4.3用一元二次方程解决问题5
苏教版初一数学4.3 用一元一次方程解决实际问题(第4课时 球赛积分问题)
4.3 用一元一次方程解决实际问题(第4课时球赛积分问题)一、单选题(共10小题)1.(2020·耒阳市期中)同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场2.(2018·宜宾市期中)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.20 3.(2020·唐县期末)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场4.(2020·宾县期末)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.55.(2020·乌兰浩特期末)一次知识竞赛共有20道选择题,规定答对一道题得5分,不做或做错一题扣1分,如果某学生的得分为76分,则他做对了道题( )A.16 B.17 C.18 D.196.(2018·重庆市期末)在12月4日全国普法日中,我去某校进行了法律知识竞赛,竞赛内容是10道有关中学生应该了解的法律常识,竞赛规则规定:答对一题得5分,不答或答错一题倒扣3分,若七年级1班某同学得了34分,则该同学答对题的个数是()A.9 B.8 C.7 D.67.(2019·汉阳市期末)学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80 B.76 C.75 D.708.(2019·福州市期中)在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=329.(2018·娄底市期末)要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ). A .()1x x 1152+= B .()1x x 1152-= C .()x x 115+= D .()x x 115-=10.(2020·蚌埠市期末)有x 支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是( ) A .x(x ﹣1)=21 B .x(x ﹣1)=42 C .x(x+1)=21 D .x(x+1)=42二、填空题(共5小题)11.(2019·乌拉特前旗期末)一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分.设他做对了x 道题,则可列方程为_____. 12.(2018·长春市期末)一支足球队参加比赛,组委会规定胜一场得3分,平一场得1分,该队开局9场保持不败,共积21分,则该队胜了_____场.13.(2019·石家庄市期末)在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了_____场. 14.(2018·武汉市期末)下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G 组赛(G 组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是___分.15.(2018·道里区期末)某电台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下标记录了3个参赛者的得分情况.参赛者的得分情况.参赛者D得76分,它答对了__________道题.三、解答题(共2小题)16.(2019·广州市期中)在某校举办的足球比赛中,规定:胜一场得3分,平一场得1分,•负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个球队只输了2场,那么此队胜几场,平几场?17.(2018·深圳市期末)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积______分,胜一场积______分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.一、单选题(共10小题)1.(2020·耒阳市期中)同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了( ) A .10场 B .11场C .12场D .13场【答案】D 【详解】解:设该球队胜了x 场,则平了(30-9-x )场,根据题意可得: 3x+(30-9-x )=47, 解得,x=13,∴这只球队胜了13场,平了8场. 故选D.2.(2018·宜宾市期中)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为( ) A .17 B .18C .19D .20【答案】C 【解析】设他做对了x 道题,则4(25)70,19x x x --==,所以他做对了19道题,故选C 。
2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步达标测评(附答案)
2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步达标测评(附答案)一.选择题(共10小题,满分40分)1.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x元,根据题意可列出方程()A.0.7x﹣400=20%×400B.0.7x﹣400=20%×0.7xC.(1﹣20%)×0.7x=400D.0.7x=(1﹣20%)×4002.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱3.已知某商店有两个进价不同的计算器都卖了120元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元4.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90B.0.08x﹣10=90C.90﹣0.8x=10D.x﹣0.8x﹣10=905.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.100元B.150元C.200元D.250元6.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则出售这两台空调永辉超市()A.不赔不赚B.赚20元C.亏20元D.赚90元7.某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%.则这单买卖是()A.不赚不亏B.亏了C.赚了D.无法确定8.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元B.27元C.28元D.29元9.某商场销售一款服装,每件标价150元,若以八折销售,仍可获利30元,则这款服装每件的进价为()A.90元B.96元C.120元D.126元10.某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场()A.不赚不赔B.赚160元C.赚80元D.赔80元二.填空题(共4小题,满分20分)11.某商场在“庆元旦”的活动中将某种服装打折销售,如果每件服装按标价的6折出售将亏10元,而按标价的9折出售将赚50元,则每件服装的标价是元.12.某商品标价为220元,若以八折出售,仍可获利10%,则该商品的进价是元.13.一个书包进价为60元,打八折销售后仍获利20%,这个书包原价为元.14.某种商品的标价为220元,为了吸引顾客,按9折出售,这时仍可盈利10%,则这种商品的进价是元.三.解答题(共6小题,满分60分)15.商场经销甲、乙两种商品,甲种商品每件售价60元,利润率为50%,乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2100元,求购进甲种商品多少件?16.一家服装店在换季时积压了一批服装,为了缓解资金的压力,决定打折销售,其中一条裤子的成本为80元,按标价五折出售将亏30元.(1)求这条裤子的标价是多少元?(2)另一件上衣按标价打九折出售,和这条裤子合计卖了230元,两件衣服恰好不赢不亏,求这件上衣的标价是多少元?17.某商铺购进甲、乙两种商品,其中乙商品件数比甲商品件数的2倍少45件,甲、乙两种商品的进价和售价如表(利润=售价﹣进价):甲乙进价(元/件)2030售价(元/件)2540(1)如何进货,进货价恰好是3450元?(2)如何进货,商铺销售完两种商品时获利恰好是进货价的30%,此时利润为多少元?18.某公园门票价格规定如下:七年级两个班共101人去公园玩儿,其中一班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1207元,问:购票张数1﹣50张51﹣100张100张以上每张票的价格13元11元9元(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可省多少钱?(3)如果一班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱?19.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.20.某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A,B两家家具公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元,A公司的优惠政策为:每买一张办公桌赠送一把椅子,B公司的优惠政策为:办公桌和椅子都实行8折优惠.①若到A公司买办公桌的同时买m把椅子,则应付款多少元?②若规定只能选择一家公司购买桌椅,什么情况到任一家公司购买付款一样多?③如果买办公桌的同时买30把椅子,并且可到A,B任一家公司购买,请你设计一种购买方案,使所付款额最少.参考答案一.选择题(共10小题,满分40分)1.解:设这件商品的标价为x元,根据题意得:0.7x﹣400=20%×400,故选:A.2.解:设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,y(1﹣20%)=200,解得,x=160,y=250,∴(200+200)﹣(160+250)=﹣10,∴这家商店这次交易亏了10元,故选:A.3.解:设盈利的进价是x元.120﹣x=20%x,解得x=100.设亏本的进价是y元.y﹣120=20%y,解得y=150.120+120﹣100﹣150=﹣10元.故亏损了10元.故选:C.4.解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选:A.5.解:设商品的标价是x元,根据题意得x﹣80%x=50,解得x=250,250×80%=200.他购买这件商品花了200元.故选:C.6.解:设盈利10%的这台空调的进价为x元,亏损10%的这台空调的进价为y元,由题意,得x(1+10%)=990,y(1﹣10%)=990,解得:x=900,y=1100,所以这次销售的进价为:900+1100=2000元,∵售价和为:990+990=1980元,利润为:1980﹣2000=﹣20元.∴出售这两台空调永辉超市亏20元.故选:C.7.解:设两种衣服的进价分别为a元、b元,则有:a(1+20%)=300,b(1﹣20%)=300,解得:a=250,b=375;∴赚了20%的衣服盈利了:300﹣250=50元,亏损了20%的衣服亏本了:375﹣300=75元;∴总共亏本了:75﹣50=25元,故选:B.8.解:设电子产品的标价为x元,由题意得:0.9x﹣21=21×20%解得:x=28∴这种电子产品的标价为28元.故选:C.9.解:设这款服装的进价是x元,150×0.8﹣x=30,x=90,进价是90元.故选:A.10.解:设两台电子琴的原价分别为x与y,则第一台可列方程(1+20%)•x=960,解得:x=800.比较可知,第一台赚了160元,第二台可列方程(1﹣20%)•y=960,解得:y=1200元,比较可知第二台亏了240元,两台一合则赔了80元.故选:D.二.填空题(共4小题,满分20分)11.解:设每件服装的标价是x元,可得:0.6x+10=0.9x﹣50,解得:x=200,答:每件服装的标价是200元;故答案是:200.12.解:设该商品的进价是x元,根据题意列方程得:220×0.8﹣x=0.1x,176﹣x=0.1x,x=160.答:该商品的进价是160元.故答案为:160.13.解:设这个书包的原价是x元.则依题意得0.8x=60(1+20%),解可得:x=90,即标价为90元/个.故答案为:90.14.解:设进价为x元,则:x+x×10%=220×0.9解得x=180.三.解答题(共6小题,满分60分)15.解:(1)设甲种商品的进价为x元,由题意,得,解得:x=40,经检验,x=40是原方程的解.∴甲商品的进价为40元.乙商品的利润率为:=60%.故答案为:40,60%;(2)设甲种商品购进y件,则乙种商品购进(50﹣y)件,由题意,得40y+50(50﹣y)=2100,解得:y=40,答:购进甲种商品40件.16.解:(1)设标价为x元,则0.5x=80﹣30.解得x=100.即标价为100元.(2)设这件上衣的标价为y元,则0.9y+50=230,解得y=200即这件上衣的标价是200元.17.解:(1)设购进甲商品x件,则购进乙商品(2x﹣45)件,由题意得::30(2x﹣45)+20x=3450,解得:x=60,则2x﹣45=120﹣45=75,答:购进甲商品60件,购进乙商品75件,进货价恰好是3450元;(2)设购进甲商品m件,购进乙商品(2m﹣45)件,由题意得:(25﹣20)m+(40﹣30)(2m﹣45)=30%[20m+30(2m﹣45)],解得:m=45,则2m﹣45=45,此时利润为:(25﹣20)×45+(40﹣30)×45=675(元),答:购进甲商品45件,购进乙商品45件,商铺销售完两种商品时获利恰好是进货价的30%,此时利润为675元.18.解:(1)设七年级一班有x人,13x+11(101﹣x)=1207,解得,x=48,∴101﹣x=53,答:七年级一班有48人,二班53人;(2)1207﹣101×9=1207﹣909=298(元),答:两个班联合起来购票可省298元;(3)一班按实际人数购票花费为:48×13=624(元),一班购买51张票的花费为:11×51=561(元),∵561<624,∴购买51张票更合算,答:如果一班单独组织去公园玩儿,购票51张更省钱.19.解:(1)设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000,x=52,∴92﹣x=40,答:甲校有52人参加演出,乙校有40人参加演出.(2)乙:92﹣52=40人,甲:52﹣10=42人,两校联合:50×(40+42)=4100元,而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元,此时又比联合购买节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装,即比实际人数多买91﹣(40+42)=9套.20.解:①∵m≥20,∴A公司付款为20×210+(m﹣20)70=4200+70m﹣1400=70m+2800(元);②m≥20,B公司付款为:4200×0.8+0.8×70m=56m+3360(元);当70m+2800=56m+3360,解得m=40,答:当购40把椅子时两公司付款一样多.③当m=30时,第一种方案:A公司付款为70m+2800=70×30+2800=2100+2800=4900(元);第二种方案:B公司付款为56m+3360=56×30+3360=1680+3360=5040(元);第三种方案:到A公司买20张办公桌,用20×210=4200,赠20把椅子,还剩30﹣20=10把椅子,10把椅子到B公司买,用10×70×0.8=560,此时一共用560+4200=4760(元);∴第三种方案所付款额最少.。
苏教版初一数学4.3 用一元一次方程解决实际问题(第5课时 方案选择问题)
4.3 用一元一次方程解决实际问题(第5课时方案选择问题)一、单选题(共10小题)1.(2018·重庆市期末)假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为()A.6名B.7名C.8名D.9名2.(2019·南岗区期中)某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25 B.3x+20=4x﹣25C.3x﹣20=4x﹣25 D.3x+20=4x+253.(2020·澧县期末)某汽车队运送一批货物,每辆汽车装4 t,还剩下8 t未装,每辆汽车装4.5 t就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( )A.4x+8=4.5x B.4x-8=4.5xC.4x=4.5x+8 D.4(x+8)=4.5x4.(2019·沁阳市期末)为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”,王老师说:“那好吧,我就再给自己买.”根据两人的对话,判断王老师的班级学生人数应为()一个,谢谢A.38 B.39 C.40 D.41 5.(2018·厦门市期末)某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定购一只茶壶赠一只茶杯,某人共付款171元,得茶壶、茶杯共30只(含赠品在内),则此人购得茶壶的只数为()A.8 B.9 C.10 D.11 6.(2020·杭州市期末)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A .0.6元B .0.7元C .0.8元D .0.9元7.(2019·官渡区期末)芳芳购买手机卡,可选择“全球通”卡和“神州行”卡,使用时“全球通”卡每月需交固定费用50元,免费通话时间为150分钟,超过150分钟的部分按0.50元/分钟计费;“神州行”卡不收固定费用,但通话每分钟收话费0.30元.若芳芳每月手机费预算为100元,那么她最合算的选择是( )A .“全球通”卡B .“神州行”卡C .“全球通”卡、“神州行”卡一样D .无法确定8.(2020·洛阳市期末)2019年猪肉涨价幅度很大.周日妈妈让张明去超市买猪肉,张明买二斤猪肉,剩余19元,买三斤猪肉还差20元.设妈妈一共给了张明x 元钱,则根据题意列方程是( )A .192023x x +-= B .192023x x -+= C .192023x x+=-D .192023x x-=+9.(2019·海淀区期末)某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元. A .300B .260C .240D .22010.(2020·萧山区期末)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题(共5小题)11.(2018·涪陵区期末)某书城开展学生优惠售书活动,凡一次性购买不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了36元,则该学生第二次购书实际付款_______元.12.(2018·上河区期末)全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班有_____个同学,计划租用_____条船。
九年级数学上册 43用一元二次方程解决问题教案(3) 教案
PQ BCAD江苏省仪征市谢集中学九年级数学上册 4.3用一元二次方程解决问题教案(3)教学目标1.掌握列出一元二次方程解应用题;并能根据具体问题的实际意义,检验结果的合理性;2.理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题。
教学重点:学会用列方程的方法解决有关形积问题. 教学难点:如何找出形积问题中的等量关系 教学过程: 一、情境引入:问题:一根长22cm 的铁丝。
(1)能否围成面积是302cm cm2的矩形?(2)能否围成面积是32 2cm 的矩形?并说明理由。
二、探究学习:1.尝试:下面数量之间的关系吗?如果设这根铁丝围成的矩形的长是x cm ,你能用数学式子表示矩形的宽吗? 你能找出这个问题中的相等关系吗?相等关系: 。
2.概括总结.列方程的关系是找出相等关系。
3.典型例题: 例1如图所示(1)小明家要建面积为150m2的养鸡场,鸡场一边靠墙,另一边用竹篱笆围成,竹篱笆总长为35m 。
若墙的长度为18m ,鸡场的长、分别是多少?(2)如果墙的长为15m ,鸡场一边靠墙,竹篱笆总长为45m ,可围成的鸡场最大面积是多少平方米? (3) 如果墙的长为15m ,鸡场一边靠墙,竹篱笆总长为45m ,可围成的鸡场的面积能达到250m 2吗?通过计算说明理由。
(4)如果墙的长为15m ,鸡场一边靠墙,竹篱笆总长为45m ,可围成的鸡场的面积能达到100m 2吗?通过计算并画草图说明。
例2如图,在矩形ABCD 中,AB=6cm ,BC=3cm 。
点P 沿边AB 从点A 开始向点B 以2cm/s 的速度移动,点Q 沿边DA 从点D 开始向点A 以1cm/s 的速度移动。
如果P 、Q 同时出发,用t (s )表示移动的时间(0≤t ≤3)。
那么,当t 为何值时,△QAP 的面积等于2cm2?三、巩固练习:(1)用长为100 cm 的金属丝制作一个矩形框子。
4.3一元二次方程应用4
某商场销售一批名牌衬衫,平均每天可售 出20件,每件盈利40元.为了扩大销售, 增加盈利,商场决定采取适当的降价措 施.经调查发现,在一定范围内,衬衫的单 价每降5元,商场平均每天可多售出2件.如 果商场通过销售这批衬衫每天要盈利1200元, 衬衫的单价应降多少元?
某商场销售一批名牌衬衫,每件衬衫成本 40元,经调查发现,定价为100元时,平均 每天可售出20件;衬衫的单价每降1元,商 场平均每天可多售出2件.如果商场通过销 售这批衬衫每天要盈利1200元,衬衫的单价 定为多少元?
小试牛刀
• 2、某商场礼品柜台购进大量贺年卡,一种 贺年卡平均每天可销售500张,每张盈利 0.3元。为了尽快减少库存,商场决定采取 适当的措施。调查发现,如果这种贺年卡 的售价每降低0.1元,那么商场平均每天多 售出300张。商场要想平均每天盈利160元, 每张贺年卡应降价多少元?
思考与探索
• 如图:某海关缉私艇在C处发现正在向 北方向30km的A处有一艘可疑船只,测 得它正以60km/h的速度向正东方向航 行,缉私艇随即以75km/h的速度在B处 拦截,问缉私艇从C处到B处需航行多长 时间? A B
初中数学九年级上册 (苏科版)
4。3 一元二次方程应用4
一、预习尝试: 某商场从厂家以每件21元的价格购进一 批商品,若每件的售价为a元,则可卖出 (350—10a)件,商场计划要赚450元, 则每件商品的售价为多少元?
某商场销售一批名牌衬衫,平均每天可售 出20件,每件盈利40元.为了扩大销售, 增加盈利,商场决定采取适当的降价措 施.经调查发现,在一定范围内,衬衫的单 价每降1元,商场平均每天可多售出2件.如 果商场通过销售这批衬衫每天要盈利1200元, 衬衫的单价应降多少元?
七年级数学上册一元一次方程4.3用一元一次方程解决问题一题多变拓宽思路素材
一题多变 拓宽思路学校运动场跑道周长400米,小华跑步的速度是小红的35倍,他两从同一起点沿跑道的同一方向同时出发,5分钟后小华第一次追上了小红,求他二人的跑步速度.分析:本题中的相等关系为:小华的行程-小红的行程=400米.解:设小红跑步的速度为x 米∕分,则小华跑步的速度为35x 米∕分. 由题意得,得4005355=-⨯x x 解得 120=x ,20035=x 答:小红跑步的速度为120米∕分,小华跑步的速度为200米∕分.【评注】此题属于环形行程中同时同地同方向运动类题。
解这类题常用的相等关系为:快者的行程-慢者的行程=跑道周长.拓展一:学校运动场跑道周长400米,小华跑步的速度是小红的35倍,他们从同一起点沿跑道方向背向同时出发,45分钟后小华第一次与小红相遇,求他二人的跑步速度. 分析:本题中的相等关系为:小华的行程+小红的行程=400米. 解:设小红跑步的速度为x 米∕分,则小华跑步的速度为35x 米∕分. 由题意,得400453545=+⨯x x 解得 120=x ,20035=x 答:小红跑步的速度为120米∕分,小华跑步的速度为200米∕分.评注:此题属于环形行程中同时同地背向运动类题。
解这类题常用的相等关系为:两者的行程之和=跑道周长.拓展二:学校运动场跑道周长400米,已知小红跑步的速度为120米∕分,小华跑步的速度是小红的35倍,若小红在小华的前方100米,他们同时同向出发,试问几分钟后小华第一次与小红相遇?分析:本题中的相等关系为:小华的行程-小红的行程=100米.解:设x 分钟后小华第一次与小红相遇. 由题意,得10012012035=-⨯x x解得x=45 答:经过45分钟后小华第一次与小红相遇 拓展三:学校运动场跑道周长400米,已知小红跑步的速度为120米∕分,小华跑步的速度是小红的35倍,若小华在小红的前方100米,他们同时同向出发,试问几分钟后小华第一次与小红相遇?分析:本题中的相等关系为:小华的行程-小红的行程=400米-100米解:设x 分钟后小华第一次与小红相遇 由题意,得10040012012035-=-⨯x x 解得x=415 答:经过415分钟后小华第一次与小红相遇 【评注】此题属于环形行程中同时异地同向运动类题,解这类题常用的相等关系:①若慢者在前,则为 快者的行程-慢者的行程=他们之间的距离;②若快者在前,则为快者的行程-慢者的行程=跑道周长-他们之间的距离.。
一元二次方程的应用解决生活中的实际问题
一元二次方程的应用解决生活中的实际问题一元二次方程在数学中是非常重要的一部分,它不仅在学术领域有广泛的应用,而且在生活中也能帮助我们解决实际问题。
本文将通过具体的例子来论述一元二次方程在生活中的应用,以及如何通过解方程来解决这些实际问题。
案例一:物体自由落体问题假设一个物体从高楼上自由落下,我们希望求解物体的下落时间和落地时速度。
根据物理学的知识,自由落体的运动可以用一元二次方程来描述。
假设物体从高度h开始下落,下落的时间为t,重力加速度为g,那么物体在t时刻的下落距离可以表示为s=gt²/2。
另外,由于物体在落地时速度为0,所以可以将方程表示为h=gt²/2,并且g是已知的常数。
现在,我们需要求解t和h的值。
解法:将方程h=gt²/2变形为gt²-2h=0,这是一个一元二次方程。
根据二次方程的求根公式,可以得到t的取值为t=√(2h/g)。
这样,我们就可以根据物体的下落高度来求解下落时间。
案例二:图像传输问题假设我们需要将一个图像通过无线信号传输到远处的显示器,但信号传输会有一定的损耗,导致图像失真。
我们希望找到一个合适的算法来校正损失的图像。
为了简化问题,假设该图像是由一个二次函数y=ax²表示,其中a是已知的常数。
现在,我们需要找到一个一元二次方程来校正图像的损失。
解法:假设原始图像为y=ax²,经过无线传输后的图像为y'=bx²,其中b是未知的常数。
我们可以将这两个图像的差值表示为Δy=y'-y,即Δy=(bx²)-(ax²)=(b-a)x²。
我们希望通过一元二次方程来表示这个差值。
将损失的图像表示为y=ax²+Δy,可以得到一元二次方程y=ax²+(b-a)x²。
现在,我们需要求解b的值,进而校正图像的损失。
通过以上两个案例,我们可以看到一元二次方程在解决生活中的实际问题中有着广泛的应用。
4.3用一元二次方程解决问题综合练习(5)
4.3用一元二次方程解决问题综合练习(5)-- [ 教案]备课时间: 主备人:【教学目标】:培养实际问题转化为数学问题的能力和分析问题解决问题的能力,培养应用数学的意识【重点和难点】:重点:熟练掌握用列方程的方法解决各种实际问题难点:能找出各种实际问题中的等量关系。
【典型例题】:例1、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元。
甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?例2、如图,在长为40m、宽为22m的矩形地面内,修筑两条同样宽且互相垂直的道路,m,道路的宽应为多少?余下的铺上草坪,要使草坪的面积达到7602例3、某企业成立3年来,累计向国家上缴利税280万元,其中第一年上缴40万元,求后两年上交利税的年平均增长的百分率。
例4、某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件。
如果商店销售这批服装要获利润12000元,那么这种服装售价应定为多少元?该商店应进这种服装多少件?例6、把一根长为80cm 的绳子剪成两段,并把每一段绳子围成一个正方形。
(1)要使这两个正方形的面积之和等于2002cm ,该怎么剪?(2)这两个正方形面积之和可能等于4882cm 吗?【课堂练习】1、小明把一张边长为10cm 的正方形硬纸板的四周剪去一个同样大小的正方形,再折合成一个无盖的长方形盒子。
(1)如果要求长方体的底面面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面面积的数据要求,那么剪去的正方形边长会发生什么样的变化?折合成的长方体的体积又会发生什么样的变化?。
初中数学苏科版七年级上册第四章一元一次方程4.3用一元一次方程解决问题(7)
用一元一次方程解决问题(1)一、情境引入数学实验室:准备一本月历,两人一组做游戏:(1)在月历的同一行上任意圈出相邻的5个数,并把这5个数的和告诉同学,让同学求出这5个数;(2)在月历上任意找1个数以及它的上、下、左、右的4个数,把这5个数的和告诉同学,让同学求出这5个数.二、问题解决问题1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木料 m3,做一条桌腿需要木料 m3.用 m3木材可做多少张这样的桌子(不计木材加工时的损耗)?通过问题1的研究,你能概括出用一元一次方程解决问题的一般思路吗?三、思维拓展某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按元收费;如果超过15立方米,超过部分按每立方米元收费,其余仍按每立方米元计算.另外,每立方米加收..污水处理费1元.若某户一月份共支付水费元,求该户一月份用水量.四、课堂练习1.某商店今年共销售21英寸(54 cm)、25英寸(64 cm)、29英寸(74 cm)3种彩电360台,它们的销售数量的比是1∶7∶4.这3种彩电各销售了多少台?2.某学生寄了2封信和一些明信片,一共用了元.已知每封信的邮费为元,每张明信片的邮费为元.他寄了多少张明信片?3.一本书封面的周长为68 cm ,长比宽多6 cm .这本书封面的长和宽分别是多少?4.某人从甲地到乙地,全程的12 乘车,全程的13乘船,最后又步行4 km 到达乙地.甲、乙两地的路程是多少?用一元一次方程解决问题(2)一、问题引入问题2 小丽在水果店花18元买了苹果和橘子共6kg ,已知苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少?思考1:(1)找出问题中的已知数量,并填入下表;(2)设小丽买了x kg苹果,根据表格分析问题中的等量关系,列出方程.二、议一议:在问题2中,如果设橘子买了x千克,可以列出怎样的方程?三、数学运用例1 学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:等量关系是:.例2 某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:课堂巩固1.期中考试后,班主任为了奖励学习进步的12名同学,让班长去买了12件奖品,其中笔记本每本3元,圆珠笔每支4元,共用了43元.班长买了几本笔记本和几支圆珠笔?2.甲、乙两个仓库共有粮食60t,甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.两个仓库原来各有多少粮食?3.某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女学生人数就占全组人数的2,求这个课外活动小组的人数.34.两枝一样高的蜡烛,同时点燃后,第一支蜡烛每小时缩短8cm,第二支蜡烛每小时缩短6cm,2h后第二支蜡烛的高度是第一支蜡烛的倍,求这两支蜡烛原来的高度.用一元一次方程解决问题(3)例题讲解:问题3 某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?说明:请学生尝试分析问题中的等量关系.思考1:如何把问题中的等量关系的分析过程直观地展示出来?设该小组共有x人.(1)如果每人做5个“中国结”,那么共做了个,比计划个.课堂练习:1、将一堆糖果分给幼儿园某班的小朋友,如果每人分2颗,那么就多8颗,如果每人分3颗,那么就少12颗,这个班共有多少名小朋友?2、七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张,问:(1)这个班共有多少名学生?(2)展出的邮票共有多少张?3、某汽车队运送一批货物,每辆汽车装4t还剩下8t未装,每辆汽车装就恰好装完。
用一元二次方程解决实际问题(销售问题)
初三备课组
4.3用一元二导问研学
导预疑学
1、会找出销售问题中的等量关系2、会确定单件利润和销量3、会用一元二次方程解决销售问题
= 售价—进价
●售价、进价、利润的关系式:
单件利润
●进价、利润、利润率的关系:
利润率=
进价
单件利润
×100%
感谢您的下载观看
要想平均每天盈利1200元,那么每件童装应该降价多少元?
单件利润
销量
总利润
降价前
降价后
列方程解应用题的基本步骤:
尽快减少库存
变式1:扬州万家福商城在销售中发现:“宝宝乐”牌童装平均每天可售出20件,每件盈利40元.
为了迎接”十一”国庆节,商场决定采取适当的降价措施.
经调查发现,如果每件童装降价4元,那么平均每天就可多售出8件.
1、销售问题中主要的等量关系:单件利润= 售价—进价 总利润=单件利润 × 销量
3、列方程解决销售问题的基本步骤为:审、设、列、解、验、答
2、价格降则销量增, 价格增则销量降
5、要注意题目中的限定条件
4、计算时要先将方程化成一般式,优先考虑十字相乘法
题1:某商场礼品柜台购进大量贺卡,一种贺卡平均每天可销售500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的措施,调查发现,如果每降价0.1元,那么商场平均每天多售出300张,商场要想每天盈利160元,每张贺卡应该降价多少元?
要想平均每天盈利1200元,那么每件童装应该降价多少元?
单件利润
销量
总利润
降价前
降价后
降价(元)
多售(件)
4
8
8
?
12
?
x
?
用一元二次方程解决问题(含答案)
4.3用一元二次方程解决问题(1)目标导航:知识要点:根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.学习要点:掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.基础巩固题1、长方形的长比宽多4cm,面积为60cm2,则它的周长为________.2、如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3、直角三角形两条直角边的和为7,面积为6,则斜边为().A.37B.5 C.38D.74、有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对5、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2D.64cm26、在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?7、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?8、如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm )?九 年级 练数 学 习同步9、如图,在ΔABC 中,∠B=90º,AB=4cm ,BC=10cm ,点P 从点B 出发,沿BC 以1cm/s 的速度向点C 移动,问:经过多少秒后,点P 到点A 的距离的平方比点P 到点B 的距离的8倍大1?AB P C思维拓展题10、如图所示,在一个长为32米,宽为20米的矩形空地上,建造一个草坪,并修筑等宽且互相垂直的两条路,要使草坪的面积为540米2,求路的宽度。
北师大版八年级上册数学第四章教案
北师大版八年级上册数学第四章教案一、教学内容本节课选自北师大版八年级上册数学第四章《一元二次方程》,具体内容包括:4.1 一元二次方程的概念;4.2 一元二次方程的解法;4.3 一元二次方程的应用。
二、教学目标1. 知识与技能:理解一元二次方程的概念,掌握一元二次方程的解法,并能解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作、探究的学习精神。
三、教学难点与重点重点:一元二次方程的概念和解法。
难点:一元二次方程解法在实际问题中的应用。
四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。
学具:教材、练习本、草稿纸。
五、教学过程1. 实践情景引入利用多媒体展示一个实际问题:一个长方形的长比宽多3厘米,面积是12平方厘米,求长方形的长和宽。
2. 例题讲解讲解4.1节中的一元二次方程的概念,结合实际问题,引导学生列出方程,并解释方程的各个部分。
3. 随堂练习让学生独立完成4.1节后的练习题,巩固一元二次方程的概念。
4. 解法讲解讲解4.2节中的一元二次方程的解法,包括直接开平方法、配方法、公式法等。
5. 应用拓展结合4.3节内容,让学生运用一元二次方程的解法解决实际问题。
七、板书设计1. 一元二次方程的概念2. 一元二次方程的解法(1)直接开平方法(2)配方法(3)公式法八、作业设计1. 作业题目(1)列出教材4.1节后的练习题;(2)解决实际问题:一个正方形的面积比一个长方形的面积多4平方厘米,已知正方形的边长为2厘米,求长方形的长和宽。
2. 答案(1)练习题答案见教材;(2)长方形的长为3厘米,宽为1厘米。
九、课后反思及拓展延伸1. 反思:本节课学生对一元二次方程的概念和解法掌握情况,以及对实际问题的解决能力。
2. 拓展延伸:布置一道难度较大的实际问题,让学生在课后独立完成,提高学生的应用能力。
苏科版七年级上《4.3用一元一次方程解决问题》课时练习有答案
2018-2019学年度苏科版数学七年级上册课时练习4.3 用一元一次方程解决问题学校:___________姓名:___________班级:___________一.选择题(共12小题)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元3.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A.11 B.8 C.7 D.54.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时5.在如图的2018年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.72 B.69 C.51 D.276.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x立方米的水,下列方程正确的是()A.1.2×20+2(x﹣20)=1.5x B.1.2×20+2x=1.5xC.D.2x﹣1.2×20=1.5x7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场8.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.59.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D10.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm211.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.4412.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.25 B.16 C.34 D.61二.填空题(共6小题)13.三角形的周长是84cm,三边长的比为17:13:12,则这个三角形最短的一边长为cm.14.一项工作甲单独做20h可以做完,乙单独做12h可以做完,若甲、乙两人合作,要做h才能做完.15.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.16.按照一定规律排列的n个数﹣2,4,﹣8,16,﹣32,64,…,若最后三个数的和为768,则n=.17.一环形跑道长400米,小明跑步每秒行5米,爸爸骑自行车每秒15米,两人同时同地反向而行,经过秒两人首次相遇.18.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三.解答题(共4小题)19.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.20.A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距480米?21.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.22.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?参考答案一.选择题(共12小题)1.C.2.C.3.B.4.B.5.A.6.A.7.C.8.D.9.C.10.C.11.C.12.B.二.填空题(共6小题)13.24cm.14.7.5.15.486.16.10.17.20.18.或1或3或9.三.解答题(共4小题)19.解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.20.解:(1)设甲每分钟走x米,则乙每分钟走2x米,根据题意得:﹣=15,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:甲每分钟走80米.(2)设两人出发y分钟后恰好相距480米,根据题意得:|2400﹣80y﹣160y|=480,解得:y1=8,y2=12.答:两人出发8或12分钟后恰好相距480米.21.解:设老张家到单位的路程是x千米,依题意,得13+2.3(x﹣3)=8+2(x﹣3)+0.8x,解这个方程,得x=8.2,答:老张家到单位的路程是8.2千米.22.(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500元时不买卡合算;当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.。
第四章一元二次方程教材解读
配方的条件: 有:二次项(系数为 1) 、一次项。 缺:常数项 配方的方法: 补:常数项(加上一次项系数一半的平方)
公式法
1.利用学生已有的配方法解方程的经验, 让学生自己用配方法解方程 ax2+bx+c=0(a≠0) , 通过探索去 发现求根公式和公式的条件。
b 2 4ac 2.教学中,要淡化 4a 2
19.(2010 北京)已知关于 x 的一元二次方程 x²-4x+m-1=0 有两个相等实数根,求的 m 值及方程的 根.
20.(2010 广东佛山)教材或资料会出现这样的题目:把方程 形式,并写出他的二次项系数、一次项系数和常数项。 现把上面的题目改编为下面的两个小题,请解答。 (1)下列式子中,有哪几个是方程 号) ① 。 ②
12.(2011 上海)如果关于 x 的方程 x2-2x+m=0(m 为常数)有两个相等实数根,那么 m=_____. 13. (2011 江苏镇江)已知关于 x 的方程 x2+mx-6=0 的一个根为 2,则方程的另一根是___, 14. ( 2010 福 建 德 化 ) 已 知 关 于 x 的 一 元 二 次 方 程 的 一 个 根 是 1 , 写 出 一 个 符 合 条 件 的 方 程: . 15. 2011 山东泰安)方程 2x +5x-3=0 的解是
第四章一元二次方程教材解读
欢口育英初级中学:彭亚利
教材内容
本章共三节内容,主要介绍了一元二次方程的概念、一般形式、解会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。 2.会用一元二次方程解决简单的实际问题,能根据具体问题的实际意义,检验结果是否合理。
4.2 一元二次方程的解法 直接开平方法
直接开平方法比较简单,教学中要注意引导学生观察: 问题变化 方程形式变化 解方程 x2-4=0
七年级数学教案:用一元一次方程解决问题(全6课时)
A、不增也不减;B、增加1%;
C、减少9% ;D、减少1
二.探究交流
活动1:在日历上,小明生日那天的上、下、左、右4个日期数的和为64,你能说出小明生日是几号吗?
(1)设小明生日为x号,上、下、左、右4个日期为_______,________,________,_______
课时NO:主备人:审核人用案时间:年月日星期
教学课题
4.3用一元一次方程解决问题(1)
教学目标
1.能用一元一次方程解决简单的实际问题,包括列方程、解方程,并能根据实际
问题的意义检验所得结果是否合理,提高分析问题和解决问题的能力.
2.经历“问题情境——建立数学模型——解释、应用与拓展”的过程,体会数学的
若设租用客车 辆,共可乘坐44 人,加上乘坐校车的64人,就是全体328人.可得方程___________________________________
如何解这个方程?
2 。(1)某复读机的进价是250元,按标价的9折出售时,利润率为15.2%,那么此复读机的标价是__________________元.
教学难点
分析数量关系,列出等量关系
教学方法
教具准备
教学课件
教学过程
个案补充
一.自主先学:
行程问题的基本关系:路程=×
基本类型:
(1)相遇问题:甲路程+乙路程=
(2)追击问题:两人间距离(或慢者先行路程)+=快者路程.
(3)环形跑道问题:
①同时同向而行:首次相遇快者路程-慢者路程=
②同时反向而行:首次相遇两者路程之和=
相遇问题怎么解决?
一元二次方程实际问题
一元二次方程实际问题
一元二次方程是数学中的重要概念,它在实际问题中有许多应用。
下面我将从几个不同的角度来讨论一元二次方程在实际问题中的应用。
首先,一元二次方程可以用来解决关于抛物线的实际问题。
例如,当一个物体从特定的高度以特定的初速度被抛出时,它的高度可以用一元二次方程来描述。
这种问题在物理学和工程学中经常出现,通过解一元二次方程可以求解出物体的最高点、飞行时间、落地点等相关信息。
其次,一元二次方程也可以用来解决关于面积和周长的实际问题。
例如,一个矩形的面积是其长和宽的乘积,可以表示为一元二次方程的形式。
通过解这个方程,可以找到给定周长条件下面积最大或最小的矩形,这在数学优化和经济学中有广泛的应用。
另外,一元二次方程还可以用来解决关于速度、时间和加速度的实际问题。
例如,一个物体的运动轨迹可以用一元二次方程来描述,通过对这个方程进行求导可以得到物体的速度和加速度。
这对于物理学和工程学中研究运动的问题非常重要。
此外,一元二次方程还可以用来解决关于金融和投资的实际问题。
例如,复利计算中的本金、利率和时间之间的关系可以表示为一元二次方程。
通过求解这个方程,可以得到投资的最佳方案和最大收益。
总的来说,一元二次方程在实际问题中有着广泛的应用,涉及到物理学、工程学、数学优化、经济学、金融学等多个领域。
通过解一元二次方程,我们可以更好地理解和解决各种实际问题,这使得它成为数学中一个非常重要的概念。
2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步练习题(附答案)
2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步练习题(附答案)1.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元2.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润()元.A.16B.18C.24D.323.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元4.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+40%)x×90%=x﹣38B.(1+40%)x×90%=x+38C.(1+40%x)×90%=x﹣38D.(1+40%x)×90%=x+385.小天使童装店一件童装标价80元,在促销活动中,该件童装按标价的6折销售,仍可获利20%,则这种童装每件的进价为()元.A.30B.40C.50D.606.某商品的标价为300元,打六折销售后获利50元,则该商品进价为()A.120元B.130元C.140元D.150元7.小明在深圳书城会员日当天购买了一本8折的图书,节约了17.2元,那么这本图书的原价是()A.86元B.68.8元C.18元D.21.5元8.某商品的进价为200元,标价为300元,打x折销售时后仍获利5%,则x为()A.7B.6C.5D.49.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是()A.100元B.105元C.110元D.115元10.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中()A.赚了10元B.亏了10元C.赚了20元D.亏了20元12.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110B.120C.130D.14013.一件上衣按成本价提高50%后,以105元售出,则这件上衣的利润为()A.20元B.25元C.30元D.35元14.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元15.李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为元.16.某商场把进价为160元的商品按照8折出售,仍可获利10%,则该商品的标价为元.17.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为元.18.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则该彩电的标价为元.19.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.20.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.21.2020年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书籍原价是500元,实际付款为元;(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?22.疫情后为了复苏经济,龙岗区举办了“春暖龙城,约惠龙岗”的促消费活动,该活动拿出1.1亿元,针对全区零售,餐饮,购车等领域出台优惠政策.为配合区的经济复苏政策,龙岗天虹超市同时推出了如下促销活动:龙岗天虹超市促销活动方案:①购物不足500元优惠15%(打8.5折);②超过500元,其中500元优惠15%(打8.5折),超过部分优惠20%(打8折).(1)小哲在促销活动时购买了原价为200元商品,他实际应支付多少元?(2)小哲在第一次购物后,在“龙岗发布”微信公众号中参与摇号抢到了一张满300减100的购物券(即微信支付300元以上自动减100元),又到龙岗天虹超市去购物,用微信实际支付了381元,他购买了原价多少元的商品?23.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店较省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?24.已知甲商品进价40元/件,利润率50%:乙商品进价50元/件,售价80元.(1)甲商品售价为元/件;(2)若同时采购甲、乙商品共50件,总进价2100元,求采购甲商品的件数;(3)元旦期间,针对甲、乙商品进行如下优惠活动:一次性购物总金额优惠措施少于等于450元无超过450元,但不超过600元9折超过600元其中600元部分8.2折,超过600元部分3折佳佳一次性购乙商品若干件,实付504元,求佳佳购乙商品的件数.25.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过300时,实际付款为元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书箱,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?26.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?参考答案1.解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.2.解:设原价为x元,根据题意列方程得:x×(1+30%)×80%=416解得x=400,416﹣400=16(元).答:这件商品卖出后获得利润16元.故选:A.3.解:设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据题意得:x﹣0.8x=50,解得:x=250,∴0.8x=0.8×250=200.故选:B.4.解:设这件夹克衫的成本是x元,根据题意,列方程得:(1+40%)x×90%=x+38.故选:B.5.解:这种童装每件的进价为x元,依题意,得:80×60%﹣x=20%x,解得:x=40.故选:B.6.解:设该商品进价为x元,依题意,得:300×0.6﹣x=50,解得:x=130.故选:B.7.解:设这本图书的原价是x元,依题意得:(1﹣0.8)x=17.2解得x=86.即:这本图书的原价是86元.故选:A.8.解:设商品是按标价的x折销售的,根据题意列方程得:(300×﹣200)÷200=5%,解得:x=7.则此商品是按标价的7折销售的.故选:A.9.解:设这种服装每件的成本价为x元,由题意得:(1+20%)•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本价为100元.10.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.11.解:设第一件衣服的进价为x元,第二件的进价为y元,根据题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴400﹣x﹣y=400﹣160﹣250=﹣10(元).答:商店在这次交易中亏了10元.故选:B.12.解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选:B.13.解:设成本为x元,由题意得:(1+50%)x=105,解得:x=70,105﹣70=35(元),故选:D.14.解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=150,解得:x=120,比较可知,第一件赚了30元第二件可列方程:(1﹣25%)x=150解得:x=200,比较可知亏了50元,两件相比则一共亏了20元.故选:C.15.解:设这件运动服的原价为x元,由题意得:0.9x﹣0.7x=30,解得x=150.故答案为:150.16.解:设该商品的标价为x元,则80%x=160×(1+10%),所以0.8x=176,解得x=220.答:该商品的标价为220元.故答案为:220.17.解:设这种商品每件的进价为x元,根据题意得:110×80%﹣x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为:80.18.解:设彩电标价是x元,根据题意得0.9x﹣2400=20%•2400,解得x=3200(元).即:彩电标价是3200元.故答案是:3200.19.解:设商店打x折,依题意,得:180×﹣120=120×20%,解得:x=8.故答案为:八.20.解:设标价是x元,根据题意有:0.8x=40(1+30%),解得:x=65.故标价为65元.故答案为:65.21.解:(1)由题意知,300×0.95+0.8(500﹣300)=445(元).故答案是:445;(2)设所购书籍的原价是x元,则x>300.根据题意得,300×0.95+0.8(x﹣300)=365,解得x=400.答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,300×0.95+0.8(b﹣300)+(600﹣b)=555,解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.22.解:(1)200×(1﹣15%)=170(元).故他实际应支付170元;(2)设他购买了原价x元的商品,依题意有500×(1﹣15%)+(1﹣20%)(x﹣500)﹣100=381,解得x=570.故他购买了原价570元的商品.23.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.24.解:(1)甲商品售价=40(1+50%)=60(元)故答案是:60;(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得佳佳在该商场购买乙种商品件7件或8件.25.解:(1)由题意知,300×0.95+0.8(a﹣300)=0.8a+45故答案是:(0.8a+45);(2)设所购书籍的原价是x元,由题意知,x>300.故0.8x+45=365.解得x=400答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,0.8b+45+(600﹣b)=555解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.26.解:(1)200×0.9=180(元).答:按活动规定实际付款180元.故答案为:180.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.。
(苏教版)七年级上数学4.3用一元一次方程解决问题
用一元一次方程解决问题(1)课型:新授课教学目标:1、通过对实际问题的分析,进一步理解方程式刻画客观世界的有效模型。
2、经历用方程解决实际问题的过程,知道解应用问题的一般步骤和关键。
教学重点:在实际问题中寻找等量关系,建立方程。
教学难点:分析问题寻找等量关系。
教学过程:1、情境创设某旅行社的一则广告如下:我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元,甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?2、探索活动问题1、如何设未知数?如何找出表达实际问题的相等关系?问题2、你是如何解这个方程的?方程的解都符合题意吗?3、变式训练:某旅行社的一则广告如下:我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元,甲公司组织员工到龙湾风景区旅游,并支付给旅行社29250元。
求该公司第二批参加旅游的员工人数。
4、例题教学如图,一块长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5㎝,容积是500㎝3的无盖长方体容器。
求这块铁皮的长和宽。
5、变式训练1:一块边长为10㎝的正方形硬纸板的四周各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子,若要求长方体的底面积为81㎝2,则剪去的正方形边长为多少?6、变式训练2:一块正方形铁皮的4个角各剪去一个边长为4㎝的小正方形,做成一个无盖的盒子。
已知盒子的容积是400㎝3,求原铁皮的边长。
7、练习:(1)一块长方形菜地的面积是150㎝2。
如果它的长减少5m,那么菜地就变成正方形,求原菜地的长和宽。
(2)在一块长70m、宽50m的长方形绿地的四周有一条宽度相等的人行道,这条人行道的面积是1300m2,求这条人行道的宽度。
苏科版七年级数学上册4.3用一元一次方程解决问题 动点问题
苏科版七年级数学上册《用一元一次方程解决问题》专题:动点问题1. 已知:如图,在数轴上,点O为原点,点A、点B所表示的数分别为a、b,且满足|a+40|+(b-20=0;(1)直接写出a、b的值;a=_____;b=_____.(2)动点P从点A出发,以每秒m个单位长度的速度向点B匀速运动,同时动点Q从点B 出发,以每秒2m个单位长度的速度在点B和原点之间做匀速往返运动,当运动时间为7秒时,点P在点A和原点之间,恰好满足点P到原点的距离是点Q到原点距离的一半,求m的值;(3)在(2)的条件下,当点P和点Q第一次相遇后,速度均变为原来的2倍,点P运动到点B后停止运动,点P停止运动后,点Q运动到原点也停止运动,t为何值时,P、Q两点间的距离为5个单位长度?2.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分别为_____,_____,PQ=_____.(2)当PQ=8时,求t的值.3.如图,在数轴上,点O为原点,点A、点B是数轴上的两点,已知点A所对应的数是x,点B对应的数是y,且x、y满足|x+4|+(y-10=0.(1)点A所对应的数是_____,点B所对应的数是_____.(2)若动点P从点A出发以每秒6个单位长度向右运动,动点Q从点B出发以每秒2个单位长度向点A运动,到达A点即停止运动,P、Q同时出发,且Q停止运动时,P也随之停止运动,求经过多少秒时,P、Q第一次相距6个单位长度?(3)在(2)的条件下,整个运动过程中,设运动时间为t秒,若AP的中点为M,BQ的中点为N,当t为何值时,BM+AN=2PB?4.如图,点A,B都在数轴上,点O为原点,设点A、B表示的数分别是a、b,且a与b满足|a+8|+(b-2=0.动点P从点A出发,沿数轴向左以每秒2个单位长度的速度运动,动点Q从点B出发,沿数轴向左以每秒3个单位长度的速度运动,已知点P与点Q同时出发,且P、Q两点重合后同时停止运动,设点P的运动时间为t秒.(1)直接写出a、b的值和线段AB的长,a=_____,b=_____,AB=_____;(2)当PQ的长为5时,求t的值;(3)若点M为PQ的中点,点N为BQ的中点,是否存在t值,使MN=3BO,若存在,请求出t的值;若不存在,请说明理由.5.已知:如图,点A、点B为数轴上两点,点A表示的数为a,点B表示的数为b,a与b满足|a+4|+(b-8=0.动点P从点A出发,以2个单位长度/秒的速度沿数轴向右运动,同时动点Q从点B出发,以1个单位长度/秒的速度沿数轴向右运动.(1)直接写出a、b的值,a=_____,b=_____;(2)设点P的运动时间为t秒,当t为何值时,P、Q两点相距20个单位长度;(3)若在运动过程中,动点Q始终保持原速度原方向,动点P到达原点时,立即以原来的速度向相反的方向运动.设点P的运动时间为t秒,当t为何值时,原点O分线段PQ 为1:3两部分.6.如图,已如数轴上点A表示数是6,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_____;当t=1时,点P所表示的数是_____;(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?7.在数轴上,若A、B、C三点满足AC=2CB,则称C是线段AB的相关点.当点C在线段AB 上时,称C为线段AB的内相关点,当点C在线段AB延长线上时,称C为线段AB的外相关点.如图1,当A对应的数为5,B对应的数为2时,则表示数3的点C是线段AB的内相关点,表示数-1的点D是线段AB的外相关点.(1)如图2,A、B表示的数分别为5和-1,则线段AB的内相关点表示的数为_____,线段AB的外相关点表示的数为_____.(2)在(1)的条件下,点P、点Q分别从A点、B点同时出发,点P、点Q分别以3个单位/秒和2个单位/秒的速度向右运动,运动时间为t秒.①当PQ=7时,求t值.②设线段PQ的内相关点为M,外相关点为N.直接写出M、N所对应的数为相反数时t的取值.8. 如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_____,点P表示的数_____(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的条件下,当点P,点Q之间的距离是3时,运动时间是多少秒?9.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距5个单位长度?10. 已知数轴上两点A、B对应的数分别为-3、5,点P为数轴上一动点,且点P对应的数为x.(1)若点P到点A、点B的距离相等,则点P对应的数为_____.(2)数轴上是否存在点P,使点P到点A、点B的距离之和为10?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和1个单位长度/秒的速度同时向右运动,点P以3个单位长度/秒的速度同时从O点向左运动,当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?11. 如图,数轴上有两点A,B,点A表示的数为2,点B在点A的左侧,且AB=6.动点P 从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t>0).(1)填空:数轴上点B表示的数为_____,点P表示的数为_____(用含t的式子表示);(2)经过多长时间,P、B两点之间相距8个单位长度?(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动.若点P,R同时出发,经过多长时间,P,R之间的距离为2个单位长度?12.数轴是我们进入七年级后研究的一个很重要的数学工具,它不但让我们在数轴上表示所有的有理数,让数变得具体而形象,还帮助我们理解了相反数和绝对值;当然,数轴也可以解决一些实际问题:小华家,小明家,学校在一条东西的大街上,小华家在学校的东面距学校500米,小明家在学校的西面距学校300米.(1)画出如图的数轴(学校为原点,小华家为A点,小明家为B点),数轴的单位长度为实际的_____米.(2)列算式表示小华与小明家之间的距离.(3)周末小明自西向东,小华自东向西出去玩,他们每分钟都走80米,问几分钟后两人相遇?相遇地点在学校的哪边?在数轴上用点C表示出来.13. 已知,如图A,B分别为数轴上的两点,点A对应的数是-18,点B对应的数为20.(1)请直接写出线段AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,在数轴上以3个单位/秒的速度向左运动.请解答下面问题:①试求出运动15秒时蚂蚁P到点A的距离.②直接写出运动多少秒时P到B的距离是P到A的距离的2倍,并直接写出P点所对应的数.14.如图,A,B两点在数轴上对应的有理数分别为a,b,|a|=10,a+b=80,->0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.设两只电子蚂蚁在数轴上的点C相遇.①求出点C对应的数是多少?②若相遇后,电子蚂蚁P继续向前运动,电子蚂蚁Q则以原来2倍的速度在BC之间来回运动,求两只电子蚂蚁第二次相遇时对应的数是多少?15.如图,在数轴上有两点A、B,所对应的数分别是a、b,且满足a+5是最大的负整数,b-3是绝对值最小的有理数.点C在点A右侧,到点A的距离是2个单位长度.(1)数轴上,点B表示的数是_____,点C表示的数是_____.(2)点P、Q为数轴上两个动点,点P从A点出发速度为每秒1个单位长度,点Q从B点出发速度为每秒2个单位长度.若P、Q两点同时出发,相向而行,运动时间为t秒.求当t为何值时,点P与点Q之间的距离是3个单位长度?(3)在(2)的条件下,在点P、Q运动的过程中,是否存在t值,使点Q到点A、点B、点C的距离之和为15?若存在,求出t值,并直接写出此时点P在数轴上所表示的数;若不存在,请说明理由.16. 已知数轴上的A、B两点分别对应的数字为a、b,且a,b满足|4a-b|+(a-4=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,当PA=PB时,求P运动的时间和P表示的数;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P点对应的数.17.如图,数轴上点A,B对应的数分别为a,b,并且|a+4|+(b-1=0,点O是原点.(1)a=_____,b=_____;(2)点A,B沿数轴同时出发向右匀速运动,点A的速度为3个单位长度/秒,点B的速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A,B两点到原点O的距离相等时,求t的值.18.如图,在数轴上点A表示的有理数为-4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).(1)求t=2时点P表示的有理数;(2)求点P与点B重合时t的值;(3)①点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);②点P由点A到点B的运动过程中,点P表示的有理数是多少(用含t的代数式表示);(4)当点P表示的有理数与原点距离是2个单位时,直接写出所有满足条件的t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.一个小球以5m/s的速度在平坦地面上开始滚动,并且均匀减 .一个小球以 的速度在平坦地面上开始滚动, 的速度在平坦地面上开始滚动 滚动10m后小球停下来.( )小球滚动了多少时间 (2) 后小球停下来.( 速,滚动 后小球停下来.(1)小球滚动了多少时间?( ) 平均每秒小球的运动速度减少多少?(3)小球滚动到5m时约用 平均每秒小球的运动速度减少多少 ( )小球滚动到 时约用 了多少时间(精确到0.1s)? 了多少时间(精确到 ) 解:(1)小球滚动的平均速度 ( )小球滚动的平均速度=(5+0)÷2=2.5(m/s) ÷ ( ) 小球滚动的时间: ÷ ∴ 小球滚动的时间:10÷2.5=4(s) ( ) (2)平均每秒小球的运动速度减少为 -0)÷2.5=2(m/s) 平均每秒小球的运动速度减少为(5- ÷ 平均每秒小球的运动速度减少为 ( ) 时约用了xs,这时速度为( (3)设小球滚动到 时约用了 ,这时速度为(5-2x)m/s,则这 )设小球滚动到5m时约用了 ) 则这 段路程内的平均速度为〔5+(5-2x)〕÷2=(5-x)m/s, 所以x(5-x) 段路程内的平均速度为〔 〕 ( ) 所以 ( ) =5 整理得: 整理得:x2-5x+5=0
(2)如果要获得最大利润,每件应降价多少元? )如果要获得最大利润,每件应降价多少元? 并求出最大利润是多少? 并求出最大利润是多少?
思考与探索
• 如图:某海关缉私艇在C处发现正在向 如图:某海关缉私艇在 处发现正在向 北方向30km的A处有一艘可疑船只,测 处有一艘可疑船只, 北方向 的 处有一艘可疑船只 得它正以60km/h的速度向正东方向航 得它正以 的速度向正东方向航 缉私艇随即以75km/h的速度在 处 的速度在B处 行,缉私艇随即以 的速度在 拦截,问缉私艇从C处到 处到B处需航行多长 拦截,问缉私艇从 处到 处需航行多长 时间? 时间?
思考:如果要获得最大利润,每件应降价多少元? 思考:如果要获得最大利润,每件应降价多少元? 最大利润 并求出最大利润是多少? 并求出最大利润是多少?
• 分析:如果设衬衫的单价降x元那么商场 分析:如果设衬衫的单价降 元那么商场 平均每天可多售出2 件 根据相等关系: 平均每天可多售出 x件。根据相等关系: • 售出的衬衫件数ⅹ每件衬衫的盈利=1200, 售出的衬衫件数ⅹ每件衬衫的盈利=1200 =1200, 可以列出方程求解
初中数学九年级上册 苏科版) (苏科版)
4。3 一元二次方程应用4 一元二次方程应用4
一、预习尝试: 预习尝试: 某商场从厂家以每件 每件21元 某商场从厂家以每件 元的价格购进一 售价为a元 则可卖出 批商品,若每件的售价为 批商品,若每件的售价为 元,则可卖出 商场计划要赚450元, (350—10a)件,商场计划要赚 ) 元 则每件商品的售价为多少元? 售价为多少元 则每件商品的售价为多少元?
• • • • • • • •
解:设衬衫的单价降x元。 根据题意得 (20+2 x)(40- x)=1200 整理得 X2-30X+200=0 解这个方程得 X1=20,X2=10 答;衬衫的单价降10元或降20元
小试牛刀
• 1、某种服装,平均每天可销售20件, 、某种服装,平均每天可销售 件 每件盈利44元 若每件降价 若每件降价1元 每件盈利 元;若每件降价 元,则每天 可多售5件 如果每天要盈利1600元, 元 可多售 件。如果每天要盈利 每件应降价多少元? 每件应降价多少元?
A
60x
B
30
C
75x
练习
• 如图所示,人民海关缉私巡逻艇在东海海域执行 如图所示, 巡逻任务时,发现在其所处的位置O点的正北方 巡逻任务时,发现在其所处的位置 点的正北方 海里外的A点有一涉嫌走私船只正以 向10海里外的 点有一涉嫌走私船只正以 海里 海里外的 点有一涉嫌走私船只正以24海里 /时的速度向正东方向航行,为迅速实施检查,巡 时的速度向正东方向航行, 时的速度向正东方向航行 为迅速实施检查, 逻艇调整好航向, 海里/时的速度追赶 逻艇调整好航向,以26海里 时的速度追赶。在 海里 时的速度追赶。 涉嫌船只不改变航向和航速的前提下, 涉嫌船只不改变航向和航速的前提下,问需要几 小时才能追上( 为追上时的位置)? 小时才能追上(点B为追上时的位置)? 为追上时的位置
5± 5 解方程: 解方程:得x= 2 x1≈3.6(不合,舍去), 2≈1.4(s) ),x (不合,舍去), ( )
时约用1.4s. 答:刹车后汽车行驶到5m时约用 刹车后汽车行驶到 时约用 .
练习: 练习: 如图, △ 如图,RT△ABC中,AC=6cm, BC=8cm,点P从A点 中 点 从 点 出发, 方向以1cm/s的速度向 点运动,点Q从C点 的速度向C点运动 出发,沿AC方向以 方向以 的速度向 点运动, 从 点 出发沿CB方向以 方向以2cm/s的速度向 运动, 的速度向B运动 出发沿 方向以 的速度向 运动, 则出发多少S后 的面积等于8cm2 ? 则出发多少 后, △PCQ的面积等于 的面积等于 B
12-2X
Q
2X
A
X
P
6-X
C
• 练习:建造一个池底为正方形、深度为2米 练习:建造一个池底为正方形、深度为 米 的长方体无盖水池,池壁的造价为100元/ 的长方体无盖水池,池壁的造价为 元 平方米,池底的造价为200元/平方米,总 平方米, 平方米,池底的造价为 元 平方米 造价为6400元,求正方形池底的长。 造价为 元 求正方形池底的长。
课堂测试
• 百货大搂服装柜在销售中发现: 七彩” 百货大搂服装柜在销售中发现:“七彩”牌童装 平均每天可售出20 20件 每件盈利40 40元 为了迎接“ 平均每天可售出20件,每件盈利40元.为了迎接“元 商场决定采取适当的降价措施,扩大销售量, 旦”,商场决定采取适当的降价措施,扩大销售量, 增加盈利,减少库存.经市场调查发现: 增加盈利,减少库存.经市场调查发现:如果每件童 装降价1 那么平均每天就可多售出2 装降价1元,那么平均每天就可多售出2件. • (1)要想平均每天销售这种童装上盈利1200元,那 要想平均每天销售这种童装上盈利1200 1200元 么每件童装应降价多少元? 么每件童装应降价多少元? • (2)用配方法说明:要想盈利最多,每件童装应降 用配方法说明:要想盈利最多, 价多少元? 价多少元?
问题1 某商场销售一批衬衫, 问题 :某商场销售一批衬衫,平均 每天可售出20件每件盈利 件每件盈利40元 为了 每天可售出 件每件盈利 元,为了 扩大销售,增加盈利,商场决定采取 扩大销售,增加盈利, 适当的降价措施,经调查发现, 适当的降价措施,经调查发现,在一 定范围内,衬衫的单价每降1元 定范围内,衬衫的单价每降 元,商 场平均每天可多售出2件 场平均每天可多售出 件。如果商场 通过销售这批衬衫每天要盈利 盈利1200 通过销售这批衬衫每天要盈利 衬衫的单价应降多少元? 元,衬衫的单价应降多少元?
• 分析:每件赚(a-21)元与销售件数 分析:每件赚( 21)元与销售件数 (350—10a)的积 )的积=450元 元
解:由题意得 (a-21) (350—10a) =450 ) 下略
每件的利润×件数 总利润 每件的利润×件数=总利润 总销售额-总成本 总利润 总销售额 总成本=总利润 总成本
• 分析:由题意可知,△ABC是直角三角 形,设缉私艇从C处到B处需航行xh可得 • 302+(60x)2=(75x)2 + 60x) • 解得x1=2/3,x2=-2/3(舍去)
• 归纳小结: • 1.善于将实际问题转化为数学问题,严 格审题,弄清各数据相互关系,正确布 列方程.培养学生用数学的意识以及渗 透转化和方程的思想方法. • 2.在解方程时,注意巧算;注意方程两 根的取舍问题
北
A24xB10O26x东
2、某商场礼品柜台购进大量贺年卡,一种贺年卡 、某商场礼品柜台购进大量贺年卡, 平均每天可销售500张,每张盈利 平均每天可销售 张 每张盈利0.3元。为了尽快 元 减少库存,商场决定采取适当的措施。调查发现, 减少库存,商场决定采取适当的措施。调查发现,如果 这种贺年卡的售价每降低 每降低0.1元,那么商场平均每天多 这种贺年卡的售价每降低 元 盈利160元, 售出300张。商场要想平均每天盈利 元 售出 张 商场要想平均每天盈利 每张贺年卡应降价多少元? 每张贺年卡应降价多少元?