PLC 控制的电机正反转
11:电动机正反转PLC控制

四、控制逻辑仿真
拨动开关2: “I0.2”指示灯亮,反转按钮按下 “Q0.0”指示灯灭,表示电机停止, 经过10S延时, “Q0.1”指示灯亮,电机反转运行。
四、控制逻辑仿真
拨动开关1: “I0.1”指示灯亮,正转按钮按下 “Q0.1”指示灯灭,表示电机停止, 经过20S延时, “Q0.0”指示灯亮,电机正转运行。
QF
FU1 FR SB1 SB2 KM2
HL1 KM1
KM1 KM1 KM2 SB3 KM1
HL2 KM2
KM2 FR KM1 KM2
HL3 HL4
M 3~
二、PLC接线
二、PLC接线 (一)PLC电源
AC220V G N L
1L
0.0 0.1 0.2
0.3
2L
0.4
0.5 0.6
3L
0.7
1.0
三、程序编写
启动STEP 7 MicroWin 4.0,建立项目“电 动机正反转控制”,输入控制梯形图。
控制要求: 1.按下正传按钮,如果电机停止立即启动,否 则先停止10S钟,再启动。 2.按下反传按钮,如果电机停止立即启动,否 则先停止10S钟,再启动。
3.按下停止按钮,电机立即停止。
三、程序编写
1.1
N
L1
1M
0.0 0.1 0.2
0.3 0.4
0.5
0.6
0.7 2M 1.0
1.1
1.2
1.3
1.4
1.5
ห้องสมุดไป่ตู้
M
L+
DC24V
+
-
二、PLC接线 (二)控制接线
AC220V G N L
KM1 KM2
PLC的变频器控制电机正反转接线图

PLC的变频器控制电机正反转接线图
PLC的变频器控制电机正反转接线图
简要说明PLC控制的变频器正反转运⾏操作步骤
1.按接线图将线连好后,启动电源,准备设置变频器各参数。
2.按“MODE”键进⼊参数设置模式,将Pr、79设置为“2”:外部操作模式,启动
信号由外部端⼦(STF、STR)输⼊,转速调节由外部端⼦(2、5之间、4、5之间、多端速)输⼊。
3.连续按“MODE”按钮,退出参数设置模式。
4.按下正转按钮,电动机正转起动运⾏。
5.按下停⽌按钮,电动机停⽌。
6.按下反转按钮,电动机反转起动运⾏。
7.按下停⽌按钮,电动机停⽌。
8、若在电动正转时按下反转按钮,电动机先停⽌后反转;反之,若在电动机反转
时按下正转按钮,电动机先停⽌后正转。
PLC的变频器控制电机正反转。
PLC控制电机正反转设计

PLC控制电机正反转设计专业班级:学生姓名:学号:指导老师姓名:指导老师职称:PLC控制电机正反转设计[摘要]电气控制技术是一门多学科交叉的技术,是实现工业生产自动化的重要技术手段,随着科学技术的不断发展, PLC技术越来越多的应用于机床电气,本文简述了PLC的发展和几种常用电气控制线路的PLC控制。
关键词: 继电器控制系统;基本电气控制线路;PLC控制;电动机前言通过学习,我们初步了解了电气控制技术的一些基本知识和组成,从中也知道了电气控制技术在机械行业的重要性,为了完成的任务,为了更好的掌握机电一体化,我们应该更深入的学习电气控制技术的知识,以满足综合型人才的培养要求,在学习中我们了解到,可编程系统与继电器的传统控制技术比较有以下优点:第一,反应速度快,噪音低,能耗小。
体积小。
第二,功能强大,编程方便,可以随时修改程序。
第三,控制精度高,可进行复杂的程序控制。
第四,能够对控制过程进行自动检测。
第五,系统稳定,安全可靠。
我们应该在继电器的基础上加强可编程控制技术的学习。
可编程控制器是在继电器控制和计算机控制的基础上发展而来的新型工业自动控制装置,可编程系统优于继电器的传统控制技术,我们应该在继电器的基础上加强可编程控制技术的学习。
目录第一章 PLC基础 (1)1.1 PLC的定义 (1)1.2 PLC的产生及发展 (1)1.3 PLC的特点及应用 (2)1.4 PLC的基本结构 (4)1.5 PLC的工作方式 (6)1.6 PLC的设计方法 (6)第二章三相异步电动机控制设计 (9)2.1 电动机可逆运行控制电路 (9)2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (11)2.3 三相异步电动机正反转PLC控制的梯形图、指令表 (13)2.4 三相异步电动机正反转PLC控制的工作原理 (14)2.5 指令的介绍 (15)结论 (17)设计心得 (18)参考文献 (19)第一章 PLC基础1.1 PLC 的定义1985年,国际电工委员会(IEC)对PLC作出如下定义:可编程序控制器是一种数字运算操作电子系统,专为在工业环境下应用而设计。
PLC控制步进电机正反转实验

第 1 章PLC控制步进电机正反转实验1.1实验目的1、了解PLC的理论与原理;2、掌握PLC编程与操作方法。
3、了解接近传感器的使用方法1.2实验设备1、三菱PLC编程电缆及安装好三菱编程软件的计算机一台;2、模块化柔性制造系统一套。
1.3实验原理料库旋转台是依靠步进电机控制的,高精度旋转模块。
依靠PLC 自身含有的脉冲单元,发出驱动脉冲给步进电机驱动器。
驱动器接收到该脉冲以后,根据所发脉冲的频率和数量驱动步进电机向相应的方向旋转。
1、步进电机步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。
永磁式步进电机永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进电机反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。
项目PLC控制电动机正反转控制概述

关于电器的分类标准和分类原则还有其它方法。在一些分 类过程中有分类交叉和重叠情况,同一种电器可以有不同的 动作来源途径,也可以用于不同的方式。所以在学习电器基 本知识的过程中,不需要将电器过于细化分类,只要求明确 电器的基本属性和大体归类就可以了。随着日后的深入学习 和新电器的不断产生,我们会明白电器的分类不是固定的、 死板的,而是具有强大的灵活性。
1. 按钮的结构
按钮由按钮帽、复位弹簧、桥式触头、支柱连杆及外壳 等组成,有的还设置控制指示灯,其结构如图1-6所示。
2. 按钮的种类
按触点形式可分为常开控制按钮、常闭控制按钮和既有 常开又有常闭的复合按钮。
常开控制按钮(又称动合按钮)——外力未作用时(手 未按下),触点是断开的,外力作用时,触点闭合,但外力 消失后,在复位弹簧作用下自动恢复原来的断开状态。
线圈)、衔铁和铁心等组成,如图1-9所示。吸引线圈的作用是 将电能转换为磁能,产生磁通;衔铁的作用是在电磁吸力作用下 产生机械动能,使铁心闭合,带动执行部分完成控制电路的工作 铁心构成磁路。交流接触器的电磁线圈是将绝缘铜导线绕制在铁 心上制成的,由于铁心中存在涡流和磁滞损耗的关系,除线圈发 热以外,铁心也要发热,要求铁心和线圈之间有间隙,便于铁心 和线圈的良好散热。在制做交流电磁机构过程中,把线圈做成有 骨架的矮胖型,铁心用硅钢片叠成,来减小涡流的发热作用。
常闭控制按钮(又称动断按钮)——外力未作用 时(手未按下),触点是闭合的,外力作用时,触点断 开,但外力消失后,在复位弹簧作用下自动恢复原来的 闭合状态。
复合按钮——按下复合按钮时,所有的触点都 改变状态,即常开触点要闭合,常闭触点要断开。需要 注意的一点是,复式按钮在动作时常开和常闭触点是联 动的,当按钮被按下时,常闭触点先动作,常开触点后 动作;而松开按钮式,常开触点先动作,常闭触点后动 作,也就是说两种触点在改变工作状态时,先后有个时 间差,尽管这个时间差很短,但在分析线路控制过程时 应特别注意。按钮中的复位弹簧保证外力去掉后,按钮 触头恢复自然状态。
plc电机正反转控制电路图梯形图程序

plc电机正反转控制电路图梯形图程序
学习plc,沿指令的应用不行缺少,它给我们编程带来了许多便利。
今日介绍一个案例,直接牢靠切换电机正反转程序。
我们知道电机正反转掌握电路,最平安的问题是绝不能叫正反转接触器同时吸合,否则发生380V直接短路事故。
利用PLC下降沿指令及开关联锁方式,牢靠的保证了在正反转切换时,当按下正转或反转按钮时,保证先切断另一方向的输出,放手后才能接通需要的方向输出。
如下程序:当反转输出Q0.2正在工作时,切换成正转方式,使Q0.1输出为1,
动作是,按下正转启动按钮I0.2时-----I0.2的开点接通----I0.2的闭点断开---保证先切断反转输出Q0.2-----Q0.2的闭点接通----放开I0.2按钮时---它的下降沿信号接通----Q0.1输出接通并自保----实现正转运行。
它的牢靠动作是按下时先切断反转,放开后才能启动正转,实现了平安牢靠的正反转转换。
请初学者体会沿指令的应用乐趣。
电路设计共有六项平安措施是:启动按钮联锁,输出端Q0.1与Q0.2互锁,外接触器KM1与KM2互锁,下降沿保证放开开关后才接通信号,主回路保险应用实现短路爱护,过载继电器实现过载爱护,六项
平安措施。
用PLC实现电动机正反转

09
输出
10
X0---启动按钮
11
Y0----南北绿灯
12
用PLC实现电动机正反转控制
一、实验目的
用PLC控制电动机正反转和Y/ 启动。
二、实验设备
1.
TVT-90系列学习机主机箱(主机型号为FP0-C32T)。
2.
UNIT-1电机控制实验板。
连接导线一套。
3.
三、实验内容
1.
控制要求:
按下正转启动按钮SB1,电动机正转运行,且KM1,KMY接通。2s后KMY断开,KM 接通,即完成正转启动。
用PLC构成交通灯控制系统。
1.
二、实验设备
TVT-90系列学习机主机箱(主机型号为FP0-C32T)。
2.
UNIT-3 交通灯控制实验板。
连接导线一套。
3.
三、实验内容
1.
控制要求:
开关合上后,东西绿灯亮4s后闪2s灭;黄灯亮2s灭;
红灯亮8s;绿灯亮循环,对应东西绿黄灯亮时南北
灯又亮循环。
KMR
KMF
M 3~
互锁
实验时发现下列现象,试分析和处理故障。
01
接触器不动作。
02
பைடு நூலகம்
接触器动作但电动机不转动。
03
接触器动作,但是吸合不上。
04
接触器有明显颤动,噪音较大。
05
接触器线圈冒烟,甚至烧坏。
06
电动机不转动或者转动极慢,并有“嗡嗡”声。
07
三.思考题
用PLC实现交通信号灯控制
一、实验目的
I/O分配:
2.
输入
输出
X0---启动按钮
PLC的变频器控制电机正反转接线图

PLC的变频器掌握电机正反转接线图
扼要解释PLC掌握的变频器正反转运行操纵步调
1.按接线图将线连好后,启动电源,预备设置变频器各参数.
2.按“MODE”键进入参数设置模式“2”:外部操纵模式,启动旌旗灯号由外部端子(STF.STR)输入,转速调节由外部
端子(2.5之间.4.5之间.多端速)输入.
3.持续按“MODE”按钮,退出参数设置模式.
4.按下正转按钮,电念头正转起动运行.
5.按下停滞按钮,电念头停滞.
6.按下反转按钮,电念头反转起动运行.
7.按下停滞按钮,电念头停滞.
8. 若在电动正转时按下反转按钮,电念头先停滞后反转;反之,
若在电念头反转时按下正转按钮,电念头先停滞后正转. PLC的变频器掌握电机正反转。
电动机的正反转PLC控制

02
输出设备
接触器线圈,用于控制电动机的正反转。
03
接线方式
根据PLC的输入输出端口配置,将按钮开关接入PLC的输入端口,将接
触器线圈接入PLC的输出端口,并确保接线正确、牢固。
正反转控制程序的编写
编程语言
使用PLC的编程语言,如Ladder Logic、Structured Text等,根据 控制要求编写程序。
重要性
在工业自动化生产线上,电动机的正反转控制是实现各种机械运动和自动化操作的关键 环节。
电动机正反转控制的电路原理
电路组成
主要包括电源、电动机、接触器、热继电器、按钮等部分组成。
工作原理
通过改变接触器主触点的状态,来改变电动机输入电源的相序,从而控制电动机的旋转方向。
电动机正反转控制的逻辑控制原理
控制逻辑
根据输入信号(正转、反转、停 止)编写相应的控制逻辑,通过 逻辑运算实现电动机的正反转控 制。
安全保护
在程序中加入必要的安全保护措 施,如互锁、急停等,确保设备 和人身安全。
程序调试与运行
调试步骤
01
通过模拟输入信号测试程序的正确性,检查电动机的正反转是
否符合控制要求,并调整程序中的参数以满足实际需求。
控制逻辑
通过PLC(可编程逻辑控制器)对电动机 的正反转进行控制,实现自动化操作。
VS
控制流程
输入信号→PLC内部程序处理→输出信号 →驱动接触器动作→电动机旋转方向改变 。
03
PLC实现电动机正反转控 制
输入输出设备配置与接线
01
输入设备
正转按钮、反转按钮、停止按钮,选择合适的按钮类型以满足控制需求。
安全注意事项
02
plc中电机正反转出现的问题_概述及解释说明

plc中电机正反转出现的问题概述及解释说明1. 引言1.1 概述本篇文章将探讨在PLC中电机正反转过程中可能出现的问题,以及通过详细的问题分析和解决方法来解释这些问题。
在工业自动化领域,PLC(可编程逻辑控制器)被广泛应用于控制各种电气设备,包括电机。
电机常常需要在正转和反转之间切换以完成不同的操作任务。
然而,在实际应用中,可能会遇到一些与电机正反转相关的问题,例如运行方向错误、无法完成预定动作等。
为了更好地了解这些问题,并提供解决方案,本文将详细介绍此类问题及其解决方法。
1.2 文章结构本文共分为五个部分进行阐述。
首先是引言部分,介绍了本文的背景和主要内容。
接下来是正文部分,将对PLC中电机正反转过程中遇到的具体问题进行分析,并提供相应的故障排除方法。
然后是问题分析与解决方法部分,重点针对常见问题进行深入分析并给出具体操作步骤。
紧接着是结论部分,总结文章全文内容并强调其实用性和重要性。
最后是参考文献部分,列举了所参考的文献和资源。
1.3 目的本文的目的是帮助读者更好地理解在PLC中电机正反转过程中可能出现的问题,并提供详细的解决方案。
通过对常见问题进行分析和解释,读者将能够准确识别和排除相关故障,确保电机正反转运行过程中的稳定性和可靠性。
同时,本文旨在提高读者对于PLC控制系统及其应用领域的理解,为工业自动化实践提供有益参考。
2. 正文电机正反转出现的问题通常涉及到PLC(Programmable Logic Controller,可编程逻辑控制器)的运行逻辑和电路连接故障。
在正常情况下,当PLC接收到相应输入信号时,电机应该按照程序设定的逻辑进行正转或者反转操作。
然而,有时候我们可能会遇到以下几种情况:1. 无法启动:当我们尝试启动电机时,它可能完全没有反应。
这可能是由于PLC 接收不到启动信号导致的。
首先我们需要检查电路连接是否正确,并确保信号线与PLC正确连接,以及相应输入信号是否已经被设置。
plc控制电机正反转课程设计

plc控制电机正反转课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理及其在电机控制中的应用。
2. 学生能掌握电机正反转控制电路的原理和接线方法。
3. 学生能解释PLC程序中涉及的逻辑运算和梯形图的表示方法。
技能目标:1. 学生能操作PLC编程软件,编写电机正反转的程序,并进行调试。
2. 学生能够独立完成电机正反转控制电路的接线工作,并确保安全可靠。
3. 学生能够运用已学知识解决实际工程问题,如分析并修正控制程序中的错误。
情感态度价值观目标:1. 学生能培养对自动化控制技术的兴趣和好奇心,认识到其在现代工业中的重要性。
2. 学生在学习过程中能够树立安全意识,遵循工程实践中的规范操作。
3. 学生通过小组合作,培养团队协作精神和沟通能力,尊重他人的意见和成果。
课程性质分析:本课程属于电气工程及其自动化专业的实践课程,旨在通过PLC控制电机正反转的教学,使学生将理论知识与实际操作相结合,提高解决实际问题的能力。
学生特点分析:学生处于大学二年级,已具备基础的电气工程知识和一定的实践能力,但对PLC控制系统的综合应用尚需加强。
教学要求:1. 理论联系实际,注重培养学生的动手能力和工程素养。
2. 教学过程中强调安全规范,提高学生的安全意识。
3. 采用任务驱动法,激发学生的主动学习兴趣,培养学生的创新思维。
二、教学内容1. 理论知识:- PLC工作原理及其在工业控制中的应用。
- 电机正反转控制电路设计原理。
- 梯形图编程方法及其在电机控制中的应用。
2. 实践操作:- PLC编程软件的使用与操作。
- 电机正反转控制程序的编写与调试。
- 控制电路的接线方法与安全操作规范。
3. 教学大纲:- 第一周:介绍PLC的基本原理,使学生了解其功能和在电机控制中的应用。
- 第二周:讲解电机正反转控制电路的设计原理,分析电路图。
- 第三周:学习梯形图编程方法,编写简单的电机控制程序。
- 第四周:实践操作,分组进行PLC编程和电机控制电路接线。
西门子s7-200PLC控制步进电机正反转

西门子s7-200PLC控制步进电机正反转用PTO怎么才能让步进电机走完一段距离后自动反转回来?外部没有开关答:1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(M0.X),当M.0X闭合,住程序中的反转开始运做.这样子就OK了。
2、用PTO指令让Q0.0ORQ0.1高速脉冲,另一个点如Q0.2做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。
3、程NETWORK1//用于单段脉冲串操作的主程序(PTO)//首次扫描时,将映像存放器位设为低//并调用子程序0LDSM0.1RQ0.01CALLSBR_0NETWORK1//子程序0开始LDSM0.0MOVB16#8DSMB67//设置控制字节://-选择PTO操作//-选择单段操作//-选择毫秒增加//-设置脉冲计数和周期数值//-启用PTO功能MOVW+500SMW68//将周期设为500毫秒。
MOVD+4SMD72//将脉冲计数设为4次脉冲。
ATCHINT_019//将中断例行程序0定义为//处理PTO完成中断的中断。
ENI//全局中断启用PLS0//激活PTO操作,PLS0=>Q0.0MOVB16#89SMB67//预载控制字节,用于随后的//周期改动。
NETWORK1//中断0开始//如果当前周期为500毫秒://将周期设为1000毫秒,并生成4次脉冲LDW=SMW68+500MOVW+1000SMW68PLS0CRETINETWORK2//如果当前周期为1000毫秒://将周期设为500毫秒,并生成4次脉冲LDW=SMW68+1000MOVW+500SMW68PLS0序注释。
PLC的编程实例电机正反转控制

按下红按钮时:停止电机的转动
注:电机不可以同时进行正转和反转,否则会损坏系统
联为智能教育-稻草人自动 化 .dcrauto
3. PLC的 I/O点的确定与分配
电机正反转控制PLC的I/O点分配表
PLC点名称 X0 X1 X2 Y0 Y1
连接的外部设备 红按钮 黄按钮 蓝按钮
PLC
X0 黄按钮
220~240V
X1 蓝按钮
X2
正转
Y0
KM1
24VDC 24VDC
反转
Y1
KM2
COM
COM
~220V ~220V
PLC控制电动机正反转外部接线图
联为智能教育-稻草人自动 化 .dcrauto
2.系统的控制要求
按动黄按钮时: ①若在此之前电机没有工作,则电机正转启动,并保持电机正转; ②若在此之前电机反转,则将电机切换到正转状态,并保持电机
PLC编程实例
一.电动机正反转控制
1.系统结构 利用PLC控制一台异步电动机的正反转. 输入端直流电源E由PLC内部提供,可直接将PLC电源端
子接在开关上.交流电源则是由外部供给.
联为智能教育-稻草人自动 化 .dcrauto
要求:
黄按钮按下:电机正转 蓝按钮按下:电机反转 红按钮按下:电机停止
红按钮
利用红色按钮同时切断正转和反转的控制通路.
X1
Y1 X2 X0
Y0
Y0
X2
Y0 X1 X0
Y1
Y1
( ED )
电机正反转的最终控制程序
0
ST X 1
1
OR Y0
2
AN/ Y1
PLC的编程实例电机正反转控制

电机正反转控制需要使用接触器来控制电机的电源接入,同时需要使用热继电 器来保护电机过载。
控制电路
PLC通过输出信号来控制接触器的吸合和断开,从而实现电机的正反转控制。
正反转控制的逻辑关系
反转逻辑:当PLC输出信号使接触 器KM2吸合时,电机开始反转。
注意:在正反转控制中,为了避 免电机在正反转切换时产生较大 的电流冲击,通常需要在正反转 切换时加入一定的延时。
05
总结与展望
PLC在电机控制中的应用价值
01
02
03
提高自动化水平
PLC技术能够实现电机控 制的自动化,减少人工干 预,提高生产效率。
增强稳定性
PLC具有高度的可靠性和 稳定性,能够保证电机控 制系统的长期稳定运行。
灵活的扩展性
PLC具有丰富的输入输出 接口,方便后期扩展和升 级,适应不同的电机控制 需求。
电机正转接触器(Q0.0)、电机反转 接触器(Q0.1)
编写正反转控制程序
程序结构
使用梯形图编程语言,通过串联和并联的逻辑关系,实现电机正反转控制。
正转控制逻辑
当按下正转启动按钮时,PLC接收到信号,输出正转接触器线圈得电,电机正转。
反转控制逻辑
当按下反转启动按钮时,PLC接收到信号,输出反转接触器线圈得电,电机反转。
反应。
04
实际应用中的问题与解决方 案
常见故障与排除方法
故障1
电机无法启动
排除方法
检查PLC输入输出接线是否正确,确保电机接 线良好,无短路或断路。
故障2
电机正反转切换不顺畅
排除方法
检查PLC程序逻辑,确保正反转切换条件设置正确, 无逻辑错误。
电机过载停机
plc控制的交流电动机正反转的变频调速原理

PLC控制的交流电动机正反转的变频调速原理1. 引言在工业自动化领域,PLC(可编程逻辑控制器)是一种常用的控制设备,而交流电动机的正反转和变频调速是工业生产中常见的需求。
本文将从PLC控制的角度,深入探讨交流电动机正反转的变频调速原理,以便读者能够全面理解这一关键技术。
2. 交流电动机正反转原理交流电动机的正反转控制是工业生产中常见的需求。
在PLC控制下,可以通过控制电动机的接线和使用正反转的信号来实现正反转功能。
具体来说,可以利用PLC的输出口和接触器来实现电动机的正反转控制,通过合适的程序设计和逻辑控制,实现电动机正反转的功能。
3. 变频调速原理在工业生产中,电动机的调速功能也十分重要。
传统的电动机调速方式需要通过改变电源频率或者通过机械齿轮传动,而这些方式都不够灵活和高效。
而利用变频器可以实现对电动机的调速,变频器通过改变输入电源的频率和电压,从而控制电动机的转速。
在PLC控制下,可以通过控制变频器的输入信号,实现对电动机的精准调速。
4. PLC控制交流电动机正反转的变频调速原理将交流电动机的正反转和变频调速结合在一起,可以实现更灵活、智能的控制方式。
在PLC控制下,可以通过编写合适的程序和逻辑框图,实现对电动机的正反转和变频调速的精准控制。
通过合理设计输入输出口,利用定时器、计数器等功能模块,可以实现对电动机启停、正反转和调速的自动化控制。
5. 个人观点和理解在工业生产中,PLC控制的交流电动机正反转的变频调速技术可以极大地提高生产效率和质量。
通过合理应用PLC技术,可以实现对电动机的智能化控制,提高设备的稳定性和可靠性,同时也符合节能减排的要求。
我认为PLC控制的交流电动机正反转的变频调速技术是非常有价值和意义的。
6. 总结本文通过对PLC控制的交流电动机正反转的变频调速原理进行了深入探讨,从正反转原理、变频调速原理到结合控制方法进行了全面的介绍。
通过本文的阅读,读者可以全面、深刻地理解这一关键技术,为工业生产中的实际应用提供了理论和实践的指导。
PLC控制电机正反转

作业名称:PLC控制电动机正反转指导老师:周力班级:机械2093姓名:张悦学号:30921013182012年5月摘要三相异步电动机一般采用降压起动、能耗制动。
针对传统的继电器一接触器控制的降压起动、能耗制动方法存在的不足,将OMRON公司的CPM2*型可编程序控制器(PLC)与接触器相结合,用于三相异步电动机的Y一△降压起动、能耗制动控制,改进后的方法克服了传统方法手工操作复杂且不够可靠的缺点,控制简单易行。
关键词:三相异步电动机;PLC控制系统;Abstrcutthe Three-phase asynchronous motor step-down start, generally USES the braking energy. In traditional relay a contact device control step-down start braking energy, the shortcomings of the methods, the company will CPM2 * type OMRON PLC and contactor, combining for three-phase asynchronous motor step-down start a train of Y, braking energy control, the improved method can overcome the disadvantage of traditional method manual operation complex and not reliable enough shortcomings, simple and easy to control.Key words: the three-phase asynchronous motor; PLC control system可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PLC 控制的电机正反转
三相电机通过简单换相就可以实现旋转方向的改变。
因此在实际应用中大多通过两个接触器实现正反转控制。
需要注意的是两个接触器不能同时导通!否则会引起短路故障。
因此需要通过必要的手段进行保护。
根据现在大多系统实现plc控制,从软硬件两方面对保护的实施进行说明。
1、硬件防护这是传统且常见的防护措施。
电气原理图如下所示。
器件K2和K3为24V继电器,K4和K5为交流接触器。
K2和K3由PLC输出点控制吸合动作。
K4和K5的常闭辅助触点分别串联接入对方的电路。
电机正转时K2吸合,K5辅助触点常闭导通,K4线圈得电,K4触点吸合,电机开始正转。
同时K4常闭辅助触点断开,反
转回路无法导通。
实现保护的目的。
反转也是同理。
2、软件防护软件防护主要是在程序上实现正反转互锁。
梯形图编程如下图所示。
确保在某一方向运行时,另一方向回路不会导通。
这里使用定时器主要为了换向延时,电机如果是自由停车需要一定的时间才能静止,然后再反向。
具体可以根据实际应用情况更改不同的时间。
如果是带有刹车制动的电机,那么每次启动前要释放刹车,要确保刹车释放后才能启动电机,此处也可以使用延时,不过是启动延时。