数学分析(I)期末考试A卷

合集下载

数学分析试卷及答案6套

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+收敛.四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点.七. (12分)确定,a b 使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=. 三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导.七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. x e dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数0(1)n n x x ∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板?八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑.一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.1arcsin x dx ⎰4. 1000π⎰二. (各5分,共10分)求下列数列与函数极限:1. 221lim nn k nn k →∞=+∑2. 20lim1xt xx xe dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列2212,211()22211n n x x n f x n n x x n n x n ⎧ , 0≤≤⎪⎪⎪=- , <≤⎨⎪⎪0 , <≤⎪⎩证明{()}n f x 在[0,1]不一致收敛.五. (10分)求幂级数0(1)n n n x ∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1n n a ∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂ 二 (10分) 设n 个正数12, , , n x x x 之和是a ,求函数 n u x =的最大值.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明1()() ().f x o x x=→+∞四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算0sin sin (0, ).pxbx axI e dx p b a x+∞--=>>⎰六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面111111122222223333333 ,, = 0 , , a x b y c z h a b c a x b y c z h a b c a x b y c z h a b c ++=±⎧⎪++=±∆≠⎨⎪++=±⎩ 所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22Cxdy ydxx y-+⎰,其中C 是光滑的不通过原点的正向闭曲线. 九 (10分) 求dS z∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部.数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有01lim [()()] ()().xa h f t h f t dt f x f a h→+-=-⎰六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f x y z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数.九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。

2012-2013年华南理工大学期末考试《工科数学分析》下 试卷(A)(1)

2012-2013年华南理工大学期末考试《工科数学分析》下 试卷(A)(1)

,考试作弊将带来严重后果!华南理工大学期末考试《工科数学分析》2012—2013第二学期期末考试试卷(A )1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;本试卷共 5个 大题,满分100分, 考试时间120分钟。

一、单项选择题(每小题3分,共15分)1.下述函数中有可能成为二阶微分方程(,,'')0f x y y =的通解的是( )A .120C x C y +=;B .212e x yC C -=+;C . 312eC xC y C =;D .123ln y C x C x C =++.2.设(,)f x y 是可微函数,且(0,0)0,(0,0),(0,0)x y f f a f b ===,令()(,(,)t f t f t t ϕ=,则'(0)ϕ=( )A .a ;B .()a b a b ++;C .1a +;D .1ab-. 3.10d (,)d yy f x y x -⎰⎰交换积分顺序后,正确的结果是( )A .0111101d (,)d d (,)d x x f x y y x f x y y --+⎰⎰⎰⎰; B .1101d (,)d x f x y y ⎰⎰; C .011d (,)d xx f x y y --⎰⎰; D .111d (,)d xx f x y y -⎰⎰.4.设C 是右半圆周222,0,0x y a x a +=≥>,则曲线积分()d Cx y s +=⎰( )A .0;B .22a ; C .2a ; D .4a . 5. 设2()(01)f x x x =≤<,而1()s i n π()nn S x bn x x ∞==-∞<<+∞∑,其中102()sin πd (1,2,)n b f x n x x n ==⋅⋅⋅⎰,则1()2S -=( )A .12-;B .14-;C .14;D .12.二、填空题(每小题3分,共15分)1. 微分方程2'''0yy y -=的通解为 ; 2. 设(1)arcsinx u x y y =+-,则(1,2)ux ∂=∂ ; 3. 设区域:0,0πD y x x ≤≤≤≤,则二重积分d Dx y = ;4. 已知曲线C 为22x y ax +=,则曲线积分s =⎰;5. 幂级数1(2)4nnn x n ∞=-∑的收敛域为 . 三、计算题(每小题10分,共50分)1. 计算三重积分222()d I x y z V Ω=++⎰⎰⎰,其中Ω:2222x y z z ++≤.2.设∑是锥面z =被平面0z =及1z =所截部分的外侧,计算第二类曲面积分2d d d d (2)d d I x y z y z x z z x y ∑=++-⎰⎰.3.求幂级数0(21)nn n x ∞=+∑的和函数,并据此求数项级数0212nn n ∞=+∑的值.4. 求,a b 的值,使得包含圆周22(1)1x y -+=在其内部的椭圆22221(0,0,)x y a b a b a b +=>>≠有最小的面积.5. 求微分方程''2e x y y x -=的通解.四、证明题(本题10分)证明数项级数1sin(n ∞=∑条件收敛.五、应用题(本题10分)设某山峰可由曲面2252z x y =--表示。

华东师范大学数学分析 期末试卷

华东师范大学数学分析 期末试卷

华东师范大学数分期末试卷(A 卷)2009-2010年第一学期一.(20分)判断下列结论是否成立(若成立,说明理由;若不成立,举出反例)1.设()f x 在(a,b )连续,()f x 在0(,)x a b ∈取极值,则0'()0f x =;2.设()f x 在点0x 可导,则存在0δ>,使得()f x 在00(,)x x δδ-+上连续;3.设数列{}n a ,{}n b 满足1(1,2,)n n a b n ≤≤=…,lim()0n n n b a →∞-=,则极限lim ,lim n n n n a b →∞→∞ 都存在;4.设()f x 是区间(-a,a )上的可导偶函数,则()f x 在x=0取极值。

二.(16分)计算下列极限;1.20arctan limtan x x x x x→-; 2.20ln(1)sin lim x x x x →+-; 三.(16分)计算下列函数的导函数dy dx: 1.1,0,()1,0;x x e x y x e x -⎧≥⎪=⎨⎪+<⎩ 2.()y y x =由极坐标方程2(1cos )(0)a a ρθ=+>所确定。

四.(14分)讨论2x y x e -=的单调性区间,凹凸性区间,极值与拐点。

五.(14分)证明不等式:1.2arctan (0,);12, x x x x π+<∈+∞+ 2.过研究ln ()x f x x =的单调性,证明:e e ππ>. 六.(8分)设()f x 在区间I 上连续但不一致连续,()g x 在(,)-∞+∞上可导且'()0g x k ≥>.证明:复合函数(())g f x 在I 上不一致连续。

七.(12分)设()f x ,()g x 在[,)a +∞上连续可微,且极限()lim ()x f f x →+∞+∞=,()lim ()x g g x →+∞+∞= 存在,证明:1. 若()()f a f =+∞,则:(,)a ξ∃∈+∞,使得'()0f ξ=;2. 若对[,),'()0,x a g x ∈+∞≠则:(,)a ξ∃∈+∞,使得'()()()'()()()f f f ag g g a ξξ+∞-=+∞- 八.(附加题10分)设()f x 在[,)a +∞上二阶可导且''()1f x ≤,又极限lim ()x f x A →+∞=存在。

2019-2020第一学期数学分析期末考试试题

2019-2020第一学期数学分析期末考试试题

2019-2020本科数学系期末考试试题数学分析(一)(A 卷)本试卷共4道大题,满分100分.一、选择题(本大题10分,每小题2分)1. 设数列{}n x 单调增,{}n y 单调减,且0lim =−∞→n n n x y ,则( A )(A ){}n x 、{}n y 均收敛 (B ){}n x 收敛,{}n y 发散 (C ){}n x 发散,{}n y 收敛 (D ){}n x 、{}n y 均发散2. 设函数)(1)(3x x x f ϕ−=,其中)(x ϕ在1=x 处连续,则0)1(=ϕ是)(x f 在1=x 处可导的( A )(A )充分必要条件 (B )必要但非充分条件(C )充分但非必要条件 (D )既非充分也非必要条件 3. 设0()0f x '=是)(x f 在0x 取得极值的( D )(A )充分条件; (B )必要条件; (C )充要条件; (D )既非充分条件也非必要条件.4. 设()353−=x y ,下述结论正确的是( A )(A )()0,3是曲线)(x f y =的拐点; (B )3=x 是)(x f 的极值点; (C )因为)3(f ''不存在,所以()0,3不是曲线)(x f y =的拐点;(D )当3<x 时,曲线)(x f y =为凹的,当3>x 时,曲线)(x f y =为凸的.5. 设xe e xf xx1arctan 11)(11+−=,则0=x 是)(x f 的( C )(A )连续点 (B )第一类(非可去)间断点 (C )可去间断点 (D )第二类间断点6. 设)(x f y =且21)(0='x f ,则当0>∆x 时,在0x 处dy 是( B ) (A) 与x ∆等价的无穷 (B) 与x ∆同阶但不等价的无穷小; (C) 比x ∆高阶的无穷 (D) 比x ∆低阶的无穷小 二、填空题(本大题10分,每小题2分)1. 若)(0x f '存在,则=−−→000)()(limx x x f x x xf x x 000()()f x x f x '−.2. 曲线21xy xe =的渐近线方程是 0x =.3. 设⎪⎩⎪⎨⎧==te y t e x ttcos 2sin ,则曲线上点(0,1)M 处的法线方程是12=+y x .4. 设x x x f 2sin )(2=,则)2()20(πf = 19202π⋅ .三、计算题(本大题35分,每小题5分)1.(5分)求极限20sin )1()cos 1(limx e x x x x −−→答案与评阅要点:由于 0→x 时,2~cos 12x x − ,22~sin x x ,x e x ~1−所以 21)(2lim sin )1()cos 1(lim 22020−=⋅−⋅=−−→→x x x x x e x x x x x2.(5分)求极限()tan 2lim sin xx x π→;答案与评阅要点: 令()tan sin xy x =,ln tan ln sin y x x =.22221cos ln sin sin lim ln lim lim cot csc x x x xx x y x x πππ→→→⋅==−2lim sin cos 0x x x π→=−⋅=,所以 原式=01e =. 3.(5分)求极限30sin (1)lim x x e x x x x→−+ 答案与评阅要点:2331()2!3!xx x e x o x =++++,33sin ()3!x x x o x =−+3333001()sin (1)16lim lim 6xx x x o x e x x x x x →→+−+== 4.(5分)计算不定积分33tan sec x xdx ⎰答案与评阅要点:⎰xdx x 33sec tan ⎰=x xd x sec sec tan 22⎰−=x xd x sec sec )1(sec 22.sec 31sec 5135C x x +−=5.(5分)计算不定积分⎰+−dx xx xx 5cos sin sin cos答案与评阅要点:⎰+−dx xx xx 5cos sin sin cos ⎰++=5cos sin )cos (sin x x x x d .)cos (sin 4554C x x ++=6.(5分)计算不定积分⎰−dxxx 224答案与评阅要点:设2sin ()22x t t ππ=−<<,则2cos .dx tdt =⎰−dx xx 224⎰=tdt t tcos 2cos 2sin 42dt t ⎰−=)2cos 1(2C t t +−=2sin 2 .4212arcsin22C x x x +−−=7.(5分)计算不定积分⎰xdx x ln 3答案与评阅要点:⎰xdxx ln 3⎰=)4(ln 4x xd ⎰−=dx x x x 3441ln 41.161ln 4144C x x x +−=四、证明题(本大题45分)1.(10分)设函数()f x 在],[b a 上二阶可导,0)()(='='b f a f .证明存在一点),(b a ∈ξ,使得)()()(4)(2a fb f a b f −−≥''ξ.答案与评阅要点:因为2()()()()()()2222a b a b f a bf f a f a a a ξ''+++'=+−+−1()2a b a ξ+<< 2()()()()()()2222a b a b f a bf f b f b b b ξ''+++'=+−+−2()2a b b ξ+<<(5分) 两式相减,因为0)()(='='b f a f ,得2211()()[()()]()08f b f a f f b a ξξ''''−+−−=,记12()max{(),()}f f f ξξξ''''''=,则2222112111()()()()()(()())()()()884f b f a f f b a f f b a f b a ξξξξξ''''''''''−=−−≤+−≤−即)()()(4)(2a fb f a b f −−≥''ξ,证明完毕.(5分)2.(10分)证明数列{}n x 收敛,其中11x =,113()2n n nx x x +=+,1,2,n =,并求lim n n x →∞.答案与评阅要点:1131()22n n n x x x +=+≥=,21313()022n n n n n n nx x x x x x x +−−=+−=≤,故有1n n x x +≤(5分)故{}n x 单调减有下界,从而lim n n x →∞存在设lim n n x A →∞=,在113()2n n nx x x +=+两边取极限得13()2A A A =+,从而A =5分)3.(15分)设函数()f x 定义在区间(,)a b 上:(1)(5分)用εδ−方法叙述()f x 在(,)a b 上一致连续的概念; (2)(5分)设01a <<,证明1()sin f x x=在(,1)a 上一致连续; (3)(5分)证明1()sinf x x=在(0,1)上非一致连续. 答案与评阅要点:(1)对0ε∀>,0δ∃>,对12,(,)x x a b ∀∈,只要12x x δ−<,就有12()()f x f x ε−<(5分)(2)对0ε∀>,取2a δε=,12,(,1)x x a ∀∈,只要12x x δ−<,12121212111111()()sinsin 2cos sin 22x x x x f x f x x x +−−=−= 121222121211x x x x x x x x a a δε−−≤−=<<=故1()sinf x x=在(,1)a 上一致连续.(5分) (1)在(0,1)内取2n x n π=,2(1)n x n π'=+,取012ε=,对0δ∀>,只要n 充分大总有2(1)n n x x n n δπ'−=<+,而1201()()sin sin 122n n f x f x ππε+−=−=>,故1()sinf x x=在(0,1)非一致连续.(5分) 4.(10分)(1)(5分)叙述函数极限lim ()x f x →+∞的归结原则,并应用它lim sin x x →+∞不存在. (2)(5分)叙述极限lim ()x f x →+∞存在的柯西收敛准则;并证明lim sin x x →+∞不存在.证明:(1)设()f x 在[,)a +∞有定义.lim ()x f x →+∞存在的充分必要条件是:对任意含于[,)a +∞,当lim n n x →∞=+∞时当lim n n x →∞=+∞时且趋于+∞的数列{}n x ,极限lim ()n n f x →∞存在且相等.取2,2,2n n x n x n πππ'''==+则lim lim 2,n n n x n π→∞→∞'==+∞lim lim(2),2n n n x n ππ→∞→∞''=+=+∞但lim ()lim sin(2)0,n n n f x n π→∞→∞'==lim ()limsin(2)1,2n n n f x n ππ→∞→∞''=+=lim ()lim (),n n n n f x f x →∞→∞'''≠故lim ()x f x →+∞不存在.(5分)(2)设函数()f x 在[,)a +∞有定义,则极限lim ()x f x →+∞存在的充要条件是:对于任何0,ε>存在正数0(),M M a >>当12,x x M >时有12|()()|.f x f x ε−<对于012ε=及任意正整数M,取122,2,2x M x M πππ=+=则有1,x M >2,x M >且有1201|()()|sin 2sin 21,22f x f x M M πππε⎛⎫−=+−=>= ⎪⎝⎭所以lim sin x x →+∞不存在.(5分)试题来源:微信公众号 学术之星。

中国矿业大学(徐州)0708数学分析试卷(A)及参考答案

中国矿业大学(徐州)0708数学分析试卷(A)及参考答案

中国矿业大学07~08学年第二学期 《数学分析(2)》试卷(A )卷考试时刻:120分钟 考试方式:闭卷院系__ _______班级___ ______姓名__ ________学号___ _______一、填空题(每空3分,共30分)1. =-+++∞→])1(sin 2sin [sin 1lim n πππnn n n n . 2. =-⎰202d 4x x . 3.=⎰∞+-0d x xe x .4. 心形线(1cos )r a θ=+)0(>a 的周长为__ _______.5.=-∑∞=22)11ln(n n . 6.级数∑∞=⎪⎪⎭⎫⎝⎛+-11)1(n n n n __________________(绝对收敛或条件收敛或发散).7.级数∑∞=-12)1(n nnn x 的收敛域为 . 8.设)(),(x y g y x xy f z +=,其中g ,f 具有一阶持续(偏)导数,那么=∂∂xz. 9.函数22232z y x f ++=在点)1,1,1(P 沿方向)4,3,0(:l 的方向导数=∂∂Pl f.10.曲面344224++--=x y y x z 在点 处有水平的切平面.二(10分)、讨论二元函数⎩⎨⎧<<=其它,30 ,2),(4x y y x f 在点)0,0(的二重极限、二次极限、偏导数及沿任意方向的方向导数. (注:若是存在,把它求出来;若是不存在,要说明理由.)三(10分)、把函数21ln arctan )(x x x x f +-=展开为关于x 的幂级数并指出收敛域.四(10分)、把函数)0()(π≤≤=x x x f 展开为余弦级数并指出收敛性,再利用该级数证明: 61212π=∑∞=n n.五(10分)、设)(x f 在]1,0[上可导,且⎰=-311)1(d )(3f x x f e x ,证明:)1,0(∈∃ξ使0)()(=ξ'+ξf f .六(10分)、假设级数∑∞=12n na 收敛,证明∑∞=13n na 和)21(1>∑∞=p na n pn 都绝对收敛.七(10分)、求椭圆1322222=+y x 绕y 轴旋转所得的旋转曲面的表面积.八(10分)、设],[)(b a R x f ∈,证明:],[)(b a R e x f ∈.中国矿业大学07~08学年第二学期 《数学分析(2)》试卷(A )卷参考答案一、填空题(每空3分,共30分)1. π2. 2. π.3. 1. 4. 8a . 5. 2ln -. 6.发散. 7.)3,1[-. 8.)(1221xy g y f y f -⋅'+⋅'+⋅'. 9.536. 10.)2,1,1(--.二(10分)、讨论二元函数⎩⎨⎧<<=其它 ,30 ,2),(4x y y x f在点)0,0(的二重极限、二次极限、偏导数及沿任意方向的方向导数. (注:若是存在,把它求出来;若是不存在,要说明理由.) 解:假设取直线途径kx y =,极限3),(lim 0==→y x f kxy x ;假设取途径为)10(4<<=k kxy 则2),(lim 40==→y x f kx y x ,因此二重极限),(lim )0,0(),(y x f y x →不存在.对任意0≠y ,3),(lim 0=→y x f x ,故 33lim ),(lim lim 00==→→→y x y y x f 。

第三学期数学分析期末考试题及答案

第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( )A 充分条件B 必要条件C 充分必要条件D 无关条件 2、=∂∂),(00|),(y x xy x f ( )Ax y x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000 ; B xy x x f x ∆∆+→∆),(lim 000; Cx y x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000 ; D xy x f y x x f x ∆-∆+→∆),(),(lim 00000。

3、函数f (x,y )在(x 0,,y 0)可偏导,则( D )A f (x,y )在(x 0,,y 0)可微 ;B f (x,y )在(x 0,,y 0)连续;C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ;D 以上全不对。

4、22222)(),(y x y x y x y x f -+=的二重极限和二次极限各为( B )A 、0,0,0;B 、不存在,0,0,;C 、0,不存在,0;D 、0,0,不存在。

5、设yx ez =,则=∂∂+∂∂yz y x z x (A )A 、0;B 、1;C 、-1;D 、2。

二、计算题(50分,每小题10分)1、 证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微;2、 设⎰⎰'=-x xtx f x f dt d ex f 0)(),(,)(2求ττ;3、 设有隐函数,0x y F z z ⎛⎫=⎪⎝⎭,其中F 的偏导数连续,求z x ∂∂、z y ∂∂;4、 计算(cos sin )x Ce ydx ydy -⎰,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点的光滑曲线;5、 计算zdS ∑⎰⎰,其中∑为22z x y =+在14z ≤的部分;三、验证或解答(满分24分,每小题8分)1、验证曲线积分⎰+++++Ldzy x dy x z dx z y )()()(与路线无关,并求被积表达式的原函数;2、说明对任意),0(sin ,00)(2+∞∈>⎰+∞+-t tdx e x 关于αα均一致收敛;3、验证函数⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x yx xyy x f 在原点(0,0)分别对每个自变数y x 或(另一个看作常数)都连续,但是二元函数在原点(0,0)却不连续.四、(11分)求由方程组⎩⎨⎧=-+=++10333z y x z y x 确定的隐函数)2,1,1()(),(-==P x z z x y y 在点处的一阶导数。

工科数学分析试卷1(含答案)

工科数学分析试卷1(含答案)

哈尔滨工业大学(威海)秋季学期工科数学分析 (答案) 试题卷(A 班)考试形式(开、闭卷):闭 答题时间:150 (分钟) 本卷面成绩占课程成绩 80 %一、填空题(每题4分,共40分)1.集合},10:{R ∈≤≤=x x x X 是否为可数集合?答: 不是2.=+++++∞→)1ln(31)11(lim 2n n nn n n 0 3.11+-=x ey 有第 二 类间断点,是=x -14.设)1ln(2++=x x y ,则=dy dx x 212)1(-+5.若0)(,0)()(000≠'''=''='x f x f x f ,则0x 是否是函数)(x f 的极值点? 答: 不是6.曲线423-=x x y 的斜渐近线为:x y =7.⎰=xdx x cos sin 6C x +7sin 718.利用逻辑符号叙述定积分⎰=badx x f J )(的定义::0)(,0>∃>∀εδεεξσξεδ<-→∀<∀J f T l T T ),(),()(:遵 守 考 试 纪 律注 意 行 为 规 范教研室主任签字:姓名: 班级: 学号:9.⎰+∞-=022dx xex 110.⎰-=-++222)33ln 1(sin ππdx xxx 2π二、试解答下列各题:(每题5分,共20分)1.设⎩⎨⎧=-=2)1ln(ty t x ,求22dx y d 解:t t x y dx dy t t222-=''= (2分))1)(12(2122--='⋅'⎪⎭⎫ ⎝⎛=t t x dx dy dx y d t t(2分) (1分)2.设⎪⎩⎪⎨⎧=≠=⎰0,00,)(1)(02x x dt t tf x x F x,其中)(x f 在)0(δU 上连续且0)0(=f ,存在)0(f ',求)0(F '。

数学分析期末试题A答案doc

数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。

因此,答案为 D。

2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。

A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。

因此,答案为 B。

3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。

4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。

在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。

因此,答案为 C。

高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。

以下是本次考试的部分试题及其答案,供大家参考。

一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。

最新数学分析1-期末考试试卷(A卷)

最新数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷)一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a 。

2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点是 。

3、设)1ln(2x x y ++=,则=dy 。

4、设)(x f 是连续函数,且dt t f x x f )(2)(10⎰+=,则=)(x f 。

5、xdx arctan 1⎰= 。

二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( )。

(A )若n x 发散,则n y 必发散。

(B )若n x 无界,则n y 必无界。

(C )若n x 有界,则n y 必为无穷小。

(D )若nx 1为无穷小,则n y 必为无穷小。

2、设函数x x x f =)(,则)0(f '为( )。

(A ) 1。

(B )不存在。

(C ) 0。

(D ) -1。

3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。

(B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。

(D )0)(,0)(>''<'x f x f 。

4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( )。

(A )())(x f e f e x x ----。

高数期末试题

高数期末试题


2 1
f ( x)dx 1 , 证明在(0,3)内存在
, 使 f ( ) f ( ) 0.
九 . (8 分) 设 f ( x) 有连续导数 , 且 lim
x 0
f ( x) f ( x) 2, ex 1
f (0) 0, 证明 x 0 是 f ( x) 的
x 0
____________ .
2.
I1
ln 2 x dx 与 I 2 x
dx 中 收 敛 的 为 _____________, 其 值 等 于 x ln 3 x
___________. 3.

1
1
3 1 x 2 dx _____________,

1
1
x 1 x 2 dx _____________ .
2x 1 x2
( x 1) 是否恒为常数.
y 1 dy d 2 y 2 2 六. (9 分) 设 arctan ln( x y ) 确定函数 y y ( x) , 求 , 2 . x 2 dx dx
信息与电子二学部学生会学习部整理
七. (10 分) 求下列反常积分. (1)
1
二. (9 分) 求极限 lim(cos x x sin x) .
x2 x 0
三. (9 分) 求不定积分 ( x arctan x
1 x e )dx . x2
1
四. (9 分) 求 f ( x) 3 ( x 2 2 x) 2 在区间 [1,3] 上的最大值和最小值.
五. (8 分) 判断 f ( x) arctan x arcsin
0
x
是 f ( x) 的极值点, 并判断 f (0) 是极大值还是极小值.

集美大学2015-2016 数学分析1期考试卷(A)

集美大学2015-2016 数学分析1期考试卷(A)

集美大学2015-2016学年第一学期期末考试信计与计算科学2015级数学分析1试卷(A )一、填空题(每小题2分,共10分)1.lim ()x af x A -→≠的“εδ-”定义是 .2.()ln (1)f x x =+在0x =处(具Peano型余项)的n 阶Taylor展开式为 .3.设()sin x x x ϕ= ,则=-→)(lim 0x x ϕ ,=+→)(lim 0x x ϕ . 4.2x =与0x =分别是函数)4(2)(22--=x x x x x f 的 类不连续点.5.叙述零点存在定理:.二.单项选择题(每小题2分,共10分)6.设1()(1)x f x x =-,则0x =是()f x 的 [ ] 间断点.A .无穷B .跳跃C .可去D .振荡7.设()f x 在(,)a b 内单调有界,且(,)c a b ∈,则 [ ] .A .lim ()x cf x →存在 B .(0)f c ±均存在C .(0)()f c f c += D .(0)()f c f c -=8.下列命题错误的是 [ ] .A .A x f x =→)(lim 0 ⇒ A n f n =∞→)1(lim B .)(x f 在a x =处可微 ⇒ )(x f 在a x =处连续C .)(x f 在¡上无界 ⇒ ∞=∞→)(lim x f xD .)(x f 在[,]a b 上单调 ⇒ )(x f 在[,]a b 上有界9.设)(x f 任意阶可导,且2])([)(x f x f =',则)()(x fn 等于 [ ].A .n x f n 2])([ B .1])([+n x f n C .n x f n 2])([! D .1])([!+n x f n 10.设0a >,则方程35x ax += [ ].A .只有一个正根 B .只有一个负根C .有两个相异实根D .没有实根三.证明题(每小题5分,共10分)11.用极限的分析定义证明225lim 512n n n n →∞=-+-. 12.设0a b <<,证明:ln b a b b a b a a--<<.四.计算下列极限(每小题5分,共15分)13.22212lim 11n n n n n n →∞⎛⎫+++ ⎪++-⎝⎭L .14.求1)1lim x x x -→.15.2222lim 3n n n x n →∞⎛⎫+ ⎪-⎝⎭ .五.求下列导数或微分(4题,每题5分,共20分)16.设sin()arctan()xy x y =+,求dxdy .17.设t a x cos =, t b y sin =,求22dx y d .18.1x y x =.19.设x e x y 22=,求(5)y .六.计算下列不定积分(3题,每题5分,共15分)20.d x xex -⎰.21.x .22.32sin d cos x x x⎰.七.判断命题是否正确,若正确请予证明,否则请举反例(每小题3分,共6分)23.设()f x 在0x x =不可导而()g x 在0x x =可导,则()()f x g x 在0x x =必不可导.24.设()f x 与()g x 在0x x =均不连续,则()()f x g x +在0x x =必不连续.八.综合题(共14分)25.(5分)利用函数的导数研究:把长为l 的线段分为两段,使以它们为长和宽所围成的矩形的面积最大.26.(9分)讨论()x x f x e=的单调区间、极值点、凹凸区间、拐点和渐近线(不要求作图).。

华东师范大学大一数学分析期末考试题

华东师范大学大一数学分析期末考试题

xx0 g(x)
xx0 g (x)
xx0 g(x)
A、必要条件 B、充分条件 C、充分必要条件
三、计算题(每小题 6 分,共 30 分)
D、既非充分也非必要条件
14、 lim (1 a)(1 a2 )(1 a2n ),(| a | 1) n
15、求函数 y 2x 的单调区间 1 x2
16、 lim xln(1 x) ln x x
学院: 数学与计算机科学学院 适用班级:
题号 一 二 三 四 五 六 七 八 九
分数
总分
评卷人
一、填空题(每空 2 分,共 20 分)
1、函数 f (x) ln 1 x 的定义域是 1 x
2、 lim sin 5x x0 3x

1
3、 lim
n
1n
4、若 f 可导,且 y f (2x), 则 dy =
17、已知 y ln(arccos 1 ) 求 y x
18、求 d
x 1
x2
四、证明题(每小题 10 分,共 20 分)
19、已知数列xn ,它由递推公式
xn1
1 2
(xn
a xn
) 确定, a
0 ,且 x1 可取任意正实数,
证明:数列
x
n
收敛,并求
lim
n
xn
20、 ex 1 x , (x 0)
五、综合题(15 分)
21、并作图
学号
班级
专业
C、 f (x) 在 x 0的左右极限存在但不相等 D、 f (x) 在 x 0的左右极限不存在

n n 1
5、设 f (x) 在 x0 点可导,且在 x0 点取极大值,则 f (x0 ) =

2021-2022学年数学分析第二学期期末考试(含答案)

2021-2022学年数学分析第二学期期末考试(含答案)

2021-2022学年第二学期期末《数学分析》一.填空题 ( 每题5分,共30分 )1. 已知势函数 2u x yz =,则其梯度 grad u = ,其梯度的散度 ()div grad u = 。

2. 曲面:ln x z y y ⎛⎫∑=+ ⎪⎝⎭在点0(1,1,1)P 处的单位法向量为 ,在该点处的切平面方程为 .3. 设22()d ,x x u x f x e u -=⎰ 则'()f x = .4. 设Γ是以(0,0),(1,0),(0,1)O A B 为顶点的三角形的边界,则曲线积分()x y ds Γ+⎰ = .5. 设Ω是由锥面z =和上半球面 z = 围成的空间区域, 则三重积分222()d f xy z V Ω++⎰⎰⎰ 在球坐标系下的累次积分为.6. 利用Γ函数和B 函数的性质,可知 2560sin cos d x x x π⎰ = .二. 计算题 (10分) 计算二重积分D,其中 D 是由22221x y a b += 所围的平面区域。

设Γ是任意一条包围着原点(不经过原点)的分段光滑、逆时针定向曲线,试计算曲线积分22.2xdy ydxx y Γ-+⎰四. 计算题 (10分)设∑为曲面 )20(222≤≤+=z y x z 的下侧.计算曲面积分33()d d ()d d 2()d d x y y z y z z x x y z x y ∑++-++-⎰⎰.计算曲线积分22I y dx xdy z dz Γ=-++⎰,其中Γ是平面2y z +=与柱面221x y +=的交线,从Oz 轴正向往下看为逆时针方向.六.计算题 (10分)计算双曲面z xy = 被围在圆柱面222x y a +=内部的面积.设()f x 是[,]a b 上的连续函数,利用二重积分性质证明不等式22()d ()()d b b a a f x x b a f x x ⎡⎤≤-⎢⎥⎣⎦⎰⎰八. 证明题 (10分)设(,)f x u 在[,][,]a b αβ⨯上连续,证明对任意 0[,]u αβ∈,总有0lim (,)d (,)d b baau u f x u x f x u x →=⎰⎰设Ω为闭区域,∂Ω是Ω的边界外侧,n是∂Ω的单位外法向量。

华南理工大学期末考试《工科数学分析》上-试卷(A)(附解答) (1)(word文档良心出品)

华南理工大学期末考试《工科数学分析》上-试卷(A)(附解答) (1)(word文档良心出品)

《工科数学分析》2014—2015学年第一学期期末考试试卷诚信应考,考试作弊将带来严重后果!华南理工大学本科生期末考试 《工科数学分析》2014—2015学年第一学期期末考试试卷(A )卷注意事项:1. 开考前请将密封线内各项信息填写清楚;2. 所有答案请直接答在试卷上(或答题纸上);3.考试形式:闭卷; 4. 本试卷共 5个 大题,满分100分, 考试时间120分钟。

《工科数学分析》2014—2015学年第一学期期末考试试卷一、填空题(每小题3分,共15分) 1. 函数()1212x xe ef x e e+=-的间断点及其类型为0x =是跳跃间断点,12x =是无穷间断点;2. 已知函数()y y x =由方程yxx y =所确定,则曲线()y y x =在点()1,1处的切《工科数学分析》2014—2015学年第一学期期末考试试卷线方程为0x y -= ;3. 设xy xe =,则()n d y =()xnx n e dx + ;4. 220x t d e dt dx -⎛⎫= ⎪⎝⎭⎰42x xe - ;5. 反常积分()22ln dx x x +∞=⎰1ln 2.二、计算下列各题(每小题8分,共16分) 1. 求极限()11limxx x ex→+-《工科数学分析》2014—2015学年第一学期期末考试试卷解:()()()()()()()11ln 101ln 12001limlim1ln 1lim 41ln 1lim 6282x xxx x x x x x x eeexxx x x e x x x e x e +→→+→→+--=-++=⋅+-+==-分分分或()()()1ln 1110020011lim lim ln 1lim 4111lim 6282x x x x x x x e e x e x xx x e x x e x e +-→→→→⎡⎤-⎢⎥+-⎣⎦=+-=-+==-分分分2.计算定积分21dxx ⎰ 解:2321434tan,sec,cos4sin16sin t83x t dx tdttdttππππ===⎰⎰令则分=-分分三、解答下列各题(每小题10分,共40分)1.设()1110,1,2,,nx x n+===试证明数列{}n x收敛,并求lim.nnx→∞证明:(1)()1110343,3,1,2,nx x x n=≥=≥≥=,用归纳法可证,即数列{}nx有下界;3分(2)1320,n n nx xx x x+-+-==<即,数列{}n x 单调减少。

数学分析试题及答案

数学分析试题及答案
∫∫ 六.计算曲面积分 x2dydz + y 2dzdx + z 2dxdy ,其中 Σ 为锥面 x2 + y 2 = z 2 在平面 Σ
z = 0 与 z = h ( h > 0 )之间的部分,定向为下侧。
七.设 A(x, y) = 2xy(x 4 + y 2 )λ i − x 2 (x 4 + y 2 )λ j 是右半平面 D = { (x, y) | x > 0 } 上 的向量场,试确定常数 λ ,使得 A(x, y) 为 D 上函数 u(x, y) 的梯度场,并求出 u(x, y) 。
∑ 计算 ∞ (−1)n+1 的值。 n2 n=1
4
复旦大学 2005~2006 学年第一学期期末考试试卷
答案
1. (本题满分 40 分,每小题 8 分) (1) 2 2x + y − 2 = 0 。
(2) 1 。 2
1
(3) y = e e 为极大值。 x=e
(4)曲线在 (0, 1] 上为上凸,在[1,+∞) 上为下凸, (1, − 7) 为拐点。
∫∫∫ 四.计算三重积分 e|z|dxdydz ,其中 Ω = { (x, y, z) | x2 + y 2 + z 2 ≤ 1}。 Ω
五. 计算曲线积分
∫ 2 y 2 + z 2 ds ,
L
其中 L 是球面 x2 + y 2 + z 2 = a 2 ( a > 0 )与平面 x = y 相交而成的圆周。
A t(1 + t 2 ) 2
x→+∞ 1 t(1 + t 2 )
∫ 所以存在 X > 0 ,当 x > X 时成立 A cos xt dt < ε ,于是当 x > X 时成立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos x
………………………………………5 分
= e1 = e …………………………………………………………8 分
14. 函数 f ( x) 在 x0 处连续的充要条件是 f ( x) 在点 x0 处既右连续,又左连续……4 分
x → 0+
lim f ( x) = lim ( x + 2) = 2 , lim f ( x) = lim ( x − 2) = −2 ……………………6 分 + − −
n →∞
于是,当 n + k > n > N 时 , an + k − a < ε ………………………………………7 分 则: lim a n + k = a …………………………………………………………………10 分
n →∞
16.若 lim f ( x ) 极限存在,则 f ( x) 在 U ( x0 ) 局部有界………………………………4 分
1
ε
,当 | x |> M 时…………………………………………………6 分

1 1 1 1 −0 = < = ε , 所以 lim = 0 …………………………………10 分 x →∞ x | x| M x
x1 − x 2 1 1 1 − = ≤ 2 x1 − x 2 < ε x1 x 2 x1 x 2 a
三.解答题(本大题共 4 小题,每小题 8 分,共 32 分): 11. 由于
(2n )
n +1
2
1 1 1 n +1 ≤ 2 ……………………………3 分 ≤ + + " + 2 2 2 n n ( ) ( ) + n 1 2 n
而 lim
n +1 n +1 = 0 , lim 2 = 0 ………………………………………………6 分 2 n → ∞ (2n ) n→∞ n
x →0 x →0 x →0
1
所以,函数 f ( x) 在点 x = 0 的不连续 ……………………………………………8 分 四.证明题(本大题共 4 小题,第 15~17 小题每题 10 分,第 18 题 13 分,共 43 分) 15. lim a n = a , ∀ε > 0, ∃N , n > N时, a n − a < ε , ………………………………5 分
则 lim
1 1 1 =0……………………………………………8 分 + + + " 2 2 n → ∞ n 2 ( ) ( ) + n 1 2 n
12. 当 x → ∞ 时,
f ( x) → 1 = k , ( f ( x) − kx) → −2 = b, …………………………2 分 x
《数学分析》 (I)期末考试 A 卷
参考答案及评分标准
一.填空题(本大题共 5 小题,每小题 2 分,共 10 分): 1.
a≤b
2. 2
3. x = 2k π +
π , k = 0, ±1," 4. 无关 2
5. 相同极限.
二.单项选择题(本大题共 5 小题,每小题 3 分,共 15 分): 题号 答案 6 B 7 C 8 C 9 D 10 A
有斜渐近线 y = x − 2 ,……………………………………………………………4 分
f ( x) =
x3 → ∞ ,有垂直渐近线 x = −3, x = 1 ……………………8 分 ( x + 3)( x − 1)
cot x
13. lim(1 + sin x )
x →0
1 = lim (1 + sin x) sin x x →0
x → x0
D
x → x0ຫໍສະໝຸດ lim f ( x) = A , ∀ε > 0, ∃δ > 0, 当 0<|x − x0 |< δ 时, 有 f ( x) − A < ε …6 分
…………………………………………8 分
取 ε = 1 , | f ( x) | < | A | +1 = M > 0
局部有界性得证。…………………………………………………………………10 分 17. ∀ε > 0, 取 M =
ö¢
ε 0 = 1 ,对 匍论 引么 岢钴 δ < 镝数 ………………………………………10 分 δ
2
1 2
颃椹觫 x ′ = δ 与 x ′′ =
则虽牦
x ′ − x ′′ =
δ
2
< δ Ó£
1 1 1 − = > 1 ……13 分 x ′ x ′′ δ
2
………3 分
18. ∀ε > 0, ∀x1 , x 2 ∈ [a,1] ,椹夼 颃椹觫 δ = a
则 ∀ε
2
ε 有…………………………………………………………………6 分

> 0, ∀x1 , x 2 ∈ [a,1] , ∃ δ = a 2 ε
x1 − x 2 < δ êó
1 1 − < ε ……7 分 x1 x 2
相关文档
最新文档