立体几何知识点与例题讲解、题型、方法技巧
高中立体几何知识点及经典题型
高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。
本文将介绍高中立体几何的主要知识点和经典题型。
知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。
2. 参数方程和一般式方程:用参数或方程表示几何体的方法。
3. 立体图形的投影:点、直线、平面在投影中的表现形式。
4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。
5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。
6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。
7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。
8. 空间立体角:球、球台、球扇等形体的角度关系。
9. 空间的切线:曲线在空间中的切线方程及其性质。
10. 空间的幂:圆、球及其他形体的幂的概念和性质。
经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。
2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。
3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。
4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。
5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。
以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。
希望本文对高中立体几何知识点和题型的介绍能够帮助到你。
祝你在学习立体几何时取得好成绩!。
立体几何大题方法和技巧讲解
立体几何大题方法与技巧讲解空间向量问题基础知识:线面平行:1.线面平行的判定定理:如果平面外一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.2.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个相交那么这条直线和交线平行.3.平行平面的判定定理:如果一个平面内两条相交的直线都平行于另一平面,那么这两个平面互相平行.4.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.5.性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.线面垂直:1.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.2.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.3.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.4.两平面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面.证明方法:如何证明线面平行常用方法①构造三角形中位线,线面位置落差大时(平移法)② 构造平行四边形, 线面位置相当时 ③ 通过面面平行,证明线面平行 ● 如何证明线面垂直 1) 题目中给出的垂直条件2) 特殊的图形(菱形,正方形,等腰三角形,等边三角形等等) 3) 勾股定理证明垂直(偶尔利用相似证明垂直) 4) 通过面面垂直证明线面垂直 ● 空间向量建系问题① 找出和底面垂直的直线 ② 找出底面相垂直的直线 ③ 建立直角坐标系 ● 三个角异面直线所成的角的范围]90,0(00 两异面直线的方向向量分别为 ,2121cos l l l l ⋅=θ直线和平面所成的角的范围]90,0[0, 直线的方向向量为,平面的法向量为nl nl ⋅==φθcos sin平面和平面所成的角的范围]180,0[00, 两个平面的法向量分别为,2121cos n n n n⋅=φθ1l 2l θl nθ1n 2n如果面面所成的角为锐角,则2121cos cos n n n n ⋅==φθ,如果面面所成的角为钝角,则2121cos cos n n n n ⋅=-=φθ是否存在一点问题线段BD 上是否存在点M ,使得直线//CE 平面AFM 即证:线CE 和法向量垂直 判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF 即证:两个面的法向量垂直证明 直线FG (不在平面BCD 里面)与平面BCD 相交. 即证:线和面的法向量不垂直例子1.(本小题满分14分)如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,90BAD ∠=︒,1AB AD ==,3BC =.(Ⅰ)求证:AF CD ⊥;(Ⅱ)求直线BF 与平面CDE 所成角的正弦值;(Ⅲ)线段BD 上是否存在点M ,使得直线//CE 平面AFM ? 若存在,求BMBD的值;若不存在,请说明理由. 1.(本小题满分14分)解:(Ⅰ)证明:因为ADEF 为正方形,所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD , 且平面ADEF平面ABCD AD =,所以AF ⊥平面ABCD .所以AF CD ⊥.………………4分EDCBA F(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以(0,0,0),(1,0,0),(1,3,0),(0,1,0),(0,1,1),(0,0,1)A B C D E F , 所以(1,0,1),(1,2,0),(0,0,1)BF DC DE =-==. 设平面CDE 的一个法向量为(,,)x y z =n ,则0,0.DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,0. x y z +=⎧⎨=⎩令2x =,则1y =-, 所以(2,1,0)=-n .设直线BF 与平面CDE 所成角为θ, 则|2(1)|10sin |cos ,|552BF θ⨯-=〈〉==⨯n .……………….9分 (Ⅲ)设( (01])BMBDλλ=∈,, 设()111,,M x y z ,则()1111,,(1,1,0)x y z λ-=-, 所以1111,,0x y z λλ=-==,所以()1,,0M λλ-, 所以()1,,0AM λλ=-.设平面AFM 的一个法向量为000(,,)x y z =m ,则0,0.AM AF ⎧⋅=⎪⎨⋅=⎪⎩m m因为()0,0,1AF =,所以000(1)0,0. x y z λλ-+=⎧⎨=⎩令0x λ=,则01y λ=-,所以(,1,0)λλ=-m .在线段BD 上存在点M ,使得//CE 平面AFM 等价于存在[0,1]λ∈,使得0CE ⋅=m .z D y DxDEDCB A FM因为()1,2,1CE =--,由0CE ⋅=m , 所以2(1)0λλ---=, 解得2[0,1]3λ=∈, 所以线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =.……………….14分2 .主要是C 点的坐标怎么表示(一是画出底面的平面图找出相应关系,二是利用向量平行BA CD 21=) (本小题14分)如图,四边形ABCD 和三角形ADE 所在平面互相垂直,AB ∥CD ,AB BC ⊥,60DAB ∠=,4AB AD ==,AE DE ⊥,AE DE =,平面ABE 与平面CDE 交于EF . (Ⅰ)求证:CDEF ;(Ⅱ)若EF CD =,求二面角--A BC F 余弦值;(Ⅲ)在线段BC 上是否存在点M 使得AM EM ⊥?若存在,求BM 的长;若不存在,说明理由. (17)(共14分)解:(Ⅰ)在四边形ABCD 中,AB ∥CD . 因为AB ⊂平面ABE ,CD ⊄平面ABE , 所以CD ∥平面ABE .因为CD ⊂平面CDE ,且平面ABE平面CDE EF =,所以CD ∥EF . ........4分(Ⅱ)如图,取AD 的中点N ,连接BN ,EN .在等腰△ADE 中,.EN AN ⊥因为平面ADE ⊥平面ABCD ,交线为AD ,又EN AD ⊥,所以EN ⊥平面ABCD .所以.EN BN ⊥ 由题意易得.AN BN ⊥如图建立空间直角坐标系N xyz -,则(0,0,0),N (2,0,0)A ,(0,23,0)B ,(3,0)C -, (2,0,0)D -,(0,0,2)E .因为EF CD =,所以(3,2)F -.设平面BCF 的法向量为(,,)x y z =,n (1,3,2),(3,3,0),BF BC =--=-- 则0,0,BF BC ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,330.x y z x y ⎧--+=⎪⎨-=⎪⎩ 令3y =1,1x z =-=.于是(3,1)=-n .又平面ABCD 的法向量为(0,0,2)NE =,所以5cos ,5NE NE NE⋅〈〉==n n n 由题知二面角--A BC F 为锐角, 所以二面角--A BC F 的余弦值为5分 (Ⅲ)不存在满足条件的点M ,使AM EM ⊥,理由如下:若AM EM ⊥,则0EM AM ⋅=.因为点M 为线段BC 上的动点,设(01),CM tCB t =≤≤,(,,0)M u v .则(3,3,0)(3,3,0)u v t +-=, 解得(33,3+3,0)M t t -.所以(33,33,2)EM t t =-+-,(35,33,0)AM t t =-+. 所以(33,33,2)(35,33,0)=0EM AM t t t t ⋅=-+-⋅-+. 整理得22330t t -+=,此方程无实根.所以线段BC 上不存在点M ,使AM EM ⊥. ............................14分3.如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直, //AF DE ,DE AD ⊥,AD BE ⊥,112AF AD DE ===,2AB =.(Ⅰ)求证://BF 平面CDE ; (Ⅱ)求二面角B EF D --的余弦值;(Ⅲ)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求出BQBE的值,若不存在,说明理由. 3.(本小题满分14分)解:(Ⅰ)由底面ABCD 为平行四边形,知//AB CD ,又因为AB ⊄平面CDE ,CD ⊂平面CDE ,所以//AB 平面CDE . ……………… 2分DABCEF同理//AF 平面CDE , 又因为ABAF A =,所以平面//ABF 平面CDE . ……………… 3分又因为BF ⊂平面ABF ,所以//BF 平面CDE . ……………… 4分(Ⅱ)连接BD ,因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD . 则DE DB ⊥. 又因为DE AD ⊥,AD BE ⊥,DEBE E =,所以AD ⊥平面BDE ,则AD BD ⊥.故,,DA DB DE 两两垂直,所以以,,DA DB DE 所在的直线分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(1,0,0)A ,(0,1,0)B ,(1,1,0)C -,(0,0,2)E ,(1,0,1)F , 所以(0,1,2)BE =-,(1,0,1)EF =-,(0,1,0)=n 为平面DEF 的一个法向量. 设平面BEF 的一个法向量为(,,)x y z =m ,由0BE ⋅=m ,0EF ⋅=m ,得20,0,y z x z -+=⎧⎨-=⎩令1z =,得(1,2,1)=m . ………………8分所以6cos ,||||3⋅<>==m n m n m n .如图可得二面角B EF D --为锐角,D A B CEyxzF所以二面角B EF D --6.………………10分(Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩………………12分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, (13)分解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. …… 14分4(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===,点,,D E F 分别为棱11111,,AC B C BB 的中点. (Ⅱ)求证:1AC ∥平面DEF (Ⅱ)求证:平面1ACB ⊥平面DEF ;(Ⅲ)在线段1AA 上是否存在一点P ,使得直线DP 与平面1ACB 所成的角为300?如果存在,求出线段AP 的长;如果不存在,说明理由. 4.(共14分)解:(Ⅰ)方法一:连结1BC因为,D E 分别为11A C ,11B C 中点, 所以11//DE A B 又因为11//AB A B ,所以//DE AB因为,E F 分别为11B C ,1B B 中点,所以1//EF BC 又因为DEEF E =DE ⊂平面DEF ,EF ⊂平面DEF AB ⊂平面1ABC ,1BC ⊂平面1ABC所以平面1ABC 平面DEF又1AC ⊂平面1ABC ,所以1AC 平面DEF方法二:取1AA 中点为G ,连结FG 由11AA BB 且11AA BB =又点F 为1BB 中点,所以11FG A B又因为,D E 分别为11A C ,11B C 中点,所以11DE A B所以DEFG所以,,,D E F G 共面于平面DEF 因为D ,G 分别为111,AC AA 中点, 所以1AC DG1AC ⊄平面DEFDG ⊂平面DEF所以1AC 平面DEF方法三:在直三棱柱111ABC A B C -中,1CC ⊥平面ABC 又因为AC BC ⊥以C 为原点,分别以1,,CA CB CC 为x 轴,y 轴,z 轴,建立空间直角坐标系C xyz -由题意得1(2,0,0),(0,0,2),(1,0,2)A C D ,(0,1,2),(0,2,1)E F .所以(1,1,0)DE =-,(0,1,1)EF =-设平面DEF 的法向量为111(,,)x y z =n ,则00DE EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即111100x y y z -+=⎧⎨-=⎩ 令11x =,得111,1y z ==于是(1,1,1)=n 又因为1(2,0,2)AC =-所以12020AC ⋅=-++=n 又因为1AC ⊄平面DEF ,所以1AC 平面DEF(Ⅱ)方法一:在直棱柱111ABC A B C -中,1CC ⊥平面ABC因为AC ⊂ABC ,所以1CC AC ⊥ 又因为AC BC ⊥,且1CC BC C =所以AC ⊥平面11BB C C EF ⊂平面11BB C C ,所以AC EF ⊥又1BC CC =,四边形11BB C C 为正方形所以11BC B C ⊥ 又1BC EF ,所以1B C EF ⊥又AC EF ⊥,且1AC B C C =所以EF ⊥平面1ACB又EF ⊂平面DEF所以平面1ACB ⊥平面DEF方法二:设平面1ACB 的法向量为222(,,)x y z =m ,1(2,0,0),(0,2,2)CA CB == 100CA CB ⎧⋅=⎪⎨⋅=⎪⎩m m ,即22220220x y z =⎧⎨+=⎩ 令21y =,得220,1x z ==-于是(0,1,1)=-m (1,1,1)(0,1,1)0⋅=⋅-=n m即⊥n m ,所以平面1ACB ⊥平面DEF (Ⅲ)设直线DP 与平面1ACB 所成角为θ,则30θ=︒设1(01)AP AA λλ=≤≤,则(0,0,2)AP λ=(1,0,22)DP λ=-所以1cos sin302DP DP θ⋅===︒=m m 解得12λ=或32λ=(舍) 所以点P 存在,即1AA 的中点,1AP =5.(本小题满分14分)在三棱柱111ABC A B C -中,底面ABC 是正三角形,侧棱1AA ⊥底面ABC . D ,E 分别是边BC ,AC的中点,线段1BC 与1B C 交于点G ,且4AB =,1BB =(Ⅰ) 求证://EG 平面1AB D ;(Ⅱ) 求证:1BC ⊥平面1AB D ;(Ⅲ) 求二面角1A B C B --的余弦值.5.(本小题满分14分)(I)因为E 为AC 中点,G 为1B C 中点.所以1//EG AB . 又因为EG ⊄平面1AB D ,1AB ⊂平面1AB D ,所以//EG 平面1AB D . ………….4分(Ⅱ) 取11B C 的中点1D ,连接1DD .显然DA ,DC ,1DD 两两互相垂直,如图,建立空间直角坐标系D xyz -, 则(0,0,0)D,A ,(0,2,0)B -,1(0,B -,1C, E ,(0,2,0)C .所以1(0,DB =-,(2DA =,1BC =.又因为12300400BC DA ⋅=+⨯+⨯=,1100(2)40BC DB ⋅=⨯+-⨯+=,所以111,BC DA BC DB ⊥⊥.又因为1DA DB D =,所以1BC ⊥平面1AB D . ………….9分 (Ⅲ)显然平面1B CB 的一个法向量为1(1,0,0)=n .设平面1AB C 的一个法向量为2(,,)x y z =n ,又(AC =-,1(0,4,B C =-, 由2210,0,AC BC ⎧⋅=⎪⎨⋅=⎪⎩n n 得20,40.y y⎧-+=⎪⎨-=⎪⎩设1x =,则y=,z =,则2=n.1B所以121212cos,⋅<>===n nn nn n设二面角1A B C B--的平面角为θ,由图可知此二面角为锐二面角,所以cos10θ=. ………….14分。
高考立体几何知识点与题型精讲
高考立体几何知识点与题型精讲在高考数学中,立体几何是一个重要的板块,它不仅考查学生的空间想象能力,还对逻辑推理和数学运算能力有较高要求。
接下来,咱们就一起深入探讨一下高考立体几何的知识点和常见题型。
一、知识点梳理1、空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
(2)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2、空间几何体的表面积和体积(1)圆柱的表面积:S =2πr² +2πrl (r 为底面半径,l 为母线长)。
体积:V =πr²h (h 为高)。
(2)圆锥的表面积:S =πr² +πrl 。
体积:V =1/3πr²h 。
(3)球的表面积:S =4πR² 。
体积:V =4/3πR³ 。
3、空间点、直线、平面之间的位置关系(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
5、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
6、直线与平面垂直的判定与性质(1)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(2)性质定理:垂直于同一个平面的两条直线平行。
7、平面与平面垂直的判定与性质(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
高中数学立体几何解题方法与技巧
高中数学立体几何解题方法与技巧高中数学立体几何是数学的一个重要分支,它研究的是空间中的图形、体积、表面积以及它们之间的关系。
学好立体几何,需要掌握一些解题方法与技巧。
下面将介绍一些常用的解题方法与技巧。
一、立体几何的基本概念与性质:在学习立体几何之前,首先需要掌握一些基本概念与性质。
例如:1.空间几何图形的基本要素:点、直线、平面。
2.空间几何体的基本要素:线段、直线、面、多面体等。
3.空间几何体的性质与关系:例如四边形的内角和等于360度,平面与直线的位置关系等。
二、图形的投影与视图:解题时,往往需要在二维平面上进行推导与计算。
因此,需要了解图形的投影与视图的概念与方法。
1.图形的平面投影:例如将三维图形的投影投到一个平面上,可以简化问题的分析与计算。
2.三视图的绘制:根据题目中的给定条件,绘制三个视图,有助于理清问题的关系和结构。
三、平行与相似:平行和相似是解决立体几何问题常用的关键性质。
掌握平行线与平行面的性质,以及相似三角形的性质,对解题有很大帮助。
1.平行线及其性质:例如平行线的万能定理、内线定理、等角对内线等。
2.平行面及其性质:例如平行面的性质、平行面截平行线的性质等。
3.相似三角形及其性质:例如相似三角形的比例定理、角平分线定理、海伦公式等。
四、体积与表面积:在解体积与表面积的问题时,需要掌握各种几何体的计算公式与基本相应的性质。
1.体积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的体积公式与相关性质。
2.表面积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的表面积公式与相关性质。
五、解题的方法与技巧:1.运用三角形的相似性质:当我们遇到复杂的几何体时,可以通过寻找相似三角形来简化问题的分析。
2.运用等高线的思想:当题目中出现高度或等高的条件时,可以利用等高线的思想来求解。
3.利用平行投影和垂直投影:平行投影和垂直投影是解决立体几何问题常用的方法,可以通过不同的投影方式简化问题的分析与计算。
掌握初中数学解题技巧轻松解答立体几何问题
掌握初中数学解题技巧轻松解答立体几何问题数学作为一门重要的学科,对于学生的思维能力和逻辑推理能力有着很大的锻炼作用。
在初中阶段,立体几何是数学中的一个重要内容,涉及到诸如平面图形的投影、表面积、体积等概念。
本文将介绍一些初中数学解题技巧,帮助学生轻松解答立体几何问题。
一、认识立体几何立体几何是研究空间内各种几何图形的性质、关系及其应用的数学分支。
在解答立体几何题目时,我们首先要认识不同的几何体,如长方体、立方体、圆柱体、圆锥体、球体等,并清楚它们的特征和性质。
只有对于几何体的基本概念有着清晰的理解,才能更好地解决问题。
二、运用平面图形解决立体几何问题在解答立体几何问题时,从平面图形着手可以更好地理解和分析空间内的问题。
可以通过将三维立体进行展开,转化为二维平面图形,从而更方便地利用数学知识解题。
例如,在计算某个几何体的表面积或体积时,可以将其展开成多个平面图形,并在计算之前对这些平面图形进行分析和理解。
通过这种方法,可以更准确地计算表面积或体积。
三、善用推理和演绎法在解答立体几何问题时,我们经常需要通过推理和演绎来找到解题的关键。
对于已知条件,我们可以通过逻辑推理来得出结论。
例如,在求解一个几何体的体积时,我们可以根据已知的条件和已有的数学知识来推导出公式或运算过程。
通过运用推理和演绎法,可以简化解题过程,更快速地得到答案。
四、掌握解题技巧1. 利用相似性质解题:在解决一些立体几何问题时,我们可以通过观察几何形状的相似性质,从而推导出一些有用的结论。
例如,当我们在求解两个几何体的比例关系时,可以通过观察它们的相似性质,利用比例关系得到准确的答案。
2. 运用比例解题:比例是立体几何问题中常用的解题方法之一。
在求解几何体的体积或表面积时,我们可以利用两个几何体之间的比例关系,通过已知条件求解未知量。
同时,对于复杂的立体几何问题,我们也可以通过构建等价的简化模型来利用比例解决问题。
3. 利用数学公式解题:数学是解决立体几何问题的重要工具。
高中数学解题技巧之立体几何求解
高中数学解题技巧之立体几何求解立体几何是高中数学中的一个重要部分,它涉及到空间中的图形和体积计算。
在解决立体几何问题时,掌握一些解题技巧是非常重要的。
本文将介绍一些常见的立体几何题型,并重点讲解解题的方法和技巧,帮助读者更好地理解和应用。
一、平行四边形面积求解平行四边形是立体几何中常见的图形,求解其面积是我们经常遇到的问题。
当给定平行四边形的底边长度和高度时,我们可以利用以下公式计算面积:面积 = 底边长度 ×高度例如,已知一个平行四边形的底边长为6cm,高度为4cm,那么它的面积可以通过计算6cm × 4cm = 24cm²得出。
二、立体体积求解在立体几何中,计算体积是一个常见的问题。
以下是一些常见的立体体积求解方法:1. 直方体体积求解直方体是一种六个面都是矩形的立体图形。
当我们知道直方体的长、宽和高时,可以通过以下公式计算其体积:体积 = 长 ×宽 ×高例如,已知一个直方体的长为5cm,宽为3cm,高为2cm,那么它的体积可以通过计算5cm × 3cm × 2cm = 30cm³得出。
2. 圆柱体体积求解圆柱体是一个底面和顶面都是圆形的立体图形。
当我们知道圆柱体的底面半径和高时,可以通过以下公式计算其体积:体积= π × 半径² ×高例如,已知一个圆柱体的底面半径为4cm,高为6cm,那么它的体积可以通过计算3.14 × 4cm × 4cm × 6cm = 301.44cm³得出。
三、立体几何题型举例1. 题目:已知一个正方体的边长为3cm,求其体积和表面积。
解析:正方体的体积可以通过边长的立方计算得出,即3cm × 3cm × 3cm =27cm³。
而正方体的表面积可以通过六个面的面积之和计算得出,即6 × (3cm ×3cm) = 54cm²。
立体几何知识、方法、问题总结
立体几何知识、方法、问题总结一、基本知识与方法:1、 位置和符号 ①空间两直线:平行、相交、异面;判定异面直线用定义或反证法②直线与平面: a ∥α、a ∩α=A (a ⊄α) 、a ⊂α ③平面与平面:α∥β、α∩β=a2、常用定理: 4个公理,3个推论①⇒线线平行:b a b a a ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα;b a b a ////⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα;bc c a b a //////⇒⎭⎬⎫ ;b a b a //⇒⎭⎬⎫⊥⊥αα②⇒线面平行:ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂;αββα////a a ⇒⎭⎬⎫⊂; ③⇒面面平行:βαββαα////,//,⇒⎪⎭⎪⎬⎫=⋂⊂⊂b a O b a b a ;βαβα//⇒⎭⎬⎫⊥⊥a a ;④⇒线线垂直:b a b a ⊥⇒⎭⎬⎫⊂⊥αα;直线b a ,所成角︒90;c b c a b a ⊥⇒⎭⎬⎫⊥// ⑤⇒线面垂直:ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂l b l a l Ob a b a ,,;βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l ,;βαβα⊥⇒⎭⎬⎫⊥a a //;αα⊥⇒⎭⎬⎫⊥b a ba //⑥⇒面面垂直:二面角成︒90;βααβ⊥⇒⎭⎬⎫⊥⊂a a ;3、求空间角①异面直线所成角θ的求法:(1)范围:(0,]2πθ∈; (2)求法:平移以及补形法、向量法。
如: (1)正四棱锥ABCD P -的所有棱长相等,E 是PC 的中点,那么异面直线BE与PA 所成的角的余弦值等于____(答:33); (2)在正方体AC 1中,M 是侧棱DD 1的中点,O 是底面ABCD 的中心,P 是棱A 1B 1上的一点,则OP 与AM 所成的角的大小为___ _(答:90°); ②直线和平面所成的角: (1)范围[0,90] ;(2)斜线与平面中所有直线所成角中最小的角。
:APBCFED(3)求法:作垂线找射影或求点线距离 (向量法);如:(1)在正三棱柱ABC-A 1B 1C 1中,已知AB=1,D 在棱BB 1上,BD=1,则AD 与平面AA 1C 1C 所成的角正弦值为______(答:46); (2)正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、C 1D 1的中点,则棱 A 1B 1 与截面A 1ECF所成的角的余弦值是______(答:13);③ 二面角的平面角:(1)范围:[0,]π, (2)求法4、平行六面体→直平行六面体→长方体→正四棱柱→正方体间联系三棱锥中:侧棱长相等(侧棱与底面所成角相等)⇔顶点在底面射影为底面外心;侧棱两两垂直(两对对棱垂直)⇔顶点在底面射影为底面垂心;斜高相等(侧面与底面所成相等)⇔顶点在底面射影为底面内心;正三角形四心(内心、外心、垂心、重心)? 内切、外接圆半径? 正三棱锥与正四面体的关系5、平面图形翻折(展开):注意翻折(展开)后在同一平面图形中角度、长度不变; 如:如图甲,在直角梯形PBCD 中,//PB CD ,CD BC ⊥,2BC PB CD ==,A 是PB的中点. 现沿AD 把平面PAD 折起,使得PA AB ⊥(如图乙所示),E 、F 分别为BC 、AB 边的中点. (Ⅰ)求证:PA ⊥平面ABCD ; (Ⅱ)求证:平面PAE ⊥平面PDE ;(Ⅲ)在PA 上找一点G ,使得//FG 平面PDE .6、等积法⇒关键是要找到与面垂直的直线,即底面上的高如:如图, ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD ,AB =4a ,BC = CF =2a , P 为AB 的中点.(1)求证:平面PCF ⊥平面PDE ;图甲图乙左视图主视图(2)求四面体PCEF的体积.7、三视图:长对正,宽相等,高平齐⇒以两两互相垂直的光线去投影,在三个投影面上留下的影子即为三视图如:(1)如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的表面积为 . (答:233+)(2)已知球O点面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=3,则球O体积等于___________. (π29)注:三棱锥是长方体或正方体的一部分(2222cbaR++=)8、常用转化思想: ①构造四边形、三角形把问题化为平面问题②将空间图展开为平面图③割补法④等体积转化⑤线线平行⇔线面平行⇔面面平行⑥线线垂直⇔线面垂直⇔面面垂直⑦有中点等特殊点线,用“中位线、重心”转化.二、基本问题与方法:1、三垂线定理注重推导过程。
高考数学中立体几何的考点及解题技巧
高考数学中立体几何的考点及解题技巧高考数学中的立体几何是相对来说比较难的一个环节,也是考生必须要掌握的内容之一。
本文将针对高考数学中立体几何的考点和解题技巧做一个详尽的论述。
1. 空间基本概念在解决空间问题时,首先需要掌握的就是空间基本概念。
包括点、线、面的概念及其相关性质。
比如平行四边形的对角线相交于点O,则线段OA、OB互相平分且相等。
2. 立体图形的投影立体图形的投影是指将三维的立体图形在某一平面上产生的影像。
在这里,我们主要讲解直线与平面的投影,并通过题目的解答来加深记忆。
3. 三视图三视图是三维立体图形的三个面正、左、俯视图。
在解决题目时,需要掌握三维图形和其三视图之间的对应关系,想象立体图形在视线方向上的不同表现,来确定视角和投影位置。
特别是在椎体、金字塔、棱锥等图形的题目中,需要考生准确细致地确定各部分的位置。
4. 空间向量空间向量是指空间中有大小和方向的量,在立体几何中经常使用,可以用于排除无关信息,简化问题。
5. 立体几何解题的思路立体几何解题的方法及思路与平面几何有些不同。
在立体几何中,有的题目需要平面几何的方法来解决;某些题目需要分解为几个简单的平面图形,再运用三角函数来解决;有些题目需要利用向量的性质,优化模型。
因此,在解答的过程中,需要先明确各部分关系,做到想象明确,思路清晰。
高考数学中立体几何的考点及解题技巧就是如此,需要同学们根据自已的掌握程度,不断深化学习。
建议同学们多进行课堂上的实际解答,熟练掌握相关理论知识。
除此之外,同学们还需要养成良好自习习惯,在课外时间多加练习,巩固学习成果。
相信在充分掌握理论知识的情况下,同学们一定可以取得优异的高考成绩。
经典高考立体几何知识点和例题(理科学生用)讲解
高考立体几何知识点总结整体知识框架:一、空间几何体(一)空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二)几种空间几何体的结构特征1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征 2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高) 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
第四讲-立体几何题型归类总结
第四讲-立体几何题型归类总结高中数学-立体几何第四讲立体几何题型归类总结一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
斜棱柱底面是正多边形的棱柱正棱柱直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的垂线上,这样的棱锥叫做正棱锥。
3.球球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。
注:球的有关问题转化为圆的问题解决。
球面积、体积公式:S球=4πR,V球=4/3πR³(其中R为球的半径)二、平行垂直基础知识网络平行与垂直关系可互相转化平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β垂直关系线线平行判定线线垂直性质判定性质判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法1.求异面直线所成的角θ∈(0°,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角度$\theta\in[0^\circ,90^\circ]$:关键在于找到“两足”:垂足和斜足。
解题步骤:1.找到斜线与其在平面内的射影的夹角(注意三垂线定理的应用);2.证明所找到的角度就是直线与平面所成的角度(或其补角)(常常需要证明线面垂直);3.通过解直角三角形,计算线面角度。
立体几何题的解题技巧
立体几何题的解题技巧立体几何是数学中的一个重要分支,主要研究与空间有关的图形、物体以及它们之间的关系。
解立体几何题需要掌握一定的几何知识和解题技巧。
在本文中,将介绍一些常用的解题技巧,并通过一些例题来加深理解。
一、了解基本几何概念在解立体几何题前,首先要对一些基本几何概念进行了解。
比如,需要熟悉各种几何体的定义、性质和性质定理。
同时,要掌握几何图形的投影、展开和截面等概念。
只有对这些基本概念有清晰的理解,才能更好地解答问题。
二、画准确的图形画图是解立体几何题的基础,准确的图形可以帮助我们更好地理解题目。
在画图时,要准确地根据题目中给出的要求,按照比例和尺寸画出几何体。
三、根据已知条件引入辅助线常常会遇到一些复杂的立体几何题,此时可以通过引入辅助线来简化问题。
辅助线有时可以分解图形、构造相似三角形或等腰三角形等。
通过引入辅助线,可以将原问题转化为更简单的几何问题。
四、利用相似关系或等价关系求解在解立体几何题时,经常会用到相似关系或等价关系来求解。
例如,利用相似三角形的性质可以求解连线比等问题,利用等腰三角形的性质可以求解边长、高度等问题。
因此,在解题过程中要善于利用相似关系和等价关系。
五、利用平面几何知识辅助解题立体几何和平面几何之间存在一定的联系,有时可以通过运用平面几何知识来辅助解决立体几何问题。
例如,平面几何中的角平分线定理可以在立体几何中用来求解面的分割线等问题。
六、注意投影关系与可视性在有关几何体的投影、展开以及截面的问题中,需要注意投影关系和可视性。
投影关系是指物体在不同位置或角度下的投影特征。
在解题过程中要善于利用投影关系来推导或求解。
另外,要考虑立体几何体的可视性,即在不同视角下,哪些部分能够被看到,哪些部分被遮挡住。
七、灵活运用体积和表面积计算公式在解立体几何题时,经常需要计算体积和表面积。
要熟练掌握各种几何体的体积和表面积计算公式,并在解题过程中灵活运用。
有时可以通过求两个几何体的体积或表面积之差来解题。
立体几何知识归纳+典型例题+方法总结
立体几何知识归纳+典型例题+方法总结一、知识归纳1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相PO A a交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1)棱柱a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱PαβθM A B O柱}⊃{正方体}.{直四棱柱}I {平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面l abc多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-. ②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件. (简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). O BDO R注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心, 则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r , 则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标). ①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a .222321a a a ++==(向量模与向量之间的转化:a a =⇒•=空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅•>=<ρρρρρρ(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n . ②异面直线间的距离d = (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③直线AB 与平面所成角的正弦值sin ||||AB m AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).d.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB二、经典例题考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++u u u r u u u r u u u r u u u r , 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r .答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r ,∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r ,∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r 可以用平面CDE 内的两个不共线的向量DE u u u r 和DC u u u r 线性表示. 答案:证明:如图,因为M 在BD 上,且13BM BD =, 所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133AN AD DE =+u u u r u u u r u u u r , 又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r 1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.A B C A B C E x yz4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄,PAD EA 平面⊂∴BM ∥PAD 平面(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥(3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32解法二: (1)ΘM 是PC 的中点,取PD 的中点E ,则ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =3∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图, 则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C .由M 为PB 中点,∴33(1,M . ∴33((3,0,3),DM PA ==u u u u r u u u r (0,2,0)DC =u u u r . ∴333203)0PA DM ⋅=⨯-=u u u r u u u u r ,03200(3)0PA DC ⋅=⨯+⨯-=u u u r u u u r .∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .(III)33(),(3,1,0)CM CB ==u u u u r u u u r .令平面BMC 的法向量(,,)n x y z =r , 则0n CM ⋅=u u u u r r ,从而x +z =0; ……①, 0n CB ⋅=u u u r r 30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(3,1)n=-r . 由(II)知平面CDM 的法向量可取(3,0,3)PA =u u u r , ∴2310cos ,||||56n PA n PA n PA ⋅-<>=⋅u u u r r u u u r r u u u r r 10法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MC CD C =I ,则PA MCD ⊥平面(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ∆中,易得PA=PB ===,cos AB PBA PB ∠===,cos cos()5NMB PBA π∠=-∠=-故,所求二面角的余弦值为5-点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利1D A B CD E 1A 1B 1C于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90︒. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=︒.于是111,DF DD D F ==易得Rt Rt BCE CDF ∆≅∆,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .∵1,B CED D BCE V V --=即1111113232CE D F h BE BC DD ⋅⋅⋅=⋅⋅⋅,∴11CE D F h BE BC DD ⋅⋅=⋅⋅,即=,∴4h =.故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r .∵111010DA D E ⋅=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r则异面直线1D E 与1A D 所成的角为90︒.(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则(,,)x y z =n|||cos ,|cos 45||||2⋅<>===︒=m n m n m n ∴222z x y =+. ①由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即10DC ⋅=u u u u r n ∴20y z -= ② 由①、②,可取(3,1,2)=n 又(1,0,0)CB =u u u r ,所以点B 到平面1D EC 的距离||36422CB d ⋅===u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°.(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB设平面BEF 的法向量x z y x n -=则),,,(0,02==++y z y ,则可取)0,1,2(=n ,∴向量)1,0,2(=n DB 和所成角的余弦为1010)2(21220222222=-++-+⋅. 即BD 和面BEF 所成的角的余弦1010. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=CP ),12,11,121(mm m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求.8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin 62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 02222a a AB VD a a a a θ⎛⎫=-=-++ ⎪ ⎪⎝⎭u u u r u u u r ,,,,··即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r,··nn .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是πsin 62BC BC θ===u u u r u u u r n n ··,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r ,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0AB DV θ⎛⎫== ⎪ ⎪⎝⎭u u u r u u u r ,,·,即AB DV ⊥. 又DC DV D =I , AB ⊥∴平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又220BC a a ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,, 于是22tan π22sin sin 61tan a BC BC a θθθ===+u u u r u u u r n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故角π4θ=时, 即直线BC 与平面VAB 所成角为π6.点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE V 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD V 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点,ADBCVxyAEB CF DG∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形∴BF//ED.,EF AED BF AED ⊂⊄Q 平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GDQ ∆ACD 为正三角形,∴AC=AD. ∴CG=GD. Q G在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF中,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.2AG a ∴=在Rt ∆ADE 中, AH DE AE AD ⋅=⋅AH ∴=.GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如果ΔAMD 的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径. 解: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC.记E 是AD 的中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 的内心. 设球O 的半径为r ,则r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +, r =22)2(22aa a a +++≤2222+=2-1. 当且仅当a =a2,即a =2时,等号成立.∴当AD =ME =2时,满足条件的球最大半径为2-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系. 三、方法总结1.位置关系:(1)两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直.2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)两条异面直线的距离。
高中数学立体几何的重点知识点整理如何解决立体几何题目
高中数学立体几何的重点知识点整理如何解决立体几何题目立体几何是数学的一个重要分支,其研究的是空间中的图形和物体。
在高中数学中,学生将接触到一些重要的立体几何知识点,并且需要学会如何解决立体几何题目。
本文将对高中数学立体几何的重点知识点进行整理,并介绍如何解决立体几何题目。
一、立体几何的基本概念1. 空间中的点、直线和平面是立体几何的基本概念。
学生需要理解三维空间中点、直线和平面的性质,以及它们之间的相互关系。
2. 学生还需要掌握棱、面和顶点的概念,并能够正确识别出立体图形中的棱、面和顶点。
二、多面体的特征和性质1. 多面体是由多个平面围成的空间图形。
学生需要了解常见的多面体,例如立方体、正四面体、正六面体等,并掌握它们的特征和性质。
2. 对于立体图形,学生还需要学会计算其表面积和体积。
通过求解表面积和体积的问题,可以帮助学生加深对多面体的认识。
三、平行线与平面的交角1. 平行线与平面的交角是数学中的重要概念。
学生需要理解平行线与平面的交角定义,并熟练运用相关的性质解决问题。
2. 根据平行线与平面的交角定义,学生可以判断两个立体图形是否相似,并进行相关计算。
四、截痕与截面1. 截痕是指平面与立体图形的交线。
学生需要理解截痕的特征和性质,并能够根据截痕计算立体图形的体积和表面积。
2. 截面是指平面与立体图形的交面。
学生需要学会根据截面的形状和大小来判断立体图形的性质,并运用相关的性质解决问题。
五、三棱锥和三棱柱的特征和计算1. 三棱锥是由一个底面和三个棱共同围成的空间图形。
学生需要掌握三棱锥的特征和性质,并能够计算三棱锥的表面积和体积。
2. 三棱柱是由两个平面底面和三个棱共同围成的空间图形。
学生需要了解三棱柱的特征和性质,并学会计算三棱柱的表面积和体积。
通过掌握以上的立体几何知识点,学生可以更好地解决立体几何题目。
在解题过程中,可以使用以下方法:1. 理清题意,明确问题的要求。
2. 根据题目给出的条件,运用相应的知识点进行分析。
立体几何题型及解题方法总结
立体几何题型及解题方法总结1. 立体几何题型啊,那可是个神奇的领域!有求各种立体图形体积的题型,就像求一个装满水的古怪形状瓶子能装多少水一样。
比如说正方体,正方体的体积公式就是边长的立方。
要是有个正方体边长是3厘米,那它的体积就是3×3×3 = 27立方厘米,简单吧!这类型的题就像是数糖果,一个一个数清楚就行。
2. 还有求立体图形表面积的题型呢。
这就好比给一个形状奇怪的礼物包装纸,得算出需要多少纸才能把它包起来。
像长方体,表面积就是六个面的面积之和。
假如一个长方体长4厘米、宽3厘米、高2厘米,那表面积就是2×(4×3 + 4×2 + 3×2) = 52平方厘米。
哎呀,可别小瞧这表面积,有时候算错一点就像给礼物包了个破纸一样难看。
3. 立体几何里关于线面关系的题型也不少。
这就像在一个迷宫里找路,线和面的关系复杂得很。
比如说直线和平面平行的判定,就像在一个方方正正的房间里,一根直直的杆子和地面平行,只要杆子和地面内的一条直线平行就行。
像有个三棱柱,一条棱和底面的一条棱平行,那这条棱就和底面平行啦,是不是很有趣呢?4. 线面垂直的题型也很重要哦。
这就像是建房子时的柱子和地面的关系,必须垂直才稳当。
判断一条直线和一个平面垂直,就看这条直线是不是和平面内两条相交直线都垂直。
就像搭帐篷,中间那根杆子要和地面上交叉的两根绳子都垂直,帐篷才能稳稳地立起来。
比如一个正四棱锥,它的高就和底面垂直,因为高和底面两条相交的对角线都垂直呢。
5. 面面平行的题型有点像照镜子。
两个平面就像两面镜子,要想平行,得看一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行。
就像有两个一样的盒子,一个盒子里面两条交叉的边和另一个盒子里面对应的两条交叉边平行,那这两个盒子的面就是平行的关系。
想象一下,如果两个平行的黑板,是不是很有画面感?6. 面面垂直的题型就像是打开的书页。
高中数学立体几何解题技巧及常见题型详解
高中数学立体几何解题技巧及常见题型详解立体几何是数学中的一个重要分支,它研究的是空间中的图形和体积。
在高中数学中,立体几何是一个重要的考点,也是考试中难度较大的部分之一。
本文将介绍一些高中数学立体几何解题技巧,并详细解析几种常见的立体几何题型,帮助读者更好地应对这一考点。
一、平行六面体的体积计算平行六面体是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定底面积和高,进而计算体积。
例如,有一平行六面体的底面积为A,高为h,求其体积。
解题技巧:首先,我们需要明确平行六面体的定义,即六个面都是平行的。
其次,根据平行六面体的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的平行六面体。
因此,平行六面体的体积可以通过底面积乘以高来计算,即V = Ah。
举例说明:假设有一个平行六面体,其底面积为5平方厘米,高为10厘米。
那么,它的体积可以通过计算5乘以10得到,即V = 5 × 10 = 50立方厘米。
二、正方体的表面积计算正方体是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定正方体的边长,进而计算表面积。
例如,有一个正方体的边长为a,求其表面积。
解题技巧:首先,我们需要明确正方体的定义,即六个面都是正方形。
其次,根据正方体的性质,我们可以将其看作一个立方体,因为立方体是一种特殊的正方体。
因此,正方体的表面积可以通过边长的平方乘以6来计算,即S = 6a²。
举例说明:假设有一个正方体,其边长为3厘米。
那么,它的表面积可以通过计算6乘以3的平方得到,即S = 6 × 3² = 54平方厘米。
三、棱柱的体积计算棱柱是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定底面积和高,进而计算体积。
例如,有一个棱柱的底面积为A,高为h,求其体积。
解题技巧:首先,我们需要明确棱柱的定义,即底面是一个多边形,顶面与底面的对应点通过直线相连。
其次,根据棱柱的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的棱柱。
理解初中数学中的立体几何解题技巧
理解初中数学中的立体几何解题技巧立体几何是初中数学中的重要内容之一,解题技巧的掌握对于学生的数学学习和考试成绩具有重要意义。
本文将从几何图形基本概念的理解、立体图形的表面积和体积计算、立体几何解题的常用方法等方面进行论述。
一、几何图形基本概念的理解在解决立体几何问题之前,首先需要理解几何图形的基本概念。
立体几何主要涉及的图形包括三维空间中的点、线、面和体。
理解这些基本概念是解题的前提。
二、立体图形的表面积和体积计算1. 表面积的计算方法:(1)立方体的表面积为正方形的面积乘以6;(2)长方体的表面积为长、宽、高所确定的6个矩形的面积之和;(3)圆柱的表面积由上下底面积、侧面积组成,其中侧面积为矩形的面积乘以柱的高;(4)计算其他立体图形的表面积时,根据具体情况选择合适的公式进行计算。
2. 体积的计算方法:(1)立方体的体积为边长的三次方;(2)长方体的体积为长、宽、高相乘;(3)圆柱的体积为底面积乘以柱的高;(4)计算其他立体图形的体积时,也需要根据具体情况选择合适的公式进行计算。
三、立体几何解题的常用方法1. 空间关系的理解与应用:在解决立体几何问题的过程中,学生需要准确理解和把握空间关系。
通过观察和分析几何图形的特点,可以找到图形之间的联系,从而解决问题。
2. 切割与拼接法:对于某些比较复杂的立体图形,可以通过切割和拼接的方法将其转化为熟悉的几何图形,从而便于计算体积或者表面积。
3. 类比法:利用已知图形和已知性质去类比新的几何图形,通过观察和类比找到解题方法,是解决立体几何问题的常用方法之一。
4. 投影法:在解决立体几何问题时,可以将三维图形在某个平面上进行投影,然后根据投影的性质进行推理和计算,从而求解未知的数据。
5. 提取公式法:对于一些立体几何问题,可以通过提取公式的方式将问题转化为方程,然后利用方程求解未知数。
综上所述,理解初中数学中的立体几何解题技巧是学习数学的重要部分。
通过正确理解几何图形基本概念、掌握立体图形的表面积和体积计算方法,以及熟练运用立体几何解题的常用方法,能够有效提高解题的效率和准确性。
如何解答初三数学中的立体几何题
如何解答初三数学中的立体几何题1.立体几何的基本概念:立体几何是研究三维空间中点、线、面及其相互关系的数学分支。
在解答立体几何题时,需要掌握基本的几何概念,如点、线、面、体等。
2.立体图形的分类:立体图形可以分为两大类:平面立体图形和旋转立体图形。
平面立体图形有正方体、长方体、棱柱、棱锥等;旋转立体图形有球、圆柱、圆锥等。
3.立体图形的性质:解答立体几何题时,需要掌握各种立体图形的性质。
例如,正方体的六个面都是正方形,对角线互相平分;圆柱的底面和顶面是两个平行且相等的圆,侧面是一个矩形;球的对称性等。
4.点、线、面间的位置关系:解答立体几何题时,需要了解点、线、面之间的位置关系。
例如,点在线上、点在面上、线在面内、线与面平行、线与面相交等。
5.空间角的计算:立体几何题中常常涉及空间角的计算。
需要掌握空间角的概念,如二面角、直线与平面的夹角、直线与直线的夹角等,并了解各种角的计算方法。
6.空间距离的计算:解答立体几何题时,需要掌握空间距离的计算方法。
例如,点与点的距离、点与线的距离、点与面的距离、线与线的距离、线与面的距离等。
7.立体几何中的平行公理:在立体几何中,平行公理是解答题目的关键。
需要掌握平行公理的内容,并了解如何利用平行公理证明立体几何中的结论。
8.立体几何中的定理和公式:解答立体几何题时,需要掌握各种定理和公式。
例如,正方体的对角线长度公式、球的表面积和体积公式等。
9.立体几何题的解题步骤:解答立体几何题时,一般遵循以下步骤:明确题意、画图示意、列出已知条件和求证结论、选择适当的解题方法、化简计算、检验答案。
10.立体几何题的常见类型:在初三数学中,立体几何题常见类型包括:求立体图形的面积、体积;求空间角的大小;求点、线、面间的距离;证明几何结论等。
11.练习与提高:解答立体几何题需要不断的练习和思考。
可以通过做课后习题、参加数学竞赛等方式,提高自己的立体几何解题能力。
以上是解答初三数学中的立体几何题所需掌握的知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
啊没立体几何知识点和例题讲解一、知识点<一>常用结论1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直.6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉.8.异面直线所成角:cos |cos ,|a b θ==21||||||a b a b x ⋅=⋅+(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)9.直线AB 与平面所成角:sin ||||AB marc AB m β⋅=(m 为平面α的法向量).10、空间四点A 、B 、C 、P 共面OC z OB y OA x OP ++=⇔,且 x + y + z = 111.二面角l αβ--的平面角cos ||||m n arc m n θ⋅=或cos||||m narc m n π⋅-(m ,n 为平面α,β的法向量).12.三余弦定理:设AC 是α内的任一条直线,且BC⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.13.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=14.异面直线间的距离: ||||CD n d n ⋅= (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l间的距离).15.点B 到平面α的距离:||||AB n d n ⋅=(n 为平面α的法向量,AB是经过面α的一条斜线,A α∈).16.三个向量和的平方公式:2222()222a b c a b c a b b c c a++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a=+++⋅+⋅+⋅17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).18. 面积射影定理 'cos SS θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的θ).19. 球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径,. 20.求点到面的距离的常规方法是什么(直接法、体积法)21.求多面体体积的常规方法是什么(割补法、等积变换法)〈二〉温馨提示:1.直线的倾斜角、两条异面直线所成的角等时它们各自的取值范围① 异面直线所成的角、直线与平面所成的角、二面角的取值范围依次.② 直线的倾斜角、到的角、与的夹角的取值范围依次是.〈三〉解题思路: 1、平行垂直的证明主要利用线面关系的转化:线∥线线∥面面∥面判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面←→−←→−−→−−←→−←→−←−−−←→−←→−线面平行的判定:a b b a a ∥,面,∥面⊂⊄⇒ααα abα线面平行的性质: αααβαβ∥面,面,∥⊂=⇒ b a b 三垂线定理(及逆定理): P A A O P O ⊥面,为在内射影,面,则αααa ⊂a OA a PO a PO a AO⊥⊥;⊥⊥⇒⇒αaPO线面垂直:a b a c b c b c O a ⊥,⊥,,,⊥⊂=⇒αα aO α b c面面垂直: a a ⊥面,面⊥αββα⊂⇒ 面⊥面,,,⊥⊥αβαβαβ=⊂⇒l l aaaα alβa b a b ⊥面,⊥面∥αα⇒ 面⊥,面⊥∥αβαβa a ⇒a bα2、三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90°(2)直线与平面所成的角θ,0°≤θ≤90° θαα=时,∥或0b ob ⊂()二面角:二面角的平面角,30180αβθθ--<≤l oo(三垂线定理法:A∈α作或证AB ⊥β于B ,作BO ⊥棱于O ,连AO ,则AO ⊥棱l ,∴∠AOB 为所求。
)三类角的求法: ①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
二、题型与方法【考点透视】不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成。
求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。
【例题解析】考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A DB --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力. 解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B , AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为 1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .ABC D1A1C1B AB C D1A 1C 1B O F(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥, AFG ∴∠为二面角1A A DB --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB ==sin AG AFG AF ∴==∠.所以二面角1A A D B--的大小为 (Ⅲ)1A BD △中,111A BDBD A D A B S ==△1BCDS=△. 在正三棱柱中,1A 到平面11BCC B 设点C 到平面1A BD 的距离为d .由11A BCDC A BDVV --=,得111333BCDA BD SS d=△△,1A BD d ∴=△∴点C 到平面1A BD解法二:(Ⅰ)取BC 中点O ,连结AO . ABC△为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B , AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OOz 轴2,(00A ,1(120)B ,,, 1(12AB ∴=,,(210)BD =-,,,1(12BA =-. 12200AB BD =-++=,111430AB BA =-+-=,1AB BD∴⊥,11AB BA ⊥. 1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-,,1(020)AA =,,.AD⊥n ,1AA ⊥n , 100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,.令1z =得(=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量. cos <n,11133222AB AB AB -->===n n ∴二面角1A A DB --的大小为(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量, 1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD 的距离1122BC AB d AB -===小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法. 考点2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.例2已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF , EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离. 又 线面之间的距离可转化为线CD 上一点C 到平面SEF的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD 33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S在Rt SCE ∆中,3222=+=CE SC SE在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEFS EF由于hS V VSEF CEF S SEFC ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332.小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离.思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:解析一 BD ∥平面11D GB , BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A , 又⊂11D B 平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离.B A CD O G H 1A 1C1D 1B1O在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O SOGO .又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH SOGO .即BD 到平面11D GB 的距离等于362.解析二BD∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V34222213111=⨯⨯⨯⨯=-GBB D V ,,36264==∴h即BD 到平面11D GB 的距离等于362.小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离.考点4 异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点.例4、如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. 思路启迪:1)的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(错误!未找到引用源。