广东省惠州市2012届高三(四调)考试(理数)试题及答案2012-4-21
2012届惠州市高三第二次调研考试理科综合试题及答案
2012届惠州市高三第二次调研考试理科综合试题(2011.10)第一部分选择题(共118分)一、单项选择题:本大题共16小题,每小题4分,共64分。
在每小题给出的四个选项中,只有一个选项最符合题目要求。
选对的得4分,错选或不答的得0分。
1.下列说法不.正确的是A.高尔基体在植物细胞和动物细胞的功能不同B.内质网与蛋白质和脂质的形成有关C.抗体的产生与游离核糖体有关D.生物膜系统包括细胞膜、核膜及细胞器膜2.下列关于人体细胞代谢场所的叙述,正确的是A.乳酸产生的场所是线粒体B.雌性激素合成的场所是核糖体C.血红蛋白合成的场所是高尔基体D.胰岛素基因转录的场所是细胞核3.有关黄色圆粒豌豆(YyRr)自交的表述正确的是A.F1产生4个配子,比例为1:1:1:1B.F1产生基因型YR的卵和基因型YR的精子数量之比为1:1C.基因自由组合定律是指F1产生的4种类型的精子和卵可以自由组合D.F1产生的精子中,基因型为YR和基因型为yr的比例为1:14. 右图是反射弧的模式图(a、b、c、d、e表示反射弧的组成部分,I、Ⅱ表示突触的组成部分),有关说法正确的是A.正常机体内兴奋在反射弧中的传导是单向的B.切断d、刺激b,不会引起效应器收缩C.兴奋在结构c和结构b的传导速度相同D.Ⅱ处发生的信号变化是电信号→化学信号→电信号5.下列关于动物胚胎移植的叙述中,错误..的是A.供体母畜体内的桑椹胚或囊胚均能进行移植B.代孕母畜必须处于与供体母畜同步发情的状态C.试管动物的受精过程及早期胚胎发育过程都是在试管中进行的D.将采集到精子和卵母细胞直接进行体外受精6.关于生态系统的叙述,正确的是A. 生态系统中生产者得到的能量必然大于消费者得到的B. 生态系统中的信息传递对所有捕食者都必然有利C. 生态系统的食物链中营养级越高的生物,其体型必然越大D. 一个生态系统的营养级越多,人类可利用的能量就越少7.下列说法错误..的是A.日本福岛核电站爆炸时释放的2种放射性同位素131I与137Cs的中子数不等B.锅炉水垢中的硫酸钙可用碳酸钠溶液处理,使之转化为碳酸钙,再用酸除去C.水晶项链和餐桌上的瓷盘都是硅酸盐制品D.地球上CH4、CO2等气体含量上升容易导致温室效应加剧,进而引发灾难性气候N表示阿伏伽德罗常数,下列判断正确的是8.AA .常温下,1L0.1mol/L 的43NH NO 溶液中铵根离子为0.1A NB .标准状况下,22.4LCO 和CO 2的混合气体中含有的碳原子数目为N AC .含N A 个Na +的Na 2O 溶解于1 L 水中,Na +的物质的量浓度为1 mol/LD .22.4 L 氯气与足量氢氧化钠溶液反应转移的电子数为N A9. 下列热化学方程式或离子方程式中,正确的是A .用惰性电极电解熔融氯化钠:2222Cl +2H O Cl +H +2OH --=↑↑通电碳酸钠溶液中滴加少量的硫酸氢钠溶液:CO 32- + H + == HCO 3-B .铜片跟稀硝酸反应: Cu + NO 3—+ 4H + = Cu 2++ NO ↑+2H 2OC. NH 4HCO 3溶液与过量NaOH 溶液反应: NH 4++OH -=NH 3↑+H 2OD. 纯碱溶液呈碱性的原因是:CO 32—+2H 2OH 2CO 3+2OH — 编号实验目的 实验操作及现象 A检验Na 2O 2试样是否变质为Na 2CO 3 向试样中加入盐酸,产生无色无味的气体 B从碘水中萃取碘 向碘水中滴加CCl 4,振荡静置后分层,下层呈紫红色 C证明酸性条件H 2O 2氧化性比I 2强 30%NaI −−−−→−−−−→−−−−→稀硝酸酸化双氧水淀粉溶液溶液溶液变蓝色 D 除去FeCl 3溶液中的FeCl 2杂质 向FeCl 3溶液中通足量Cl 2后,充分加热煮沸,得到黄色溶液11.下列实验操作能够实现的是A 、浓硫酸的稀释B 、除去氯气中的杂质C 、分离水和四氯化碳D 、吸收氯化氢尾气12.下列有关实验的说法正确的是A .将氯化铝溶液加热蒸发、烘干可得无水氯化铝固体B .做完银镜反应后的试管可用热的稀硝酸清洗,回收后的硝酸银溶液可再利用C . 测量溶液的导电性可区分出试剂盐酸和醋酸,导电能力强的是盐酸D .除去硫酸铝溶液中混有的硫酸镁,可加入足量烧碱,过滤,向滤液中加入适量硫酸酸化13.降落伞在匀速下降过程中遇到水平方向吹来的风,若风速越大,则降落伞A 下落的时间越长B 下落的时间越短C 落地时速度越小D 落地时速度越大14. 如图所示,一重为8N 的球固定在AB 杆的上端,今用测力计水平拉球,使杆发生弯曲,此时测力计的示数为6N ,则AB 杆对球作用力的大小为A .6NB .8NC.10N D.12N15.竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是A.始终变大B.始终变小C.先变大后变小D.先变小后变大16.研究发现,月球的平均密度和地球的平均密度差不多相等,航天飞机分别贴近月球表面和地球表面飞行,下列哪些物理量的大小差不多相等的是A.角速度B.线速度C.向心加速度D.万有引力二、双项选择题:本大题共9个小题,每小题6分,共54分。
2012届广东省各地市一模试题2
惠州市2012届高三第一次调研考试数学试题(理科)(本试卷共5页,21小题,满分150分。
考试用时120分钟)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
第Ⅰ卷 选择题(共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合(){},|0,,A x y x y x y R =+=∈(){},|0,,B x y x y x y R =-=∈,则集合A B =( )A .)0,0(B .{}0C .{})0,0(D .∅ 2.复数ii+-11的值是( ) A .1 B .1- C .i D .i -3.已知向量=(1,2)-,=(,2)x ,若⊥,则||=( )AB .C .5D .204.已知11()122xf x =--,()f x 则是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇且偶函数 5.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα⊥,α⊥l ,则β//l ③.若α//l ,α⊂m ,则m l //④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m ,其中真命题有( ) A .0个 B .1个 C .2个 D .3个(第6题图)6.给出计算201614121++++ 的值的一个程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 7.“lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件8.规定记号“⊗”表示一种运算,即2a b ab a b ⊗=++ (,)a b 为正实数,若31=⊗k ,则k =( ) A .2- B .1 C .2- 或1 D .2第Ⅱ卷 非选择题(共110分)二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答.9.6)1(xx -的展开式中的常数项是 .(用数字作答)10.右图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧视图的面积为 .11.设平面区域D 是由双曲线1422=-x y 的两条渐近线和抛物线28y x =-的准线所围成的 三角形(含边界与内部).若点D y x ∈),(,则目标函数y x z +=的最大值为 .12.一个容量为20的样本,数据的分组及各组的频数如下表:(其中*,x y N ∈)则样本在区间 [10,50 ) 上的频率 .13.已知数列{}n a 满足12a =,*121()n n a a n N +=+∈,则该数列的通项公式n a = .(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
2012广东省各地月考联考模拟最新分类汇编(1)
2012广东省各地模拟最新分类汇编(理):数列(1)【广东广东省江门市2012年普通高中高三第一次模拟(理)】⒐已知数列{}n a 的前n 项和为n S n n )1(-=,则=n a . 【答案】)12()1(--n n【广东省江门市2012届高三调研测试(理)】⒋已知{}n a (*∈N n )为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,则{}n a 的首项=1a A .14 B .16 C .18 D .20【答案】D【广东省惠州市2012届高三一模(四调)考试(理数)】4.公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =,则10S 等于( )A .18B .24C .60D .90【答案】C【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得1278a d +=则12,3d a ==-, 所以1019010602S a d =+=.故选C. 【广东省广州市金山中学2012届高三下学期综合测试理】13、设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++ 的值为 【答案】-2 【解析】【广东省佛山一中2012届高三上学期期中理】4.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为A .12B .8C .6D .4【答案】B【广东省佛山市2012届高三第二次模拟理科二】13. 已知等比数列{}n a 的首项为2,公比为2,则1123n na a a a a a a a a a +=⋅⋅⋅⋅ .【答案】4【广东省镇江一中2012高三10月模拟理】9.在等差数列{}n a 中,91110a a +=,则数列{}n a 的前19项之和是___________. 【答案】95【广东省东莞市2012届高三数学模拟试题(1)理】12.设{}lg n a 成等差数列,公差lg3d =,且{}lg n a 的前三项和为6lg 3,则{}n a 的通项为___________. 【答案】=n a 3n【2012届广东韶关市高三第一次调研考试理】5.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则8967a aa a ++等于( ) A .21+ B. 21- C. 223+ D. 223- 【答案】C【广东东莞市2012届高三理科数学模拟 二】2. 等比数列}{n a 中,已知262,8a a ==,则4a =( )A.4±B. 4C.4-D. 16 【答案】B【广东省执信中学2012届高三3月测试理】4、设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时,n 等于( )A .9B .8C .7D .6【答案】D【2012届广东省中山市四校12月联考理】4.已知等比数列{}n a 中,12a =,且有24674a a a =,则3a =( )A .1B .2C .14D . 12【答案】A【广东省肇庆市2012届高三上学期期末理】20. (本小题满分14分) 设集合W 是满足下列两个条件的无穷数列{a n }的集合:①212n n n a a a +++≤, ②n a M ≤.其中n N *∈,M 是与n 无关的常数.(Ⅰ)若{n a }是等差数列,n S 是其前n 项的和,42a =,420S =,证明:{}n S W ∈;(Ⅱ)设数列{n b }的通项为52n n b n =-,且{}n b W ∈,求M 的取值范围; (Ⅲ)设数列{n c }的各项均为正整数,且{}n c W ∈.证明1n n c c +≤.【答案】解:(Ⅰ)设等差数列{n a }的公差是d ,则11324620a d a d +=⎧⎨+=⎩,解得182a d =⎧⎨=-⎩,所以n n d n n na S n 92)1(21+-=-+=(2分) 由)]1(18)1(2)2(9)2()9[(21222212+-+++++-+-=-+++n n n n n n S S S n n n=-1<0 得,212++<+n n nS S S 适合条件①; 又481)29(922+--=+-=n n n S n 所以当n=4或5时,n S 取得最大值20,即n S ≤20,适合条件②综上,{}n S W ∈ (4分)(Ⅱ)因为n n n n n n n b b 25252)1(511-=+--+=-++,所以当n≥3时,01<-+n n b b ,此时数列{b n }单调递减;当n =1,2时,01>-+n n b b ,即b 1<b 2<b 3,因此数列{b n }中的最大项是b 3=7所以M≥7 (8分)(Ⅲ) 假设存在正整数k ,使得1+>k k c c 成立由数列{n c }的各项均为正整数,可得11k k c c +≥+,即11k k c c +≤-因为212k k k c c c +++≤,所以2122(1)2k k k k k k c c c c c c ++≤-≤--=- 由1,2,2121122112-≤=-<>-≤+++++++++k k k k k k k k k k k c c c c c c c c c c c 故得及因为32)1(22,2111123231-≤-=--≤-≤≤++++++++++k k k k k k k k k k c c c c c c c c c c 所以 ……………………依次类推,可得)(*N m m c c k m k ∈-≤+设0),(*=-≤=∈=+p c c p m N p p c k p k k 时,有则当 这显然与数列{n c }的各项均为正整数矛盾!所以假设不成立,即对于任意n ∈N *,都有1n n c c +≤成立. ( 14分) 【广东省肇庆市2012届高三第一次模拟理】16.(本小题满分12分) 已知数列{}n a 是一个等差数列,且21a =,55a =-. (I )求{}n a 的通项n a ; (II )设52n n a c -=,2n cn b =,求2122232log log log log n T b b b b =++++ 的值。
惠州市届高三第二次调研数学理试题
惠州市2012届高三第二次调研考试理科数学参考答案与评分标准一.选择题:共8小题,每小题5分,满分40分 题号 1 2 3 4 5 6 7 8答案 C B A A D D D B1.【解析】由{}0P Q =,得2log 0a =,∴1a =,从而=0b ,{}3,0,1P Q =.选C.2.【解析】由(4)4a i i ai b i +=-+=+154a a b b =⎧⇒⇒-=⎨=-⎩,选B .3.【解析】由||2x <得到22x -<<,由260x x --<得到2x -<<3,选A.4.【解析】222467574,4a a a a a ==,572a a =,所以22311, 1.2q a a q ===选A . 5.【解析】由条件知,4x =,5y =,设回归直线方程为ˆ 1.23y x a =+,则 1.230.08a y x =-=.选D.6.【解析】5(1)ax -的展开式中含3x 的项为232335()(1)10C ax a x -=,由题意得31080a =,所以2a =.选D.7.【解析】因为三棱锥A —1A BD 是正三棱锥,故顶点A 在底面的射影是底面中心,A 正确;平面1A BD ∥平面11CB D ,而AH 垂直平面1A BD ,所以AH 垂直平面11CB D ,C 正确;根据对称性知B 正确.选D.8.【解析】函数的对称轴为1x =-,设1202x x x +=,由03a <<得到11122a --<<,又12x x <,用单调性和离对称轴的远近作判断,故选B.二.填空题:共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.30︒ 10.4:2:π 11.1320 12.(22,22)-+ 13.4714.01a <≤ 15.5[来源:学*科*网Z*X*X*K]9.【解析】根据正弦定理, ,sin sin a b A B = [来源:学&科&网Z&X&X&K]21sin 12sin .22a B A b ⨯∴===,30.a b A ︒<∴=10.【解析】因为三个几何体的主视图和俯视图为相同的正方形,所 以原长方体棱长相等为正方体,原直三棱柱是底面为等腰直角三角形的直三棱柱,设正方形的边长为a 则,长方体体积为3a ,三棱柱体积为312a ,四分之一圆柱的体积为314a π,所以它们的体积之比为4:2:π.11.【解析】该程序框图的作用是计算121110⨯⨯的值。
2012年广东省高考数学试卷(理科)答案与解析
A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i 考点:复数代数形式的乘除运算.系的扩充和复数.专题:数系的扩充和复数.分析:把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.,由此能求出结果.解答:解:===﹣6﹣5i.故选D.题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答. 点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.A.U B.{1,3,5} C.{3,5,6} D.{2,4,6} 考点:补集及其运算.合.专题:集合.分析:直接利用补集的定义求出C U M.解答:解:∵集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6},故选C.点评:本题主要考查集合的表示方法、求集合的补集,属于基础题.题主要考查集合的表示方法、求集合的补集,属于基础题.,向量,则A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)考点:平面向量的坐标运算.面向量及应用.专题:平面向量及应用.分析:由向量,向量,知,再由,能求出结果.,能求出结果.解答:解:∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3) =(﹣2,﹣4). 故选A . 点评: 本题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算.题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算. 4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()上为增函数的是( )A .y =ln (x+2) B .C .D .考点: 对数函数的单调性与特殊点;函数单调性的判断与证明. 专题: 函数的性质及应用.数的性质及应用. 分析: 利用对数函数的图象和性质可判断A 正确;利用幂函数的图象和性质可判断B 错误;利用指数函数的图象和性质可判断C 正确;利用“对勾”函数的图象和性质可判断D 的单调性单调性 解答: 解:A ,y=ln (x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A 正确;确;B ,在[﹣1,+∞)上为减函数;排除B C ,在R 上为减函数;排除C D ,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D 故选故选 A 点评: 本题主要考查了常见函数的图象和性质,题主要考查了常见函数的图象和性质,特别是它们的单调性的判断,特别是它们的单调性的判断,特别是它们的单调性的判断,简单复合函数简单复合函数的单调性,属基础题的单调性,属基础题5.(5分)(2012•广东)已知变量x ,y 满足约束条件,则z=3x+y 的最大值为( )A . 12 B . 11 C . 3D . ﹣1 考点: 简单线性规划. 专题: 不等式的解法及应用.等式的解法及应用. 分析: 先画出线性约束条件表示的可行域,画出线性约束条件表示的可行域,在将目标函数赋予几何意义,在将目标函数赋予几何意义,在将目标函数赋予几何意义,数形结合即可得目数形结合即可得目标函数的最值标函数的最值:画出可行域如图阴影部分,解答:解:画出可行域如图阴影部分,由得C(3,2)越大, 目标函数z=3x+y可看做斜率为﹣3的动直线,其纵截距越大,z越大,由图数形结合可得当动直线过点C时,z最大=3×3+2=11 故选 B 故选点评:本题主要考查了线性规划的思想、方法、技巧,二元一次不等式组表示平面区域的知识,数形结合的思想方法,属基础题识,数形结合的思想方法,属基础题6.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为(广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π考点:由三视图求面积、体积.间位置关系与距离;空间角;空间向量及应用;立体几何.专题:空间位置关系与距离;空间角;空间向量及应用;立体几何.分析:由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项可得到正确选项解答:解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱的圆柱故它的体积是5×π×32+π×32×=57π故选C 点评: 本题考查三视图还原几何体及求组合体的体积,解题的关键是熟练记忆相关公式及由三视图得出几何体的长宽高等数据,且能根据几何体的几何特征选择恰当的公式进行求体积的运算,求体积的运算,7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是(的概率是( )A .B .C .D .考点: 古典概型及其概率计算公式. 专题: 概率与统计.率与统计. 分析: 先求个位数与十位数之和为奇数的两位数的个数n ,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求奇数的两位数的个数,由古典概率的求解公式可求 解答: 解:个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有=45 记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A ,则A 包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P (A )=故选D 点评: 本题主要考查了古典概率的求解公式的应用,题主要考查了古典概率的求解公式的应用,解题的关键是灵活利用简单的排列、解题的关键是灵活利用简单的排列、解题的关键是灵活利用简单的排列、组组合的知识求解基本事件的个数合的知识求解基本事件的个数8.(5分)(2012•广东)对任意两个非零的平面向量和,定义○=,若平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,则○=( )A .B .1 C .D .考点: 平面向量数量积的运算. 专题: 空间向量及应用.间向量及应用. 分析:由题意可得•==,同理可得•==,故有n ≥m 且m 、n ∈z .再由cos 2θ=,与的夹角θ∈(0,),可得cos 2θ∈(,1),即∈(,1),由此求得n=3,m=1,从而得到,从而得到 •== 的值.的值.解答:解:由题意可得解:由题意可得 •====.同理可得同理可得 •====.由于||≥||>0,∴n ≥m 且 m 、n ∈z . ∴cos 2θ=.再由与的夹角θ∈(0,),可得cos 2θ∈(,1),即∈(,1).故有故有 n=3,m=1,∴•==, 故选C .点评: 本题主要考查两个向量的数量积的定义,得到本题主要考查两个向量的数量积的定义,得到n ≥m 且m 、n ∈z ,且∈(,1),是解题的关键,属于中档题.解题的关键,属于中档题.的解集为的解集为.考点: 绝对值不等式的解法. 专题: 集合.合. 分析: 由题意,可先将不等式左边变形为分段函数的形式,然后再分三段解不等式,将每一段的不等式的解集并起来即可得到所求不等式的解集段的不等式的解集并起来即可得到所求不等式的解集 解答:解:∵|x+2|﹣|x|=∴x ≥0时,不等式|x+2|﹣|x|≤1无解;无解; 当﹣2<x <0时,由2x+2≤1解得x ≤,即有﹣2<x ≤;当x ≤﹣2,不等式|x+2|﹣|x|≤1恒成立,恒成立, 综上知不等式|x+2|﹣|x|≤1的解集为故答案为点评: 本题考查绝对值不等式的解法,题考查绝对值不等式的解法,其常用解题策略即将其变为分段函数,其常用解题策略即将其变为分段函数,其常用解题策略即将其变为分段函数,分段求解不等分段求解不等式.式.10.(5分)(2012•广东)中x 3的系数为的系数为20 .(用数字作答)(用数字作答)考点: 二项式定理. 专题: 排列组合.列组合.分析: 由题意,可先给出二项式的通项,再由通项确定出x 3是展开式中的第几项,从而得出其系数出其系数 解答:解:由题意,的展开式的通项公式是Tr+1==x 12﹣3r令12﹣3r=3得r=3 所以中x 3的系数为=20 故答案为20 点评: 本题考查二项式定理的通项,属于二项式考查中的常考题型,题考查二项式定理的通项,属于二项式考查中的常考题型,解答的关键是熟练掌握解答的关键是熟练掌握二项式的通项公式二项式的通项公式11.(5分)(2012•广东)已知递增的等差数列{a n }满足a 1=1,a 3=a 22﹣4,则a n = 2n ﹣1 .考点: 等差数列的通项公式. 专题: 等差数列与等比数列.差数列与等比数列. 分析: 由题意,设公差为d ,代入,直接解出公式d ,再由等差数列的通项公式求出通项即可得到答案求出通项即可得到答案 解答: 解:由于等差数列{a n }满足a 1=1,,令公差为d 所以1+2d=(1+d )2﹣4,解得d=±2 又递增的等差数列{a n },可得d=2 所以a n =1+2(n ﹣1)=2n ﹣1 故答案为:2n ﹣1. 点评: 本题考查等差数列的通项公式,题考查等差数列的通项公式,解题的关键是利用公式建立方程求出参数,解题的关键是利用公式建立方程求出参数,解题的关键是利用公式建立方程求出参数,需要熟练需要熟练记忆公式.记忆公式.12.(5分)(2012•广东)曲线y=x 3﹣x+3在点(1,3)处的切线方程为)处的切线方程为2x ﹣y+1=0 .考点: 利用导数研究曲线上某点切线方程. 专题: 导数的概念及应用.数的概念及应用. 分析: 先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.化成一般式即可.解答: 解:y ʹ=3x 2﹣1,令x=1,得切线斜率2,所以切线方程为y ﹣3=2(x ﹣1), 即2x ﹣y+1=0.故答案为:2x ﹣y+1=0. 点评: 本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.属于基础题.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为的值为 8 .考点: 循环结构. 专题: 算法和程序框图.法和程序框图. 分析: 由已知中的程序框图及已知中输入8,可得:进入循环的条件为i <8,即i=2,4,6模拟程序的运行结果,即可得到输出的s 值.值. 解答: 解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4; 当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i <8”,退出循环,,退出循环,则输出的s=8 故答案为:8 点评: 本题主要考查的知识点是程序框图,题主要考查的知识点是程序框图,在写程序的运行结果时,在写程序的运行结果时,在写程序的运行结果时,我们常使用模拟循环的我们常使用模拟循环的变法,同时考查了运算求解能力,属于基础题.变法,同时考查了运算求解能力,属于基础题.14.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1与C 2的参数方程分别为(t 为参数)和(θ为参数),则曲线C 1与C 2的交点坐标为的交点坐标为 (1,1) .考点: 抛物线的参数方程;圆的参数方程. 专题: 坐标系和参数方程.标系和参数方程.分析: 把曲线C 1与C 2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C 1与C 2的交点坐标.的交点坐标.解答: 解:在平面直角坐标系xOy 中,曲线C 1与C 2的普通方程分别为的普通方程分别为 y 2=x ,x 2+y 2=2.解方程组解方程组可得可得,故曲线C 1与C 2的交点坐标为(1,1),故答案为故答案为 (1,1). 点评: 本题主要考查把参数方程化为普通方程的方法,求两条曲线的交点坐标,属于中档题. .考点: 与圆有关的比例线段. 专题: 直线与圆.线与圆.分析: 连接OA ,根据同弧所对的圆周角等于圆心角的一半,根据同弧所对的圆周角等于圆心角的一半,得到∠得到∠AOC=60°.因为直线PA 与圆O 相切于点A ,且OA 是半径,得到△P AO 是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中数据可得PA=OAtan60°=.解答: 解:连接OA ,∵圆O 的圆周角∠ABC 对弧AC ,且∠ABC=30°, ∴圆心角∠AOC=60°.又∵直线P A 与圆O 相切于点A ,且OA 是半径,是半径, ∴OA ⊥PA , ∴Rt △P AO 中,OA=1,∠AOC=60°, ∴PA=OAtan60°= 故答案为:点评: 本题给出圆周角的度数和圆的半径,题给出圆周角的度数和圆的半径,求圆的切线长,着重考查了圆周角定理和圆的切求圆的切线长,着重考查了圆周角定理和圆的切线的性质,属于基础题.线的性质,属于基础题.(其中的值;(1)求ω的值;(2)设,,,求cos(α+β)的值.的值.考点:两角和与差的余弦函数;由y=Asin(ωx+φ)的部分图象确定其解析式.角函数的求值;三角函数的图像与性质.专题:三角函数的求值;三角函数的图像与性质.分析:(1)由题意,由于已经知道函数的周期,可直接利用公式ω==解出参数ω的值;值;(2)由题设条件,可先对,与进行化简,)的值. 求出α与β两角的函数值,再由作弦的和角公式求出cos(α+β)的值.解答:解:(1)由题意,函数(其中ω>0,x∈R)的最小正周期为10π所以ω==,即所以(2)因为,,分别代入得及∵∴∴点评:本题考查了三角函数的周期公式及两角和与差的余弦函数,同角三角函数的基本关系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].的值;(1)求图中x的值;分)的的(2)从成绩不低于80分的学生中随机选取2人,(含90分)分以上(含人,该该2人中成绩在90分以上的数学期望.人数记为ξ,求ξ的数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.率与统计.专题:概率与统计.分析:(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于80分的学生有12人,90分以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.解答:解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018 (2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2 ∴点评:本题主要考查了频率分布直方图,以及古典概型的概率公式和离散型随机变量的数学期望,同时考查了计算能力和运算求解的能力,属于基础题.期望,同时考查了计算能力和运算求解的能力,属于基础题.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面P AC;的正切值.(2)若P A=1,AD=2,求二面角B﹣PC﹣A的正切值.考点:二面角的平面角及求法;直线与平面垂直的判定.间位置关系与距离;空间角;立体几何.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由题设条件及图知,可先由线面垂直的性质证出P A⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A 的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.解答:解:(1)∵P A⊥平面ABCD ∴P A⊥BD ∵PC⊥平面BDE ∴PC⊥BD,又P A∩PC=P ∴BD⊥平面P AC (2)设AC与BD交点为O,连OE ∵PC⊥平面BDE ∴PC⊥平面BOE ∴PC⊥BE 的平面角∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面P AC ∴BD⊥AC ∴四边形ABCD为正方形,又P A=1,AD=2,可得BD=AC=2,PC=3 ∴OC=在△P AC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为3 点评: 本题考查二面角的平面角的求法及线面垂直的判定定理与性质定理,属于立体几何中的基本题型,二面角的平面角的求法过程,作,证,求三步是求二面角的通用步骤,要熟练掌握要熟练掌握19.(14分)(2012•广东)设数列{a n }的前n 项和为S n ,满足2S n =a n+1﹣2n+1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.成等差数列.(1)求a 1的值;的值; (2)求数列{a n }的通项公式;的通项公式; (3)证明:对一切正整数n ,有.考点: 数列与不等式的综合;等差数列的性质;数列递推式. 专题: 等差数列与等比数列.差数列与等比数列.分析: (1)在2S n =a n+1﹣2n+1+1中,令分别令n=1,2,可求得a 2=2a 1+3,a 3=6a 1+13,又a 1,a 2+5,a 3成等差数列,从而可求得a 1; (2)由2S n =a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1①,a n+1=3a n +2n②,由①②可知{a n +2n}为首项是3,3为公比的等比数列,从而可求a n ;(3)(法一),由a n =3n ﹣2n =(3﹣2)(3n ﹣1+3n ﹣2×2+3n ﹣3×22+…+2n ﹣1)≥3n ﹣1可得≤,累加后利用等比数列的求和公式可证得结论;,累加后利用等比数列的求和公式可证得结论;(法二)由a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n 可得,<•,于是当n ≥2时,<•,<•,,…,<•,累乘得:<•,从而可证得+++…+<.解答: 解:(1)在2S n =a n+1﹣2n+1+1中,中,令n=1得:2S 1=a 2﹣22+1,令n=2得:2S 2=a 3﹣23+1, 解得:a 2=2a 1+3,a 3=6a 1+13 又2(a 2+5)=a 1+a 3 解得a 1=1 (2)由2S n =a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1,又a1=1,a2=5也满足a2=3a1+21,成立所以a n+1=3a n+2n对n∈N*成立∴a n+1+2n+1=3(a n+2n),又a1=1,a1+21=3,∴a n+2n=3n,∴a n=3n﹣2n;(法一)(3)(法一)∵a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1∴≤,∴+++…+≤1+++…+=<;(法二)∵a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n,∴<•,当n≥2时,<•,<•,,…<•,累乘得:<•,∴+++…+≤1++×+…+×<<.点评:本题考查数列与不等式的综合,考查数列递推式,着重考查等比数列的求和,着重考查放缩法的应用,综合性强,运算量大,属于难题.查放缩法的应用,综合性强,运算量大,属于难题.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.的方程;(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.积;若不存在,请说明理由.圆与圆锥曲线的综合;直线与圆相交的性质;椭圆的标准方程.考点:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.专圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.题:分析:(1)由得a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,求出椭圆上的点到点Q 的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M (m ,n )存在,则有m 2+n 2>1,求出|AB|,点O 到直线l 距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M 的坐标.的坐标.解答:解:(1)由得a 2=3b 2,椭圆方程为x 2+3y 2=3b 2椭圆上的点到点Q 的距离=①当﹣b ≤﹣1时,即b ≥1,得b=1 ②当﹣b >﹣1时,即b <1,得b=1(舍)(舍)∴b=1 ∴椭圆方程为(2)假设M (m ,n )存在,则有m 2+n 2>1 ∵|AB|=,点O 到直线l 距离∴=∵m 2+n 2>1 ∴0<<1,∴当且仅当,即m 2+n 2=2>1时,S △AOB 取最大值,又∵解得:所以点M 的坐标为或或或,△AOB 的面积为.点评: 本题考查椭圆的标准方程,考查三角形面积的求解,考查基本不等式的运用,正确表示三角形的面积是关键.三角形的面积是关键.考点: 利用导数研究函数的极值;交集及其运算;一元二次不等式的解法. 专题: 导数的综合应用.数的综合应用.分析: (1)根据方程2x 2﹣3(1+a )x+6a=0的判别式讨论a 的范围,求出相应D 即可;即可;(2)由f ʹ(x )=6x 2﹣6(1+a )x+6a=0得x=1,a ,然后根据(1)中讨论的a 的取值范围分别求出函数极值即可.范围分别求出函数极值即可. 解答: 解:(1)记h (x )=2x 2﹣3(1+a )x+6a (a <1)△=9(1+a )2﹣48a=(3a ﹣1)(3a ﹣9),当△<0,即,D=(0,+∞),当,当a ≤0,.(2)由f ʹ(x )=6x 2﹣6(1+a )x+6a=0得x=1,a , ①当,f (x )在D 内有一个极大值点a ,有一个极小值点;,有一个极小值点; ②当,∵h (1)=2﹣3(1+a )+6a=3a ﹣1≤0,h (a )=2a 2﹣3(1+a )a+6a=3a ﹣a 2>0, ∴1∉D ,a ∈D ,∴f (x )在D 内有一个极大值点a . ③当a ≤0,则a ∉D ,又∵h (1)=2﹣3(1+a )+6a=3a ﹣1<0. ∴f (x )在D 内有无极值点.内有无极值点. 点评: 本题主要考查了一元二次不等式的解法9,以及利用导数研究函数的极值,同时考查了计算能力和分类讨论的数学思想,属于中档题.了计算能力和分类讨论的数学思想,属于中档题.。
广东惠州市2012届高三上学期第二次调研考试题(理科综合).pdf
3.1二次根式(2) 教学目标: (1) 使学生能通过具体问题探求并掌握二次根式的性质:。
. (2)会用二次根式的性质进行根式的化简.. 教学重点:二次根式的性质的掌握. 教学难点:二次根式的性质的应用.. 教学过程: 一.预习: (一)情景创设 1、化简下列各式: ; ; ; ; ; 2.在化简时,李明同学的解答过程是; 张后同学的解答过程是. 谁的解答正确?为什么? (二)探索活动 1.请同学们观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律,再和同学们进行交流. ; …… 让学生通过观察,提出发现的猜想,并进行交流. 2.发现:当a≥0时, , 当a<0, 3.明确 师生共同归纳可得: 4.比较与的区别 (三)实际应用,巩固新知 尝试练习:化简(1) (2) 二、例题讲解: 例 计算: (1) (2) (3) (x≥1) 三、练习 1.P60 练习 1,2 2. 计算: (1) (2) (3) (4) () 四、你的收获 ———————————————————————— 五、当堂检测 1.若,那么的取值范围是 ; 2.a、b为实数,在数轴上的位置如图所示,则的值是( )A.-bB.bC.b-2aD.2a-b 0 b 3.仔细观察下列计算过程: 同样 由此猜想 ; 4.计算: (1) (2) (3) (4) (5) B 5.若1<x<2,求 B 6.已知,,化简:3.1 二次根式(2)课后作业 1.的平方根是 ,的算术平方根是 ;16的平方根是_______ , 2.代数式中字母的取值范围是_____________。
3.已知:,则的值为__________。
4.若,则的值为__________。
5.实数P在数轴上的位置如图所示:则=__________。
6.观察以下四个式子:(1);(2);(3);(4),你从中发现什么规律?请举出一例:_______________________; 7.已知:,则=( ) (A)3 (B)3 (C) (D) 8.若,则=( )(A)1 (B) l (C) 2a1 (D) 2a+1 9.已知三角形三边为、、,其中、两边满足,那么这个三角形的最大边c的取值范围是( A B C D. 10.若,则的取值范围是( ) A.x<0 B.x≥-2 C.-2≤x≤0 D.-2<x<0 B 11.已知三角形的三边长分别为a、b、c,且那么=( ) (A) (B) (C) (D) B 12.先阅读理解,再回答问题: 因为所以的整数部分为1; 因为所以的整数部分为2; 因为所以的整数部分为3; 依次类推,我们不难发现为正整数)的整数部分为___________。
广东省惠州市2012届高三一模(四调)考试(理数)
惠州市2012届高三模拟考试数 学 (理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.集合{4,5,3}M m =-,{9,3}N =-,若MN ≠∅,则实数m 的值为( )A .3或1-B .3C .3或3-D .1- 2.设,a b 为实数,若复数121ii a bi+=++,则( ) A .1,3a b ==B .3,1a b ==C .13,22a b == D .31,22a b == 3.“0a >”是“20a a +≥”的( )条件 A .充分非必要B .必要非充分C .充要D .非充分非必要4.公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =, 则10S 等于( )A .18B .24C .60D .905.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为 ( ) A .10 B .20 C .30 D .406.函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的部分图象如图示,则将()y f x =的图象向右平移6π个单位后,得到的 图象解析式为 ( )y1 6π1112π xOA .y =sin 2xB .y =cos2xC .y =2sin(2)3x π+D .y =sin(2)6x π-7.已知双曲线1222=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ⋅=,则点M 到x 轴的距离为( ) A .3 B .332 C .34 D .358.定义函数D x x f y ∈=),(,若存在常数C ,对任意的D x ∈1,存在唯一的D x ∈2,使得,则称函数)(x f 在D 上的均值为C .已知]100,10[,lg )(∈=x x x f ,则函数]100,10[lg )(∈=x x x f 在上的均值为( )ABC .D .10二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人.10.右图是某算法的程序框图,则程序运行后输出的结果是 .11.1232,2()log (1) 2.x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,则((2))f f 的值为 . 12.由曲线2y x =,3y x =围成的封闭图形面积为 .13.已知52x ⎛ ⎝的展开式中的常数项为T ,()f x 是以T 为周期的 偶函数,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是 .(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
惠州市2012届高三第二次调研考试数学试题(理科)及答案与评分标准
惠州市2012届高三第二次调研考试数学试题(理科)(本试卷共4页,21小题,满分150分。
考试用时120分钟)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求. 1.设集合{}23,log P a =,{},Q a b =,若{}0PQ =,则P Q =( )A .{}3,0B .{}3,0,2C .{}3,0,1D .{}3,0,1,2 2.若(4)a i i b i +=+其中,a b R ∈,i 是虚数单位,则a b -( )A .3B .5C .-3D .-53.“||2x <”是“260x x --<”成立( )条件。
A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要4.已知等比数列{}n a 中,12a =,且有24674a a a =,则3a =( )A .1B .2C .14 D . 125.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A.ˆ 1.234yx =+ B. ˆ 1.230.08y x =- C. ˆ 1.230.8y x =+ D. ˆ 1.230.08y x =+ 6.若5(1)ax -的展开式中3x 的系数是80,则实数a 的值为( )A .-2B .CD .27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线, 垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 的延长线经过点1C C.AH 垂直平面11CB D D.直线AH 和1BB 所成角为458.已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x =B .12()()f x f x <C.12()()f x f x>D.1()f x与2()f x的大小不能确定二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分)(一)必做题:第9至13题为必做题,每道试题考生都必须作答.9.已知ABC∆中,1,a b==45B=,则角A等于_______10.如图,三个几何体,一个是长方体、一个是直三棱柱,一个是过圆柱上下底面圆心切下圆柱的四分之一部分,这三个几何体的主视图和俯视图是相同的正方形,则它们的体积之比为.11. 右面框图表示的程序所输出的结果是12.若直线y x m=-与圆(m的取值范围为.13.已知双曲线22219x ya-=216y x=的焦点重合,则该双曲线的离心率为___________(二)选做题:第14、15做其中一14.(坐标系与参数方程选做题)曲线2s i n(s i nxyθθθ=⎧⎨=⎩为参数)与直线y a=有两个公共点,则实数a的取值范围是_______.15.(几何证明选讲选做题)如图,在⊙O中,AB为直径,AD为弦,过B点的切线与AD的延长线交于点C,且AD DC=,则sin BCO∠=_________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数44sin cos cosy x x x x=+-,(1)求该函数的最小正周期和最小值;(2)若[]0,xπ∈,求该函数的单调递增区间。
2012年广东省高考理科数学试题及参考答案+试题分析(高清word版)
2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.试卷分析 陈功文一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --解:分子分母同乘以-i ,得D 选项为正确答案。
2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}解:选C3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--解:BC =BA+AC=(2,3)+(-4,-7)=(-2,-4),选A 4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B 1y x =-+C . 1()2xy =D . 1y x x=+解:B 、C 为减函数,D 为双钩函数,双钩函数在(0,)+∞上先减后增,选A 分析:前4题难度都不大,掌握概念和基本方法就可以拿到分。
5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1解:可行域如图:所3z x y =+的最大值为3*3+2=11,选B6.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π解:根据三视图可知,该几何体上部分为圆锥,下部分为圆柱,选C7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .19解:个位数为0且“个位+十位=奇数”的两位数是10 30 50 70 90 共5个 若十位数为奇数,则个位数为偶数,共有C (5,1)*C (5,1)=25 若十位数为偶数,则个位数为奇数,共有C (4,1)*C (5,1)=20 5/(25+20)=1/9选D分析:5-7题难度中等,考察的方法较简单,计算量比前4题大些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠州市2012届高三模拟考试 2012-4-21数 学 (理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.集合{4,5,3}M m =-,{9,3}N =-,若M N ≠∅ ,则实数m 的值为( ) A .3或1- B .3 C .3或3- D .1- 2.设,a b 为实数,若复数121i i a bi+=++,则( )A .1,3a b ==B .3,1a b ==C .13,22a b ==D .31,22a b ==3.“0a >”是“20a a +≥”的( )条件A .充分非必要B .必要非充分C .充要D .非充分非必要4.公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =, 则10S 等于( )A .18B .24C .60D .905.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为 ( ) A .10 B .20 C .30 D .406.函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的部分图象如图示,则将()y f x =的图象向右平移6π个单位后,得到的图象解析式为 ( )A .y =sin 2xB .y =cos 2xC .y =2sin(2)3x π+D .y =sin(2)6x π-7.已知双曲线1222=-yx 的焦点为21,F F ,点M 在双曲线上,且120M F M F ⋅=,则点M 到x 轴的距离为( ) A .3 B .332 C .34 D .358.定义函数D x x f y ∈=),(,若存在常数C ,对任意的D x ∈1,存在唯一的D x ∈2,使得,则称函数)(x f 在D 上的均值为C .已知]100,10[,lg )(∈=x x x f ,则函数]100,10[lg )(∈=x x x f 在上的均值为( )ABC .D .10二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人.10.右图是某算法的程序框图,则程序运行后输出的结果是 .11.1232,2()log (1) 2.x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,则((2))f f 的值为 .12.由曲线2y x =,3y x =围成的封闭图形面积为 . 13.已知521x ⎛-⎝的展开式中的常数项为T ,()f x 是以T 为周期的 偶函数,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是 .(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
14.(坐标系与参数方程选做题)曲线4cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)上一点P 到点()2,0A -、()2,0B距离之和为 .15.(几何证明选讲选做题)如图,已知直角三角形ABC90ACB ∠=,4B C =,3A C =,以A C 为直径作圆O 交A B 于D ,则C D =_______________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)设向量cos sin m x x = (,),(0,)x π∈,(1,n =.(1)若||m n -=,求x 的值;(2)设()()f x m n n =+⋅,求函数()f x 的值域.17.(本小题满分12分)一个盒子装有六张卡片,上面分别写着如下六个定义域为R 的函数:1()f x x =,22()f x x =,33()f x x =,4()sin f x x =,5()cos f x x =,6()2f x =.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.18.(本小题满分14分)已知四棱锥P -ABCD 的三视图如下图所示,E 是侧棱PC 上的动点. (1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.第15题图19.(本小题满分14分)已知数列}{n a 满足:1211,,2a a ==且2[3(1)]22[(1)1]0,nnn n a a ++--+--=*n N ∈.(1)求3a ,4a ,5a ,6a 的值及数列}{n a 的通项公式; (2)设n n n a a b 212⋅=-,求数列}{n b 的前n 项和n S .20.(本小题满分14分)已知椭圆:C 22221(0)x y a b ab+=>>的离心率为3,椭圆短轴的一个端点与两个焦点构成的三角形的面积为3.(1)求椭圆C 的方程;(2)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点.①若线段A B 中点的横坐标为12-,求斜率k 的值;②已知点7(,0)3M -,求证:MA MB ⋅ 为定值.21.(本小题满分14分)已知函数1ln (),(1)x f x x x+=≥(1)试判断函数)(x f 的单调性,并说明理由; (2)若()1k f x x ≥+恒成立,求实数k 的取值范围;(3)求证: 22[(1)!](1),()n n n e n N -*+>+∈.惠州市2012届高三模拟考试数学(理科)参考答案与评分标准一.选择题:共8小题,每小题5分,满分40分1.【解析】由M N ≠∅ 可知39m -=-或33m -=,故选A . 2.【解析】1231122i a bi i i++==++,因此31,22a b ==.故选D .3.【解析】因为200a a a +≥⇔≥或1a ≤-,所以“0a >”能推出“20a a +≥”, 但“20a a +≥”不能推出“0a >”,故选A .4.【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得1278a d +=则12,3d a ==-, 所以1019010602S a d =+=.故选C5.【解析】安排方法可分为3+2及2+3两类,则共有225220C A ⨯=种分法,故选B .6.【解析】由图像知A=1, 311341264T πππ=-=,T π=⇒2ω=,由sin(2)16πφ⨯+=,||2πφ<得32ππφ+=⇒6πφ=⇒()sin(2)6f x x π=+,则图像向右平移6π个单位后得到的图像解析式为sin[2()]sin(2)666y x x πππ=-+=-,故选D .7.【解析】设12,M F mM F n == ,由2221212||2m n F F m n ⎧+==⎪⎨⎪-=⎩,得4m n ⋅=,由121211||22F M F S m n F F d ∆=⋅=⋅解得3d =故选B .8.【解析】从而对任意的]100,10[1∈x ,存在唯一的]100,10[2∈x ,使得21,x x 为常数。
充分利用题中给出的常数10,100.令10001001021=⨯=x x ,当]100,10[1∈x 时,C .二.填空题:共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只选做一题. 9.760 10.27 11.2 12.112. 13.10,4⎛⎤⎥⎝⎦. 14.8 15.1259.【解析】1600,,1600,10,760200x y x y x y y +=-=⨯=男生女生则 .10.【解析】答案:27.由框图的顺序,s =0,n =1,s =(s +n )n =(0+1)*1=1,n =n +1=2,依次循环s=(1+2)*2=6,n =3,注意此刻3>3仍然是否,所以还要循环一次s =(6+3)*3=27,n =4, 此刻输出s =27.11.【解析】11((2))(1)22f f f e -==⨯=.12.【解析】结合图形可知所求封闭图形的面积为11233400111()()3412x x dx x x -=-=⎰.13.【解析】按二项式公式展开得2T =,函数()()g x f x kx k =--有4个零点,等价于函数1()y f x =与2(1)y k x =+,再利用数形结合可得10,4k ⎛⎤∈ ⎥⎝⎦.14.【解析】曲线4cos x y θθ=⎧⎪⎨=⎪⎩表示的椭圆标准方程为2211612x y +=,可知点()2,0A -、()2,0B为椭圆的焦点,故28PA PB a +==.15.【解析】A D C ∠为直径A C 所对的圆周角,则90ADC ∠=,在R t A C B ∆中,C D AB ⊥,由等面积法有A B C D C A C B ⋅=⋅,故得125C D =.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)解:(1)(cos 1,sin m n x x -=--由||m n -=得22cos 2cos 1sin 35x x x x -++-+= …………3分整理得cos x x = 显然cos 0x ≠∴tan 3x =-…………4分∵(0,)x π∈,∴56x π=…………5分 (2)(cos 1,sin m n x x +=++∴()()f x m n n =+⋅=(cos 1,sin x x ++cos 13x x =+++=1cos )422x x ++=2sin()46x π++…………8分∵0x π<< ∴7666x πππ<+<…………9分∴1sin()126x π-<+≤12sin()26x π⇒-<+≤…………10分∴32sin()466x π<++≤,即函数()f x 的值域为(3,6].…………12分17.(本小题满分12分)解:(1)六个函数中是奇函数的有1()f x x =,33()f x x =,4()sin f x x =,由这3个奇函数中的任意两个函数相加均可得一个新的奇函数.……………2分 记事件A 为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”, 由题意知23261()5C P A C==…………………4分(2)ξ可取1,2,3,4 …………………………………………… 5分13161(1)2C P C ξ===, 113311653(2)10C C P C C ξ==⋅= 1113321116543(3)20C C C P C C C ξ==⋅⋅=, 11113321111165431(4)20C C C C P C C C C ξ==⋅⋅⋅=………9分 故ξ的分布列为……………10分13317123421020204Eξ=⨯+⨯+⨯+⨯=答:ξ的数学期望为74……………………………12分18.(本小题满分14分)解:(1)由三视图可知,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,且PC=2. ………………………………………………1分∴11212333P A B C D A B C DV S P C-==⨯⨯=,即四棱锥P-ABCD的体积为23.………3分(2)不论点E在何位置,都有BD⊥AE. ………………………………………………4分证明如下:连结AC,∵ABCD是正方形,∴BD⊥AC. ………………………5分∵PC⊥底面ABCD,且BD⊂平面ABCD,∴BD⊥PC. ………………………6分又∵AC∩PC=C,∴BD⊥平面PAC. ………………………7分∵不论点E在何位置,都有AE⊂平面PAC.∴不论点E在何位置,都有BD⊥AE. ………………………8分(3)解法1:在平面DAE内过点D作DF⊥AE于F,连结BF.∵AD=AB=1,DE=BE=12+12=2,AE=AE=3,∴Rt△ADE≌Rt△ABE,从而△ADF≌△ABF,∴BF⊥AE.∴∠DFB为二面角D-AE-B的平面角.……………………………………………10分在Rt△ADE中,DF=AD·DEAE=1×23=63,∴BF=63.…………………………11分又BD=2,在△DFB中,由余弦定理得cos∠DFB=222122DF BF BDDF BF+-=-⋅,…………………………………………12分∴∠DFB=2π3,………………………………………………………13分即二面角D-AE-B的大小为2π3.………………………………………………………14分解法2:如图,以点C 为原点,CD ,CB ,CP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系.则D(1,0,0),A(1,1,0),B(0,1,0),E(0,0,1),………………………………………9分 从而DA →=(0,1,0),DE →=(-1,0,1),BA →=(1,0,0),BE →=(0,-1,1). 设平面ADE 和平面ABE 的法向量分别为 ()1111,,n x y z = ,()2222,,n x y z =由1100n D A n D E ⎧⋅=⎪⎨⋅=⎪⎩ 1110y x z =⎧⇒⎨-+=⎩,取()11,0,1n = 由2200n B A n B E⎧⋅=⎪⎨⋅=⎪⎩ 22200x y z =⎧⇒⎨-+=⎩,取()20,1,1n =-- …………11分 设二面角D -AE -B 的平面角为θ,则12121cos 2n n n n θ⋅===-⋅ ,…………13分 ∴θ=2π3,即二面角D -AE -B 的大小为2π3.…………14分 注:若取()20,1,1n = 算出3πθ=可酌情给分。