,+∞)上单调递增,若f(ln x)<f(2),则x的取值范围是()A.(0,e2)B.(e-2,+∞)C.(e2,+∞)D.(e-2,e2)3.【考向4】已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)4.【考向3】设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f= .5.【考向3】[2017·武汉模拟]设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x≤1时,f(x)=2x-1.则f+f(1)+f+f(2)+f= .第7讲二次函数与幂函数课前双击巩固1.二次函数的图像和性质上单调递增上单调递减2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图像和性质比较常用结论1.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0).(2)顶点式:f(x)=a(x-m)2+n(a≠0).(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).2.一元二次不等式恒成立的条件(1)“ax2+bx+c>0(a≠0)恒成立”的充要条件是“a>0且Δ<0”.(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.题组一常识题1.[教材改编]若函数f(x)=4x2-kx-8在上是单调函数,则实数k的取值范围是.2.[教材改编]已知幂函数y=f(x)的图像过点(2,),则函数f(x)= .3.[教材改编]已知f(x)=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是.4.[教材改编]若函数y=x2+(a+2)x+3,x∈[a,b]的图像关于直线x=1对称,则b= .题组二常错题◆索引:图像特征把握不准出错;二次函数的单调性理解不到位;幂函数的图像掌握不到位.5.如图2-7-1,若a<0,b>0,则函数y=ax2+bx的大致图像是(填序号).图2-7-16.设二次函数f(x)=x2-x+a(a>0),若f(m)<0,则f(m-1)(填“>”“<”或“=”)0.7.若函数y=mx2+x+5在[-2,+∞)上是增函数,则m的取值范围是.8.已知当x∈时,函数y=x p的图像在直线y=x的上方,则p的取值范围是.课堂考点探究探究点一幂函数的图像和性质1 (1)若幂函数y=f(x)的图像过点(4,2),则幂函数y=f(x)的图像大致是()图2-7-2(2)[2017·南阳一中月考]已知函数f(x)=(m2-m-1)是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0.若a,b∈R且a+b>0,ab<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断[总结反思] 幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.式题幂函数的图像经过点2,,则它的单调递增区间是()A.(0,+∞)B.[0,+∞)C.(-∞,+∞)D.(-∞,0)探究点二二次函数的解析式2 (1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)= .(2)已知二次函数f(x)的图像经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)= .[总结反思] 求二次函数解析式的三个策略:(1)已知三个点坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图像与x轴两交点的坐标,宜选用零点式.式题 (1)已知二次函数f(x)与x轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f(x)= .(2)若函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式为f(x)= .探究点三二次函数的图像与性质考向1二次函数的单调性问题3 (1)[2017·安徽江淮十校三模]函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是()A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.与x有关,不确定(2)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是()A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2][总结反思] (1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解;(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考向2二次函数的最值问题4 已知函数f(x)=ax2-2x(a>0),求函数f(x)在区间[0,2]上的最小值.[总结反思] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分类讨论求解.考向3二次函数中的恒成立问题5 (1)[2017·仙桃中学月考]已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,若不等式f(x)>2x+m在区间[-1,1]上恒成立,则实数m的取值范围为.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则a的最大值为.[总结反思] 二次函数中恒成立问题的解题关键是根据二次函数的对称性、单调性等得出关于参数的不等式,进而求得参数范围.强化演练1.【考向1】函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为()A.-3B.13C.7D.52.【考向2】若函数f(x)=x2-2x+1在区间[a,a+2]上的最小值为4,则a的取值集合为()A. [-3,3]B.[-1,3]C.{-3,3}D.{-1,-3,3}3.【考向2】[2017·皖北联考]若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a 的值为.4.【考向3】已知函数y=f(x)是偶函数,当x>0时,f(x)=(x-1)2,若当x ∈-2,-时,n≤f(x)≤m恒成立,则m-n的最小值为.5.【考向3】已知a是实数,函数f(x)=2ax2+2x-3在[-1,1]上恒小于零,则实数a的取值范围为.第8讲指数与指数函数课前双击巩固1.根式x=±,记作=叫作,2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:=(a>0,m,n∈N*且n>1).②正数的负分数指数幂:==(a>0,m,n∈N*且n>1).③0的正分数指数幂等于,0的负分数指数幂.(2)有理数指数幂的性质①a r a s= (a>0,r,s∈Q);② (a r)s= (a>0,r,s∈Q);③ (ab)r= (a>0,b>0,r∈Q).3.指数函数的图像与性质常用结论1.指数函数y=a x+b(a>0且a≠1)的图像恒过定点(0,1+b).2.指数函数y=a x(a>0且a≠1)的图像以x轴为渐近线.题组一常识题1.[教材改编]若x+x-1=3,则x2-x-2= .2.[教材改编]已知2x-1<23-x,则x的取值范围是.3.[教材改编]函数y=a x-1+2(a>0且a≠1)的图像恒过定点.4.[教材改编]下列所给函数中值域为(0,+∞)的是.(填序号)①y=-5x,②y=,③y=,④y=.题组二常错题◆索引:忽略n的范围导致式子(a∈R)化简出错;不能正确理解指数函数的概念致错;指数函数问题时刻注意底数的两种情况;复合函数问题隐含指数函数值域大于零的情况.5.计算+= .6.若函数f(x)=(a2-3)·a x为指数函数,则a= .7.若函数f(x)=a x在[-1,1]上的最大值为2,则a= .8.设函数f(x)=ax2+bx+c(a>0)满足f(1-x)=f(1+x),则f(2x)与f(3x)的大小关系是.课堂考点探究探究点一指数幂的化简与求值1 (1)[2017·兰州铁一中月考]已知a-=3(a>0),则a2+a+a-2+a-1的值为()A.13-B.11-C.13+D.11+(2)计算0.02+2560.75--72= .[总结反思] 指数幂运算的一般原则:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.式题 (1)计算:×2+3π0= .(2)已知a,b是方程x2-6x+4=0的两根,且a>b>0,则= .探究点二指数函数的图像及应用2 (1)函数y=1-e|x|的图像大致是()图2-8-1(2)[2017·天津河西区二模]已知f(x)=|2x-1|,当a<b<c时,有f(a)>f(c)>f(b),则必有()A.a<0,b<0,c<0B.a<0,b>0,c>0C.2-a<2cD.1<2a+2c<2[总结反思] (1)研究指数函数y=a x(a>0,a≠1)的图像要抓住三个特殊点:(1,a),(0,1),-1,.(2)与指数函数有关的函数图像问题的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往结合相应的指数型函数图像,利用数形结合求解.式题 (1)在同一平面直角坐标系中,函数y=a x(a>0且a≠1)与y=(1-a)x的图像可能是()图2-8-2(2)已知函数y=的图像与指数函数y=a x的图像关于y轴对称,则实数a的值为()A.1B.2C.4D.8探究点三指数函数的性质及应用考向1比较指数式的大小3 (1)[2017·遂宁三诊]已知a=,b=,c=2,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b(2)若-1<a<0,则3a,,a3的大小关系是(用“>”连接).[总结反思] 指数式的大小比较,靠的就是指数函数的单调性,当所比较的指数式的底数小于0时,要先根据指数式的运算法则把底数化为正数,再根据指数函数的性质比较其大小.考向2解简单的指数方程或不等式4 (1)已知函数f(x)=则不等式f(x)<f的解集是.(2)方程4x+|1-2x|=11的解为.[总结反思] (1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x).考向3指数函数性质的综合问题5 (1)函数f(x)=a+(a,b∈R)是奇函数,且图像经过点ln 3,,则函数f(x)的值域为()A.(-1,1)B.(-2,2)C.(-3,3)D.(-4,4)(2)若不等式1+2x+4x·a>0在x∈时恒成立,则实数a的取值范围是.[总结反思] 指数函数性质的重点是其单调性,解题中注意利用单调性实现问题的转化.强化演练1.【考向1】[2017·南昌一模]已知a=,b=,c=,则()A.a<b<cB.c<b<aC.c<a<bD.b<c<a2.【考向2】若存在正数x使2x(x-a)<1成立,则a的取值范围是()A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)3.【考向2】已知实数a≠1,函数f(x)=若f(1-a)=f(a-1),则a的值为.4.【考向2】若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为.5.【考向3】已知函数f(x)=b·a x(其中a,b为常数且a>0,a≠1)的图像经过点A(1,6),B(3,24).若不等式+-m≥0在x∈(-∞,1]时恒成立,则实数m的取值范围为.第9讲对数与对数函数课前双击巩固。
高考数学一轮复习 第2章 函数、导数及其应用 2.6 对数与对数函数学案 文
2.6 对数与对数函数[知识梳理]1.对数2.对数函数的概念、图象与性质3.反函数概念:当一个函数的自变量和函数值成一一对应时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.4.对数函数与指数函数的关系指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.(1)对数函数的自变量x恰好是指数函数的函数值y,而对数函数的函数值y恰好是指数函数的自变量x,即二者的定义域和值域互换.(2)由两函数的图象关于直线y=x对称,易知两函数的单调性、奇偶性一致.特别提示:底数a对函数y=log a x(a>0且a≠1)的图象的影响(1)底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.(3)作直线y=1与所给图象相交,交点的横坐标为该对数函数的底数,由此可判断多个对数函数底数的大小关系.[诊断自测] 1.概念思辨(1)若log a M 2=log a N 2,则M =N ;若M =N ,则log a M 2=log a N 2.( ) (2)当x >1时,若log a x >log b x ,则a <b .( ) (3)函数f (x )=lgx -2x +2与g (x )=lg (x -2)-lg (x +2)是同一个函数.( ) (4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a,-1.( )答案 (1)× (2)× (3)× (4)√2.教材衍化(1)(必修A1P 72例8)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c答案 D解析 解法一:由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c .故选D.解法二:由对数运算法则得a =1+log 32,b =1+log 52,c =1+log 72,∵log 27>log 25>log 23>0,∴1log 27<1log 25<1log 23,即log 72<log 52<log 32,故a >b >c .故选D.(2)(必修A1P 75T 11)(lg 5)2+lg 2·lg 50=________. 答案 1解析 原式=(lg 5)2+lg 2·[lg (2×52)] =(lg 5)2+2lg 5·lg 2+(lg 2)2=(lg 5+lg 2)2=1. 3.小题热身(1)(2017·衡阳八中一模)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9答案 C解析 ∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C.(2)(2018·郑州模拟)已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则f (x )=a x与g (x )=-log b x 的图象可能是( )答案 B解析 ∵lg a +lg b =0,∴a =1b,又g (x )=-log b x =log 1bx =log a x (x >0),∴函数f (x )与g (x )的单调性相同.故选B.题型1 对数的运算典例1 (2017·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a+1b的值为( ) A .36 B .72 C .108D.172对数式转化成指数式.答案 C解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k,所以1a +1b =a +b ab=6k 2k -23k -3=6k 2k 4×3k 27=6k6k 108=108.故选C. 典例2 (2018·镇江模拟)已知log 189=a,18b=5,求log 3645.换底公式.解 因为log 189=a,18b=5,所以log 185=b ,于是 log 3645=log 1845log 1836=log 18(9×5)1+log 182=a +b 1+log 18189=a +b2-a.方法技巧对数运算的一般思路1.对于指数式、对数式混合型条件的化简求值问题,一般可利用指数与对数的关系,将所给条件统一为对数式或指数式,再根据有关运算性质求解.见典例2.2.在对数运算中,可先利用幂的运算性质把底数或真数变形,化成分数指数幂的形式,使幂的底数最简,然后运用对数的运算性质、换底公式,将对数式化为同底数对数的和、差、倍数运算.对于连等式,注意设等式为k ,见典例1.冲关针对训练1.已知3a =4b=12,则1a +1b=( )A.12 B .1 C .2 D. 2答案 C解析 因为3a=4b=12, 所以a =log 312,b =log 412, 1a=log123,1b =log 124,所以1a +1b=log12 3+log12 4=log1212=2.故选C.2.(log 32+log 92)·(log 43+log 83)=________. 答案 54解析 原式=⎝ ⎛⎭⎪⎫log 32+12log 32·⎝ ⎛⎭⎪⎫12log 23+13log 23=log 322·log 2⎝ ⎛⎭⎪⎫3 12 ·3 13 =32lg 2lg 3·56lg 3lg 2=54. 题型2 对数函数的图象及应用典例 (2018·长春模拟)当0<x ≤12时,4x<log a x ,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,22 B .⎝⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)数形结合法,排除法.答案 B解析 解法一:构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,a >22,则a 的取值范围为⎝⎛⎭⎪⎫22,1.故选B. 解法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x>1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有4 12 =2,log 1212=1,显然4x<log a x 不成立,排除选项A.故选B.[条件探究] 若本典例变为:若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,求实数a 的取值范围.解 由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝ ⎛⎭⎪⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12,所以有⎝ ⎛⎭⎪⎫122≤log a12,解得a ≥116,所以116≤a <1,即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1. 方法技巧利用对数函数的图象可求解的两类热点问题1.对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 冲关针对训练1.(2017·郑州一模)若函数y =a |x |(a >0且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )答案 B解析 由于y =a |x |的值域为{y |y ≥1}, ∴a >1,则y =log a x 在(0,+∞)上是增函数, 又函数y =log a |x |的图象关于y 轴对称. 因此y =log a |x |的图象应大致为选项B.故选B. 2.(2017·青岛统考)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,g (x )=|x -k |+|x -1|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为________.答案 ⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞解析 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min ,由f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1的图象(如图)可知,当x =12时,f (x )取最大值,f (x )max =14;因为g (x )=|x -k |+|x -1|≥|x -k -(x -1)|=|k -1|,所以g (x )min =|k -1|,所以|k -1|≥14,解得k ≤34或k ≥54,故答案为k ≤34或k ≥54.题型3 对数函数的性质及应用角度1 比较对数值的大小典例 (2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c利用指数函数、对数函数的单调性,结合不等式的性质比较大小;也可用特值法.答案 C解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误; ∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·a c -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a , ∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a logbc <b log a c ,故C 正确.故选C.解法二:依题意,不妨取a =4,b =2,c =12.易验证A ,B ,D 均是错误的,只有C 正确.故选C.角度2 解对数不等式典例 (2017·江西名校联考)设函数f (x )=log 12 (x 2+1)+83x 2+1,则不等式f (log 2x )+f (log 12x )≥2的解集为( )A .(0,2]B .⎣⎢⎡⎦⎥⎤12,2 C .[2,+∞)D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞)利用函数的奇偶性、单调性,结合换元法解不等式.答案 B解析 ∵f (x )的定义域为R ,f (-x )=log 12 (x 2+1)+83x 2+1=f (x ),∴f (x )为R 上的偶函数.易知其在区间[0,+∞)上单调递减, 令t =log 2x ,则log 12x =-t ,则不等式f (log 2x )+f (log 12x )≥2可化为f (t )+f (-t )≥2,即2f (t )≥2,所以f (t )≥1.又∵f (1)=log 12 2+83+1=1,f (x )在[0,+∞)上单调递减,在R 上为偶函数,∴-1≤t ≤1,即log 2x ∈[-1,1],∴x ∈⎣⎢⎡⎦⎥⎤12,2.故选B. 角度3 对数函数性质的综合应用 典例 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.运用复合函数的单调性“同增异减”.解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0,∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 方法技巧对数函数的性质及应用问题的常见题型与解题策略1.对数型函数定义域的求解列出对应的不等式(组)求解,注意对数函数的底数和真数的取值范围.2.比较对数式的大小.①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论;②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较;③若底数与真数都不同,则常借助1,0等中间量进行比较.3.解对数不等式,形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a 的取值不确定,需分a>1与0<a<1两种情况讨论;形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.4.对数函数性质的应用多用在复合函数的单调性上,即求形如y=log a f(x)的复合函数的单调区间,其一般步骤为:①求定义域,即满足f(x)>0的x的取值集合;②将复合函数分解成基本初等函数y=log a u及u=f(x);③分别确定这两个函数的单调区间;④若这两个函数同增或同减,则y=log a f(x)为增函数,若一增一减,则y=log a f(x)为减函数,即“同增异减”.冲关针对训练1.(2018·河南模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a答案 B解析 ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B.2.(2017·南昌调研)a >0,a ≠1,函数f (x )=log a |ax 2-x |在[3,4]上是增函数,则a 的取值范围是( )A.16≤a <14或a >1 B .a >1C.18≤a <14D.15≤a ≤14或a >1 答案 A解析 ∵a >0,a ≠1,令g (x )=|ax 2-x |⎝ ⎛⎭⎪⎫x ≠0,x ≠1a 作出其图象如右:∵函数f (x )=log a |ax 2-x |在[3,4]上是增函数, 若a >1,则⎩⎪⎨⎪⎧ 12a≥4,a >1或⎩⎪⎨⎪⎧1a <3,a >1,解得a >1;若0<a <1,则⎩⎪⎨⎪⎧12a ≤3,1a >4,解得16≤a <14.故选A.题型4 指数函数、对数函数的综合应用典例1 (2018·西安模拟)设方程log 2x -⎝ ⎛⎭⎪⎫12x =0,log 12x -⎝ ⎛⎭⎪⎫12x=0的根分别为x 1,x 2,则( )A .x 1x 2=1B .0<x 1x 2<1C .1<x 1x 2<2D .x 1x 2≥2数形结合法.答案 B解析 由方程log 2x -⎝ ⎛⎭⎪⎫12x =0得log 2x =⎝ ⎛⎭⎪⎫12x,log 12 x -⎝ ⎛⎭⎪⎫12x =0得log 12x =⎝ ⎛⎭⎪⎫12x,分别画出左右两边函数的图象,如图所示.由指数与对数函数的图象知:x 1>1>x 2>0,于是有log 2x 1=⎝ ⎛⎭⎪⎫12 x 1<⎝ ⎛⎭⎪⎫12 x2<log 12x 2,得x 1<1x 2,所以0<x 1x 2<1.故选B.典例2设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,log 2x ,x >0,函数y =f [f (x )]-1的零点个数为________.分类讨论法.答案 2解析 当x ≤0时,y =f [f (x )]-1=f (2x)-1=log 22x-1=x -1,令x -1=0,则x =1,表明此时y =f [f (x )]-1无零点.当x >0时,分两种情况:①当x >1时,log 2x >0,y =f [f (x )]-1=f (log 2x )-1=log 2(log 2x )-1,令log 2(log 2x )-1=0,即log 2(log 2x )=1,log 2x =2,解得x =4;②当0<x ≤1时,log 2x ≤0,y =f [f (x )]-1=f (log 2x )-1=2log2x -1=x -1,令x -1=0,解得x =1,因此函数y =f [f (x )]-1的零点个数为2.方法技巧解指数函数与对数函数综合题的方法1.首先考虑函数的定义域,见典例2. 2.注意联想数形结合思想.见典例1. 冲关针对训练1.(2018·天津模拟)已知f (x )=ln (x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围为( )A.⎝⎛⎦⎥⎤-∞,14 B .⎣⎢⎡⎭⎪⎫14,+∞C.⎣⎢⎡⎭⎪⎫12,+∞D.⎝⎛⎦⎥⎤-∞,-12答案 B解析 ∵f (x )=ln (x 2+1)在[0,3]上单调递增,g (x )=⎝ ⎛⎭⎪⎫12x -m 在[1,2]上单调递减,∴f (x )min =f (0)=0,g (x )min =g (2)=14-m .又∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2), ∴f (x )min ≥g (x )min ,即14-m ≤0,∴m ≥14.故选B.2.设点P 在曲线y =12e x上,点Q 在曲线y =ln (2x )上,则|PQ |的最小值为( )A .1-ln 2B .2(1-ln 2)C .1+ln 2 D.2(1+ln 2)答案 B解析 根据函数y =12e x和函数y =ln 2x 的图象可知两函数图象关于直线y =x 对称,故要求|PQ |的最小值可转化为求与直线y =x 平行且与两曲线相切的直线间的距离,设曲线y =12e x 上的切点为A (m ,n ),则A 到直线y =x 的距离的2倍即所求最小值.因为y ′=⎝ ⎛⎭⎪⎫12e x ′=12e x ,则12e m=1,所以m =ln 2,切点A 的坐标为(ln 2,1),切点到直线y =x 的距离为d =|ln 2-1|2=1-ln 22,所以2d =2(1-ln 2).故选B.1.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28.又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93, 故与M N最接近的是1093.故选D.2.(2018·山西模拟)函数y =ln sin x (0<x <π)的大致图象是( )答案 C解析 因为0<x <π,所以0<sin x ≤1,所以ln sin x ≤0.故选C.3.(2018·江西九江联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A .(-∞,4)B .(-4,4]C .(-∞,4)∪[2,+∞)D .[-4,4)答案 D解析 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).故选D.4.(2015·福建高考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.答案 (1,2]解析 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4,+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显然不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.[基础送分 提速狂刷练]一、选择题1.(2018·安阳检测)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( )A.⎝ ⎛⎭⎪⎫1a,b B .(10a,1-b )C.⎝⎛⎭⎪⎫10a ,b +1D .(a 2,2b )答案 D解析 当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图象上.故选D.2.已知函数f (x )=2+log 2x ,x ∈[1,2],则函数y =f (x )+f (x 2)的值域为( ) A .[4,5]B .⎣⎢⎡⎦⎥⎤4,112C.⎣⎢⎡⎦⎥⎤4,132D .[4,7]答案 B解析 y =f (x )+f (x 2)=2+log 2x +2+log 2x 2=4+3log 2x ,注意到为使得y =f (x )+f (x 2)有意义,必有1≤x 2≤2,得1≤x ≤2,从而4≤y ≤112.故选B.3.(2018·太原调研)已知函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)( )A .恒为负值B .等于0C .恒为正值D .不大于0答案 C解析 作出y =⎝ ⎛⎭⎪⎫13x和y =log 2x 的图象,如图.由图可知有0<x 1<x 0时,⎝ ⎛⎭⎪⎫13 x1>log 2x 1.即⎝ ⎛⎭⎪⎫13 x1-log 2x 1>0. ∴f (x 1)>0.故选C.4.(2017·河南二模)函数y =2xln |x |的图象大致为( )答案 B 解析 函数y =2x ln |x |的定义域为{x |x ≠0且x ≠±1},故排除A ;∵f (-x )=-2xln |x |=-2xln |x |=-f (x ), ∴排除C ;当x =2时,y =4ln 2>0,故排除D.故选B. 5.(2015·湖南高考)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 答案 A解析 解法一:函数f (x )的定义域为(-1,1),任取x ∈(-1,1),f (-x )=ln (1-x )-ln (1+x )=-f (x ),则f (x )是奇函数.当x ∈(0,1)时,f ′(x )=11+x +11-x =21-x 2>0,所以f (x )在(0,1)上是增函数.综上,故选A.解法二:同解法一知f (x )是奇函数. 当x ∈(0,1)时,f (x )=ln1+x 1-x =ln 2-(1-x )1-x =ln ⎝ ⎛⎭⎪⎫21-x -1.∵y =21-x (x ∈(0,1))是增函数,y =ln x 也是增函数,∴f (x )在(0,1)上是增函数.综上,故选A.6.已知函数f (x )=log 12 (x 2-ax -a )在⎝⎛⎦⎥⎤-∞,-12上是增函数,则实数a 的取值范围是( )A .[-1,+∞)B .⎣⎢⎡⎭⎪⎫-1,12 C.⎣⎢⎡⎦⎥⎤-1,12 D .(-∞,-1]答案 B解析 f (x )=log 12(x 2-ax -a )在⎝⎛⎦⎥⎤-∞,-12上是增函数,说明内层函数μ(x )=x 2-ax -a 在⎝ ⎛⎦⎥⎤-∞,-12上是减函数且μ(x )>0成立,只需对称轴x =a 2≥-12且μ(x )min =μ⎝ ⎛⎭⎪⎫-12>0,∴解得a ∈⎣⎢⎡⎭⎪⎫-1,12.故选B. 7.(2017·安徽安庆二模)已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 12 4),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b答案 B解析 函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,∴f (x )在[0,+∞)上为增函数,∵b =f (log 12 4)=f (-2)=f (2),1<20.3<2<log 25,∴c >b >a .故选B.8.(2017·广东模拟)若函数f (x )=(e x-e -x)x ,f (log 5x )+f (log 15 x )≤2f (1),则x的取值范围是( )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5 D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 答案 C解析 ∵f (x )=(e x-e -x)x ,∴f (-x )=-x (e -x -e x )=(e x -e -x)x =f (x )(x ∈R ),∴函数f (x )是偶函数. ∵f ′(x )=(e x-e -x)+x (e x +e -x)>0在(0,+∞)上恒成立, ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15 x )≤2f (1),∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.9.(2017·河北五校质检)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n的最小值为( )A .2 2B .4 C.52 D.92答案 D解析 由函数y =log a (x +3)-1(a >0,且a ≠1)的解析式知:当x =-2时,y =-1,所以点A 的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,又m >0,n >0,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2=92,当且仅当m=n =23时等号成立,所以2m +1n 的最小值为92.故选D.10.(2017·江西红色七校二模)已知函数f (x )=ln e x e -x ,若f ⎝ ⎛⎭⎪⎫e 2017+f ⎝ ⎛⎭⎪⎫2e 2017+…+f ⎝⎛⎭⎪⎫2016e 2017=504(a +b ),则a 2+b 2的最小值为( ) A .6 B .8 C .9 D .12答案 B解析 ∵f (x )+f (e -x )=lne x e -x +ln e (e -x )x =ln e 2=2,∴504(a +b )=f ⎝ ⎛⎭⎪⎫e 2017+f⎝ ⎛⎭⎪⎫2e 2017+…+f⎝ ⎛⎭⎪⎫2016e 2017=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫e 2017+f ⎝ ⎛⎭⎪⎫2016e 2017+f ⎝ ⎛⎭⎪⎫2e 2017+f ⎝ ⎛⎭⎪⎫2015e 2017+…+f ⎝ ⎛⎭⎪⎫2016e 2017+f ⎝ ⎛⎭⎪⎫e 2017=12×(2×2016)=2016,∴a +b =4,∴a 2+b 2≥(a +b )22=422=8,当且仅当a =b =2时取等号.∴a 2+b 2的最小值为8.故选B. 二、填空题11.(2018·禅城区月考)已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则2a +b 的取值范围是________.答案 [22,+∞)解析 画出y =|lg x |的图象如图: ∵0<a <b ,且f (a )=f (b ), ∴|lg a |=|lg b |且0<a <1,b >1,∴-lg a =lg b ,∴ab =1,∴2a +b ≥22ab =2 2. 当2a =b 时等号成立, ∴2a +b ≥2 2.12.函数f (x )=log 2x ·log 2(2x )的最小值为________. 答案 -14解析 显然x >0,∴f (x )=log 2x ·log2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当x =22时,取“=”,故f (x )min=-14.13.(2017·山西质检)已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.14.(2017·辽宁沈阳一模)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m=________.答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴m <1<n ,-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13,从而n =3,此时log 3n =1,符合题意,则n m =3÷13=9. 若log 3n =2,则n =9,从而m =19,此时-log 3m 2=4,不符合题意. 三、解答题15.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ),所以函数f (x )的解析式为 f (x )=⎩⎪⎨⎪⎧ log 12 x ,x >0,0,x =0,log 12(-x ),x <0. (2)因为f (4)=log 12 4=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5,即不等式的解集为(-5,5).16.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0且a ≠1)的最大值是1,最小值是-18,求a 的值. 解 由题意知f (x )=12(log a x +1)·(log a x +2)=12[(log a x )2+3log a x +2]=12⎝ ⎛⎭⎪⎫log a x +322-18.当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12⎝ ⎛⎭⎪⎫log a 2+322-18=1,则a =2-13,此时f (x )取得最小值时,x =(2-13 )-32 =2∉[2,8],舍去.若12⎝ ⎛⎭⎪⎫log a 8+322-18=1,则a =12,此时f (x )取得最小值时,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.。
高考数学一轮复习 第2章 函数、导数及其应用 第6节 对数与对数函数学案 理 北师大版
第六节 对数与对数函数[考纲传真] (教师用书独具)1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(对应学生用书第22页)[基础知识填充]1.对数的概念如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中a 叫作对数的底数,N 叫作真数. 2.对数的性质与运算法则(1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n =n mlog a M (m ,n ∈R 且m ≠0). (2)对数的性质①a log a N =N ;②log a a N=N (a >0,且a ≠1). (3)对数的重要公式①换底公式:log b N =log a N log a b (a ,b >0,a ,b ≠1,N >0);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的定义、图像与性质定义 函数y =log a x (a >0且a ≠1)叫作对数函数图像a >1 0<a <1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图像关于直线y=x对称.[知识拓展] 对数函数的图像与底数大小的比较多个对数函数图像比较底数大小的问题,可通过比较图像与直线y=1交点的横坐标进行判定.如图261,作直线y=1,则该直线与四个函数图像交点的横坐标为相应的底数.故0<c<d<1<a<b.图261[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.( )(2)log2x2=2log2x.( )(3)当x>1时,log a x>0.( )(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.( )(5)对数函数y=log a x(a>0且a≠1)的图像过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图像不在第二、三象限.( )[答案](1)×(2)×(3)×(4)√(5)√2.(log29)·(log34)=( )A .14 B .12 C .2D .4D [原式=lg 9lg 2·lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.]3.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD [∵0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C .⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D .⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.函数y =log a (x -1)+2(a >0,a ≠1)的图像恒过的定点是________.(2,2) [当x =2时,函数y =log a (x -1)+2(a >0,a ≠1)的值为2,所以图像恒过定点(2,2).](对应学生用书第23页)对数的运算(1)设2a =5b=m ,且1a +1b=2,则m 等于( )A .10B .10C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. 【导学号:79140049】(1)A (2)-20 [(1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.(2)原式=(lg 2-2-lg 52)×10012=⎝ ⎛⎭⎪⎫lg 122·52×10=(lg 10-2)×10=-2×10=-20.][规律方法] 对数运算的一般思路 1拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并. 2合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算. 3转化:a b=N ⇔b =log a N a >0,且a ≠1是解决有关指数、对数问题的有效方法,在运算中应注意互化.[跟踪训练] (1)(2018·云南二检)已知函数f (x )=lg(1+4x 2-2x )+1,则f (3)+f (-3)=( ) A .-1 B .0 C .1D .2(2)计算:(log 32+log 92)·(log 43+log 83)=________.(1)D (2)54 [(1)f (3)+f (-3)=lg(37-6)+lg(37+6)+2=lg[(37-6)(37+6)]+2=lg 1+2=2,故选D .(2)原式=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9·⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3·⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54.]对数函数的图像及应用(1)(2017·广东韵关南雄模拟)函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图像大致为( )(2)(2017·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x-a =0有且只有一个实根,则实数a 的取值范围是________.【导学号:79140050】(1)C (2)(1,+∞) [(1)法一:∵f (2)=4,∴2a=4,解得a =2,∴g (x )=|log 2(x+1)|=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,-log 2(x +1),-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减.故选C .法二:由f (2)=4,即2a=4得a =2,∴g (x )=|log 2(x +1)|,函数g (x )是由函数y =|log 2x |向左平移一个单位得到的,只有C 项符合,故选C .(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图像,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.][规律方法] 利用对数函数的图像可求解的两类问题 1对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性单调区间、值域最值、零点时,常利用数形结合思想求解.2一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. a 则下列结论成立的是( )图262A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由该函数的图像通过第一、二、四象限知该函数为减函数,∴0<a <1,∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.]对数函数的性质及应用◎角度1 比较对数值的大小(2016·全国卷Ⅰ)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<b cD .c a>c bB [∵0<c <1,∴当a >b >1时,log a c >log b c ,A 项错误; ∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0, ∴log c a <log c b ,B 项正确;∵0<c <1,∴函数y =x c在(0,+∞)上单调递增, 又∵a >b >0,∴a c>b c,C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减, 又∵a >b >0,∴c a<c b ,D 项错误.] ◎角度2 解简单的对数不等式若f (x )=lg x ,g (x )=f (|x |),当g (lg x )>g (1)时,则x 的取值范围是________.⎝ ⎛⎭⎪⎫0,110∪(10,+∞) [当g (lg x )>g (1)时,f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x >1或lg x <-1,解得0<x <110或x >10.]◎角度3 探究对数型函数的性质已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.[解] (1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,∴f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.[规律方法] 对数值大小比较的主要方法 1化同底数后利用函数的单调性. 2化同真数后利用图像比较. 3借用中间量0或1等进行估值比较.易错警示:利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,注意对数性质的正用、逆用、变形用. [跟踪训练] (1)已知a =log 29-log 23,b =1+log 27,c =2+log 213,则( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.(1)B (2)⎝ ⎛⎭⎪⎫1,83 [(1)a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 是增函数,且27>33>26,所以b >a >c ,故选B .(2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由于f (x )>1恒成立,所以f (x )min =log a (8-2a )>1,故1<a <83.当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数,由于f (x )>1恒成立,所以f (x )min =log a (8-a )>1,即a >4,且8-2a >0,a <4,显然这样的a 不存在.故a 的取值范围为⎝ ⎛⎭⎪⎫1,83.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 函数、导数及其应用2.5对数函数、幂函数【高考目标定位】一、考纲点击 1、对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化自然对数或常用对数;了解对数在简化运算中的作用。
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。
(3)知道对数函数是一类重要的函数模型。
(4)了解指数函数y=a x 与对数函数log x a y =互为反函数(0,1a a >≠且) 2、幂函数(1)了解幂函数的概念。
(2)结合函数y=x ,y=x 2,y=x 3,1y x=,12y x =的图象,了解它们的变化情况。
二、热点提示 1、对数函数(1)对数函数在高考的考查中,重点是图象、性质及其简单应用,同时考查数学思想方法,以考查分类讨论、数形结合及运算能力为主。
(2)以选择、填空的形式考查对数函数的图象、性质;也有可能与其他知识结合,在知识交汇点处命题,以解答形式出现,属中低档题。
2、幂函数(1)常以5种幂函数为载体,考查幂函数的图象及性质;(2)多以选择、填空题的形式出现,有时会与其他知识结合在知识交汇点处命题。
【考纲知识梳理】一、对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数 表格 12、对数的性质与运算法则(1)对数的性质(0,1a a >≠且): ①1log0a=,②log 1aa =,③log Na aN =,④log Na aN =。
(2)对数的重要公式: ①换底公式:log log (,1,0)log N Na bbaa b N =>均为大于零且不等于; ②1log log b a ab=,推广log log log log a b c a b c d d = 。
(3)对数的运算法则:如果0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=;②N M N Ma a alog log log -=;③∈=n M n M a na (log log R );④b m nb a n a m log log =。
注:确定图中各函数的底数a ,b ,c ,d 与1的大小关系提示:作一直线y=1,该直线与四个函数图象交点的横坐标即为它们相应的底数。
∴0<c<d<1<a<b.4、反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称。
二、幂函数1、幂函数的定义形如y=xα(a∈R)的函数称为幂函数,其中x是自变量,α为常数注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。
2、幂函数的图象注:在上图第一象限中如何确定y=x3,y=x2,y=x,12y x=,y=x-1方法:可画出x=x0;当x0>1时,按交点的高低,从高到低依次为y=x3,y=x2,y=x,12y x=,y=x-1;当0<x0<1时,按交点的高低,从高到低依次为y=x-1,12y x=,y=x,y=x2,y=x3。
【热点难点精析】(一)对数函数一、对数的化简与求值对数的化简与求值的基本思路利用换底公式及,尽量地转化为同底的和、差、积、商运算;利用对数的运算法则,将对数的和、差、倍数运算,转化为对数真数的积、商、幂再运算; 约分、合并同类项,尽量求出具体值。
〖例1〗计算(1)2(lg2)lg2lg50lg25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+; (3)1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅解:(1)原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=;(2)原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg352lg36lg 24=⋅=;(3)分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++; 分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+;∴原式=43。
二、比较大小 1、相关链接(1)比较同底的两个对数值的大小,可利用对数函数的单调性来完成。
①a>1,f(x)>0.g(x)>0,则log a f(x)>log a g(x)⇔f(x)>g(x)>0; ②0<a<1,f(x)>0,g(x)>0,则log a f(x)>log a g(x) ⇔0<f(x)<g(x)(2)比较两个同真数对数值的大小,可先确定其底数,然后再比较。
①若a>b>1,如图1.当f(x)>1时,log b f(x)>log a f(x); 当0<f(x)<1时,log a f(x)> log b f(x).②若1>a>b>0,如图2。
当f(x)>1时,log b f(x)> log a f(x); 当1>f(x)>0时,log a f(x)> log b f(x). ③若a>1>b>0。
当f(x)>1时,则log a f(x)> log b f(x); 当0<f(x)<时,则log a f(x)<log b f(x). (3)比较大小常用的方法①作差(商)法;②利用函数的单调性;③特殊值法(特别是1和0为中间值) 2、例题解析〖例〗对于01a <<,给出下列四个不等式:①1log (1)log ();a a a a a +<+ ②1log (1)log (1)a a a a+>+;③111;aa a a++<④111;aaaa++>其中成立的是( )(A )①与③(B )①与④(C )②与③(D )②与④分析:从题设可知,该题主要考查log a y x =与x y a =两个函数的单调性,故可先考虑函数的单调性,再比较大小。
解答:选D 。
∵0<a<1,∴a<1a ,1+a<1+1a ,∴1log (1)log (1)a a a a+>+,111;aa a a ++>即②④正确。
三、对数函数性质应用 1、相关链接(1)对数函数的性质是每年高考必考内容之一,其中单调性和对数函数的定义域是热点问题。
其单调性取决于底数与“1”的大小关系。
(2)利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”。
即把不同底的对数式化为同底的对数式,然后根据单调性来解决。
(3)与对数函数有关的复合函数的单调性的求解步骤 ①确定定义域;②弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y=f(u),u=g(x)③分别确定这两个函数的单调区间;④若这两个函数同增或同减,则y=f(g(x))为增函数,若一增一减,则y=f(g(x))为减函数,即“同增异减”。
2、例题解析〖例〗设函数()()()x x x f +-+=1ln 212.(1)求()x f 的单调区间;(2)若当⎥⎦⎤⎢⎣⎡--∈1,11e e x 时,(其中 718.2=e )不等式()m x f <恒成立,求实数m 的取值范围;(3)试讨论关于x 的方程:()a x x x f ++=2在区间[]2,0上的根的个数.解 (1)函数的定义域为(),,1+∞-()()()1221112++=⎥⎦⎤⎢⎣⎡+-+='x x x x x x f . 1分 由()0>'x f 得0>x ;2分由()0<'x f 得01<<-x , 3分则增区间为()+∞,0,减区间为()0,1-.4分(2)令()(),0122=++='x x x x f 得0=x ,由(1)知()x f 在⎥⎦⎤⎢⎣⎡-0,11e 上递减,在[]1,0-e 上递增,6分由,21112+=⎪⎭⎫ ⎝⎛-e e f ()212-=-e e f ,且21222+>-e e ,8分⎥⎦⎤⎢⎣⎡--∈∴1,11e e x 时,()x f 的最大值为22-e ,故22->e m 时,不等式()m x f <恒成立.9分(3)方程(),2a x x x f ++=即()a x x =+-+1ln 21.记()()x x x g +-+=1ln 21,则 ()11121+-=+-='x x x x g .由()0>'x g 得1>x ;由()0<'x g 得11<<-x .所以g (x )在[0,1]上递减,在[1,2]上递增.而g (0)=1,g (1)=2-2ln2,g (2)=3-2ln3,∴g (0)>g (2)>g (1) 10分 所以,当a >1时,方程无解;当3-2ln3<a ≤1时,方程有一个解, 当2-2ln2<a ≤a ≤3-2ln3时,方程有两个解; 当a =2-2ln2时,方程有一个解;当a <2-2ln2时,方程无解. 13分 字上所述,a )2ln 22,(),1(--∞+∞∈ 时,方程无解;]1,3ln 23(-∈a 或a =2-2ln2时,方程有唯一解;]3ln 23,2ln 22(--∈a 时,方程有两个不等的解.14分注:解决对数函数问题,首先要看函数的定义域,在函数的定义域内再研究函数的单调性,判断时可利用定义,也可利用复合函数单调性的判断。
对于恒成立问题注意等价思想的应用。
四、对数函数的综合应用〖例1〗(12分)已知过原点O 的一条直线与函数8log y x =的图象交于A 、B 两点,分别过A 、B 作y ,轴的平行线与函数8log y x =的图象交于C 、D 两点。
证明点C 、D 和原点O 在同一直线上; 当BC 平行于x 轴时,求点A 的坐标。
分析:(1)证明三点在同一条直线上只需证明OC OD k k =; (2)解方程组得1x ,2x ,代入解析式即可求解。
解答:(1)设点A ,B 的横坐标分别为1x 、2x ,由题设知1x >1,2x >1 则点A 、B 的纵坐标分别为81log x 、82log x 。