高中数学人教B版必修一第一章1.1.1集合的概念课件

合集下载

人教B版必修第一册1.1.1集合及其表示方法课件(35张)

人教B版必修第一册1.1.1集合及其表示方法课件(35张)

2.(1)已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的值为________. (2)已知集合 A 含有两个元素 a 和 a2,若 2∈A,则实数 a 的值为________. (3)已知集合 A 含有两个元素 a 和 a2,则实数 a 的取值范围为________.
【解析】(1)若 1∈A,则 a=1 或 a2=1,即 a=±1. 当 a=1 时,集合 A 有重复元素,不符合集合中元素的互异性,所以 a≠1; 当 a=-1 时,集合 A 含有两个元素 1,-1,符合集合中元素的互异性, 所以 a=-1. 答案:-1 (2)若 2∈A,则 a=2 或 a2=2,即 a=2 或 a= 2 或 a=- 2 . 答案:2 或 2 或- 2 (3)若 A 中有两个元素 a 和 a2,则由 a≠a2 解得 a≠0 且 a≠1. 答案:a≠0 且 a≠1
教材认知 掌握必备知识
一、集合与元素 1.集合:把一些能够_确__定__的__、_不__同__的__对象汇集在一起,这些对象组成一个集 合(简称为集). 2.元素:组成集合的每个_对__象__. 3.表示方法:集合通常用英文大写字母A,B,C,…表示,集合的元素通常 用英文小写字母a,b,c,…表示.
3.区间及其表示 (1)一般区间的表示. 设 a,b∈R,且 a<b,规定如下:
[a,b] (a,b)[a,b)
(a,b]
(2)特殊区间的表示.
【批注】1.用数轴表示区间时要特别注意端点是实心点还是空心点; 2.无穷大是一个符号,不是一个数,因而它不具备数的一些性质和运算法则,出现 此符号的一端时,该端必须是小括号.
[诊断]
1.下列说法:
①集合{x∈Z|x3=x}用列举法表示为{-1,0,1};

人教B版高中数学必修一 《集合的基本运算》集合与常用逻辑用语PPT(第2课时全集、补集及综合应用)

人教B版高中数学必修一 《集合的基本运算》集合与常用逻辑用语PPT(第2课时全集、补集及综合应用)

()
A.{x|-2<x≤1}
B.{x|x≤-4}
C.{x|x≤1}
D.{x|x≥1}
C [因为 S={x|x>-2}, 所以∁RS={x|x≤-2}. 而 T={x|-4≤x≤1}, 所以(∁RS)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.]
33
4.已知全集 U={2,0,3-a2},U 的子集 P={2,a2-a-2},∁UP ={-1},求实数 a 的值.
31
2.U={0,1,2,3,4},集合 A={1,2,3},B={2,4},则(∁UA)∪B 为
()
A.{1,2,4}
B.{2,3,4}
C.{0,2,3,4}
D.{0,2,4}
D [∵∁UA={0,4},B={2,4},∴(∁UA)∪B={0,2,4}.]
32
3.设集合 S={x|x>-2},T={x|-4≤x≤1},则(∁RS)∪T 等于
因为∁RA={x|x<3,或x≥7}, 所以(∁RA)∩B={x|2<x<3,或7≤x<10}.
18
解决集合交、并、补运算的技巧 1如果所给集合是有限集,则先把集合中的元素一一列举出来, 然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于 Venn 图来求解. 2如果所给集合是无限集,则常借助数轴,把已知集合及全集 分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注 意边界问题.
34
[解] 由已知,得-1∈U,且-1∉P, 3-a2=-1,
因此a2-a-2=0, 解得 a=2. 当 a=2 时,U={2,0,-1}, P={2,0},∁UP={-1},满足题意. 因此实数 a 的值为 2.

人教B版高中数学必修第一册精品课件 第1章 集合与常用逻辑用语 1.1.1 第2课时 集合的表示

人教B版高中数学必修第一册精品课件 第1章 集合与常用逻辑用语 1.1.1 第2课时 集合的表示

(2)不方便.因为集合是无限集,且元素不方便一一列举.
2.一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A
的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.此时,集
合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特
征性质描述法,简称为描述法.
用描述法表示集合应注意以下三点
(1)写清集合代表元素的符号.
(2)所有描述的内容都要写在大括号内.
(3)不能出现未被说明的字母.
【变式训练2】 用描述法表示下列集合:
(1)数轴上与原点的距离大于3的点组成的集合;
(2)平面直角坐标系中第二、第四象限内的点组成的集合.
解:(1)数轴上与原点的距离大于3的点组成的集合,用描述法可表示为
(2)方程(x-4)2(x-2)=0的解是x1=x2=4,x3=2,所求集合为{4,2}.
(3)方程组
= -1,
=
所求集合为
2
-3
7 2
,
5 5
4的解是
+3
.
=
=
7
,
5
2
,
5
(1)例1(3)中的集合可以表示为
7 2
,
5 5
吗?
(2)写出表示函数y=x-1与y=x+3的图象的交点组成的集合.
(2)在区间(m,n]中,实数m,n的大小关系如何?
提示:(1)不能.(2)m<n.
4.用区间表示下列集合
(1){x|x<0}用区间表示为
;
(2){x|2≤x<5}用区间表示为
.
答案:(1)(-∞,0)
(2)[2,5)

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时PPT课件

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时PPT课件
方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方 形”组成的集合等等.
3.元素与集合的关系
“属于”和“不属于”分别用“∈”和“”表示.
-5-
4.集合元素的性质 (1)确定性:即任给一个元素和一个集合,那么这 个元素和这个集合的关系只有两种:这个元素要么属 于这个集合,要么不属于这个集合 (2)互异性:一个给定集合的元素是互不相同的, 即集合中的元素是不重复出现的 (3)无序性:集合中的元素是没有顺序的 (4)集合相等:如果两个集合中的元素完全相同 ,那么这两个集合是相等的.
解 : (1) 设 小 于 10 的 所 有 自 然 数 组 成 的 集 合 为 A, 那 么 A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}. (3) 设 由 1~20 以 内 的 所 有 质 数 组 成 的 集 合 为 C, 那 么 C={2,3,5,7,11,13,17给对象不能构成集合的是( ) A.一个平面内的所有点 B.所有大于零的正数 C.某校高一(4)班的高个子学生 D.某一天到商场买过货物的顾客
答案:C
-11-
2.用另一种形式表示下列集合: (1){绝对值不大于3的整数}; (2){所有被3整除的数}; (3){x|x=|x|,x∈Z且x<5}; (4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}; (5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.
-12-
3.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的 取值范围.
解:当 a=0 时,原方程为-3x+2=0 x= 2 ,符合题意; 3

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集

Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.

人教版高中数学B版必修一《第一章 集合——第1课时 集合》课件

人教版高中数学B版必修一《第一章 集合——第1课时 集合》课件

课前篇 自主预习




2.填空 (1)集合:把一些能够确定的、不同的对象看成一个整体,就说这个 整体是由这些对象组成的集合(有时简称为集).集合通常用英文大 写字母A,B,C,…来表示. (2)元素:组成集合的每个对象叫做这个集合的元素.集合中的元素 通常用英文小写字母a,b,c,…来表示. 3.做一做:下列各组对象能构成集合的有( ) ①2019年1月1日之前,在腾讯微博注册的会员;②不超过10的非负 奇数;③立方接近零的正数;④高一年级视力比较好的同学. A.1个 B.2个 C.3个 D.4个 答案:B
-12-
探究一
探究二
探究三 思维辨析 当堂检测
课堂篇 探究学习
延伸探究 若集合A中含有两个元素a-3和2a-1,已知-3是A中的元素, 如何求a的值? 解:∵-3是A中的元素, ∴-3=a-3或-3=2a-1. 若-3=a-3,则a=0. 此时集合中含有两个元素-3,-1,符合要求; 若-3=2a-1,则a=-1, 此时集合中含有两个元素-4,-3,符合要求. 综上所述:满足题意的实数a的值为0或-1.
-14-
探究一
探究二
探究三 思维辨析 当堂检测
课堂篇 探究学习
反思感悟解决此类问题的通法是:根据元素的确定性建立分类讨论 的标准,求得参数的值,然后将参数值代入检验是否满足集合中元 素的互异性.
探究一
探究二
探究三 思维辨析 当堂检测
变式训练用符号“∈”和“∉”填空.
(1) 2-1 (2)23 (3)-4
课前篇 自主预习




知识点四、常用数集及其表示
1.思考
我们曾经学习了哪些常见的数集?

高中数学第一章 1.1.1 第一课时 集合的含义优秀课件

高中数学第一章  1.1.1  第一课时 集合的含义优秀课件

3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.

最新人教版高一数学必修1(B版)全册完整课件

最新人教版高一数学必修1(B版)全册完整课件

阅读与欣赏
聪明在于学习,天才由于积累
2.1 函数
2.1.1 函数
2.1.3 函数的单调性
2.1.5 用计算机作函数的图象(选学)
2.2.3 待定系数法
2.4 函数与方程
2.4.1 函数的零点
本章小结
第三章 基本初等函数(Ⅰ)
3.1.2 指数函数
3.2.2 对数函数
3.3 幂函数
本章小结
附录1 科学计算自由软件——SCILAB简介
后记
第一章 集合
最新人教版高一数学必修1(B版)全 册完整课件
1.1 集合与集合的表示方法 1.1.1 集合的概念
最新人教版高一数学必修1(B版)全 册完整课件
最新人教版高一数学必修1(B版) 全册完整课件目录
0002页 0019页 0052页 0105页 0130页 0161页 0206页 0251页 0332页 0378页 0404页 0430页 0447页 0449页 0467页 0485页 0487页
ቤተ መጻሕፍቲ ባይዱ
第一章 集合
1.1.2 集合的表示方法
1.2.2 集合的运算

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为

4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;

ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c

高一数学新人教B版必修1教学课件:第1章 集合 1.1.2 集合的表示方法.ppt

高一数学新人教B版必修1教学课件:第1章 集合 1.1.2 集合的表示方法.ppt

• 1.表示集合的方法常用___描__述__法_、___列__举__法_、____维__恩__图__法. • 2.把集合中元素的___公__共__属__性_描述出来,写在大括号内表示集合的方法叫描
述法.描述法有两种形式: • (1)一般形式:{x∈A|p(x)}.例如:不大于100的自然数构成的集合可表示为
{0,1,2,3,4,5,6,7,8,9}. • (2)方程x2=x的实数根为0,1,设方程x2=x的所有实数根构成的集合为B,则B
={0,1}. • (3)设由1~20的所有质数构成的集合为C,则C={2,3,5,7,11,13,17,19}.
『规律方法』 对于元素个数较少的集合或元素个数不确定但元素间存在 明显规律的集合,可采用列举法.应用列举法时要注意:①元素之间用“,” 而不是用“、”隔开;②元素不能重复.
• 3.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集 合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个__________.于 是,集合A可以用它的特征性质p(x)描述为{x∈I|p(x)}.它表示特集征合性A质是由集合I 中具有性质p(x)的所有元素构成的.
A.0∈A
B.2∉A
C.-2∈A
D.0∉A
• [解析] ∵A={x|x(x-2)=0}={0,2},∴0∈A,2∈A,-2∉A,故选A.
3.直线 y=2x+1 与 y 轴的交点所组成的集合为@ziyuanku (
A.{0,1}
B.{(0,1)}
C.{-12,0}
D.{(-12,0)}
[解析] 由xy==02x+1 ,得xy= =01 ,故选 B.
(2)解方程组2x-x+y=y=18 ,得xy= =32 .

新教材人教B版高中数学必修第一册全册精品教学课件 共723页

新教材人教B版高中数学必修第一册全册精品教学课件 共723页

(empty set),记作 ∅ .
知识点五 集合的分类 (1)有限集; (2)无限集. 知识点六 几个常用数集的固定字母表示
知识点七 集合的表示方法
集合常见的表示方法有: 自然语言
、列举法 、 描述法 、
“区间” (以及后面将要学习的维恩图法和数轴表示法等直观表示方
法). (1)列举法:把集合中的元素 一一列举
[解析] ①能构成集合.其中的元素需满足三条边相等. ②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成 集合. ③不能构成集合.因“比较接近 1”的标准不明确,所以元素不确定, 故不能构成集合. ④能构成集合.其中的元素是“高一年级的全体女生”. ⑤能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”.
2.集合的三个特性 (1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的 “点”“线”“面”等概念一样都只是描述性的说明. (2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义, 因此一些对象一旦组成了集合,这个集合就是这些对象的总体. (3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可 以是人或物,甚至一个集合也可以是某集合的一个元素.
第一章 集合与常用逻辑用语
1.1.1 集合及其表示方法 1.1.2 集合的基本关系 1.1.3 集合的基本运算 1.2.1 命题与量词 1.2.2 全称量词命题与存在量词命题的否定 1.2.3 充分条件、必要条件
第二章 等式与不等式
2.1.1 等式的性质与方程的解集 2.1.2 一元二次方程的解集及其根与系数的关系 2.1.3 方程组的解集 2.2.1 不等式及其性质 2.2.2 不等式的解集 2.2.3 一元二次不等式的解法 2.2.4 均值不等式及其应用

高中数学集合与常用逻辑用语1.1集合1.1.1第2课时集合的表示方法课件新人教B版必修第一册

高中数学集合与常用逻辑用语1.1集合1.1.1第2课时集合的表示方法课件新人教B版必修第一册

③将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),故两直线的 交点组成的集合是{(0,1)}.
④解方程组xx+ -yy= =- 1,1, 得xy= =01, . ∴用列举法表示方程组xx+ -yy= =1-,1 的解集为{(0,1)}.
用列举法表示集合的 3 个步骤 (1)求出集合的元素. (2)把元素一一列举出来,且相同元素只能列举一次. (3)用花括号括起来.
{1,2,3,4} [∵x-2<3,∴x<5.又 x∈N*,∴x=1,2,3,4,故可表 示为{1,2,3,4}.]
2.描述法 一般地,如果属于集合 A 的任意一个元素 x 都具有性质 p(x),而 不属于集合 A 的元素都不具有这个性质,则性质 p(x)称为集合 A 的 一 个 特 征 性 质 . 此 时 , 集 合 A 可 以 用 它 的 特 征 性 质 p(x) 表 示 为 {x|p(x)} .这种表示集合的方法,称为特征性质描述法,简称为 描述法.
[跟进训练] 2.用描述法表示下列集合: (1)方程 x2+y2-4x+6y+13=0 的解集; (2)二次函数 y=x2-10 图像上的所有点组成的集合.
[解] (1)方程 x2+y2-4x+6y+13=0 可化为(x-2)2+(y+3)2= 0,解得 x=2,y=-3,
所以方程的解集为{(x,y)|x=2,y=-3}.
A [若 x=2,则 x-1=1< 2,所以 2∈M; 若 x=-2,则 x-1=-3< 2,所以-2∈M.故选 A.]
1234 5
3.已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素
的个数是( )
A.1
B.3
C.5
D.9
C [x-y∈{-2,-1,0,1,2}.]

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.

高中数学集合的概念课件人教版必修一.ppt1.1.1

高中数学集合的概念课件人教版必修一.ppt1.1.1

如果a是集A的元素,记作: a ∈ A 如果a不是集A的元素,记作: a ∉A
例如,用A表示“ 1~20以内所有的整数”组成的集合,则有
4.常见的数集有哪些?分别要怎样来表示?
数集 自然数集(非负整数集) 正整数集 符号
N N* 或N+ Z Q R
整数集
有理数集 实数集
知识探究(一)集合的表示方法 问题1:通过我们对课本的预习,我们知道,课本为我们提供了 哪几种集合表示方法?
B={ x Z 10 x 20 }
用列举法表示为 B= { 11,12,13,14,15,16,17,18,19}
课堂练习 用适当的方法表示下列集合: (1)绝对值小于3的所有整数组成的集合;
(2)在平面直角坐标系中以原点为圆心,横坐标上的点 组成的集合;
(3)所有奇数组成的集合; (4)由数字1,2,3组成的所有三位数构成的集合.
知识探究(三)
思考1:a 与{a }的含义是否相同? 思考2:集合{1,2}与集合{(1,2)}相同吗? 思考3:集合{ y | y x 2 , x R} 与集合 { y x 2 } 相同吗? 思考4:集合 {( x, y) | y x 2 , x R}11,13,17,19}.
2.互异性
3.无序性
问题4:考察下列集合: (1)不等式2 x 7 3 的解组成的集合; (2)绝对值小于2的实数组成的集合.
思考1:这两个集合能不能用列举法表示? 思考2:如何用数学式子描述上述两个集合的元素特征? 思考3:上述两个集合还可以怎么表示? 思考4:这种表示集合的方法叫什么? 描述法 思考5:描述法表示集合的基本模式是什么? 用集合所含元素的共同特征表示集合的方法.
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。 康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。 康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。 集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的 兴趣。康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较 完善的集合理论,为现代数学的发展打下了坚实的基础。

人教B版(2019)高一数学必修一第一册 第一章 集合与常用逻辑用语 教材导读 课件(共41张PPT)

人教B版(2019)高一数学必修一第一册 第一章 集合与常用逻辑用语 教材导读 课件(共41张PPT)

习题
• A组、B组、C组 • 知识理解、巩固、应用 • 方法选择、灵活、恰当
常用逻辑用语部分的主要内容变化:
• 删掉了简单命题、符合命题的概念 • 删掉了四种命题 • 删掉了判断充要关系的原命题与逆否命题等价性的方法 • 删掉了“或”与“且”,只讲“非 • 增加了充分必要条件与判定定理和性质定理的关系 • 另外,新教材删掉了推理与证明的章节内容
持自己。别忘了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。
本章小结
2课时 1课时 1课时 1课时
1课时 1课时 1课时 1课时
1.1.1 集合及其表示方法
• 主要内容: • 1.集合的概念(元素与集合的关系、元素的性质) • 2.几种常见的数集 • 3.列举法 • 4.描述法 • 5.区间及其表示
1.1.1 集合及其表示方法
• 教学中的几点说明: • 1.章导语的使用 • 2.几种常见数集的处理P5 • 3.有理数的定义 • 4.描述法的处理P6 • 5.区间及其表示 • 6.习题的处理
1.1.2 集合的基本关系
• 主要内容: • 教学中的几点说明: • 1. 抽象符号的定义 • 2. 集合之间还有一些没有包含关系的,可以通过韦恩图的方法让
学生理解。 • 3. 例习题的处理
1.1.3 集合的基本运算
• 主要内容: • 教学中的几点说明: • 1. 抽象符号的定义 • 2. 探索与研究P19 • 3. 例习题的处理
以胜利,也可以失败,但你不能屈服。越是看起来极简单的人,越是内心极丰盛的人。盆景秀木正因为被人溺爱,才破灭了成为栋梁之材的梦。
树苗如果因为怕痛而拒绝修剪,那就永远不会成材。生活的激流已经涌现到万丈峭壁,只要再前进一步,就会变成壮丽的瀑布。生命很残酷,用悲伤让你了解 什么叫幸福,用噪音教会你如何欣赏寂静,用弯路提醒你前方还有坦途。山涧的泉水经过一路曲折,才唱出一支美妙的歌通过云端的道路,只亲吻攀登者的足 迹。敢于向黑暗宣战的人,心里必须充满光明。骄傲,是断了引线的风筝,稍纵即逝;自卑,是剪了双翼的飞鸟,难上青天。这两者都是成才的大向你的美好 的希冀和追求撒开网吧,九百九十九次落空了,还有一千次呢。只有创造,才是真正的享受,只有拼搏,才是充实的生活。激流勇进者方能领略江河源头的奇 观胜景忙于采集的蜜蜂,无暇在人前高谈阔论有一个人任何时候都不会背弃你,这个人就是你自己。谁不虚伪,谁不善变,谁都不是谁的谁。又何必把一些人, 一些事看的那么重要。有一种女人像贝壳一样,外面很硬,内在其实很软。心里有一颗美丽的珍珠,却从来不轻易让人看见。人生没有绝对的公平,而是相对 公平。在一个天平上,你得到越多,势必要承受更多,每一个看似低的起点,都是通往更高峰的必经之路。你要学会捂上自己的耳朵,不去听那些熙熙攘攘的 声音;这个世界上没有不苦逼的人,真正能治愈自己的,只有你自己。时间会告诉你一切真相。有些事情,要等到你渐渐清醒了,才明白它是个错误;有些东 西,要等到你真正放下了,才知道它的沉重。时间并不会真的帮我们解决什么问题,它只是把原来怎么也想不通的问题,变得不再重要了。 生活不是让你用来 妥协的。你退缩得越多,那么可以让你喘息的空间也就是越少。胸怀临云志,莫负少年时唯有行动才能解除所有的不安。明天的希望,让我们忘记昨天的痛! 如果你不努力争取你想要的,那你永远都不会拥有它。过去属于死神,未来属于你自己其实每一条都通往阳光的大道,都充满坎坷。所有的胜利,与征服自己 的胜利比起来,都是微不足道。我已经看见,多年后的自己。自信!开朗!豁达!努力的目的在于让妈妈给自己买东西时像给我买东西一样干脆。被人羞辱的 时候,翻脸不如翻身,生气不如争气。成长道路谁都会受伤,我们才刚刚起航,必须学会坚强。每个人都是自己命运的建筑师。在成长的过程中,我学会了坚

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件
a∉A.
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一

人教B版高中数学必修一ppt课件全集

人教B版高中数学必修一ppt课件全集

能构成一个集合;②③④中的对象都满足确定性,所以 能构成集合. [答案] B
判断一组对象能否组成集合的标准 判断一组对象能否组成集合,关键看该组对象是否满 足确定性,如果此组对象满足确定性,就可以组成集合; 否则, 不能组成集合. 同时还要注意集合中元素的互异性、 无序性.
[活学活用] 给出下列说法:
“多练提能·熟生巧”见“课时跟踪检测(一)” (单击进入电子文档)
1.1.2
集合的表示方法
预习课本 P5~7,思考并完成以下问题
集合有哪两种表示方法?它们各自是如何规定的?它们的 使用条件各是什么?
[新知初探]
1.列举法
有限集 , 如果一个集合是_______ 元素又不太多, 常常把集合 花括号“{ }”内表示这个集 列举 出来, 的所有元素都_____ 写在____________
集合通常用英语大写字母 A, B,C,…来表示.
每个对象 叫做这个集合的元素 (或 (2)元素:构成集合的 _________
成员 ). 元素通常用英语小写字母 a, b, c,…来表示.
[点睛]
在解决集合问题时, 首先要明确集合中的元素是
什么.集合中的元素可以是点,也可以是一些人或一些物.
2.元素与集合的关系
(3)集合 A={x|x-1=0}与集合 B={1}表示同一个集合.
x+ y= 1, 2.方程组 x- y=- 3
( √ )
的解集是 B. (1,- 2) D. {(1,- 2)}
(
)
A. (- 1,2) C. {(- 1,2)}
答案:C
3.不等式 x-3<2 且 x∈N+的解集用列举法可表示为( A.{0,1,2,3,4} C.{0,1,2,3,4,5}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂小结:本节课你学到了哪些知识?
1.集合及元素是数学中的原始概念,学习时应 结合实例弄清.
2.集合元素的性质. 3.集合的分类及常见数集的记法.
作业
1、复习1.1.1并预习1.1.2
2、书面作业:P5xeA1、2、3, 3、补充作业
xeB1、2
(1)已知2a, a2 +a由两个实数组成一个集合,
<2>互异性.集合的元素一定是互异的,相同 的几个对象归于同一个集合时只能算作一 个元素.
<3>无序性:元素在集合中的位置对集合没有 影响,即元素在集合中没有固定的顺序。
问题5:观察下列集合中各有多少个元素?
(1) 由x 2 , 23xx2+1 x, 5
三个式子构成的集合.
(2)平面上与一定点O的距离等于1的点的全 体构成的集合.
求a满足的条件
(2)由1,8,x,x3 四个实数组成一个集合,
求实数x应满足的条件
(3)由a2 ,2-a,4组成一个集合A,A中含有3个元 素,则实数的取值可以是( )
(D)2

(A)1
(B)-2
(C)6
2. 能力是挥出去的一把锋利的剑,素质则是握住剑柄的手。 10. 伟人之所以伟大,是因为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。 11. 失败是什么?没有什么,只是更走近成功一步;成功是什么?就是走过了所有通向失败的路,只剩下一条路,那就是成功的路。 8. 只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 6. 了解过去,活在当下,为将来做好准备! 12. 让我们将事前的忧虑,换为事前的思考和计划吧! 12. 让我们将事前的忧虑,换为事前的思考和计划吧! 2. 知识是智慧的火炬。 16. 心态决定命运,自信走向成功。 6. 要努力使每一天都开心而有意义,不为别人,为自己。 9. 为明天做准备的最好方法就是集中你所有智慧,所有的热忱,把今天的工作做得尽善尽美,这就是你能应付未来的唯一方法。 19. 人生就要抗争,需要抗争!与病魔抗争!与逆境抗争!与命运抗争!与天斗,与地斗,与人斗!在抗争中奋斗,在奋斗中实现理想!突破羁绊,这 时自己才有新的人生超越! 4. 没有什么事情有象热忱这般具有传染性,它能感动顽石,它是真诚的精髓。 6. 经历就是人生的硎石,生命的锋芒在磨砺中闪光;经历就是人生的矿石,生命的活力在提炼中释放。 3. 没有整洁的外表,根本没人会去在意你美好的内心,这就是现实。
象看成一个整体,,就说这个整体是由这些 对象的全体构成的集合(或集).
集合的元素: 构成集合的每一个对象叫做这个集合的
元素.
2.元素与集合的关系
集合通常用英语大写字母A,B,C, … 表示,它们的元素通常用a,b,c, …字母表 示.
如果a是集合A的元素,就说a属于A, 记作a∈A,读作“a属于A”
念?
:三、问题探究
问题3 分析观察下列各组的对象的特征 (1)自然数0,1,2,3,4,5,6,7,8,9. (2)所有的直角三角形. (3)到两定点距离的和等于两定点间的距离的点. (4)高一的全体同学.
(5) x2 y ,3 x 2 ,5 y3 x ,x2 y5
1.集合的概念
集合: 一般地,把一些能够确定的不同的对
( 3)方程x 2 1 的集合.
的全体实数解构成
问题5
指出下列各集合的元素
1. 参加北京奥运会的所有中国代表团的成员构 成的集合.
2.方程 x 2 1
的解的全体构成的集合.
3.平行四边形的全体构成的集合.
4.平面上与一定点O的距离等于r的点的全体构成 的集合.
集合的分类
按集合元素的个数分为有限集、无限集、 空集.
有限集:含有有限个元素的集合. 无限集:含有无限个元素的集合.
空集:不含有任何元素的集合,记作
4.常用数集及其记号
自然数集:非负整数的全体构成的集合,
记作 N
正整数集:在自然数集内排除0的集合,
N
记作N *

整数集:整数的全体构成的集合,
记作 Z
有理数集:有理数全体构成的集合,
记作 Q
如果a不是集合A的元素,就说a不属
于A,记作a A,读作“a不属于A”
问题4:思考讨论
1、“我们班的高个子同学”,“我们班最高 的5位同学”能否分别组成一个集合?
2、这5位同学换一下座位,集合是 否发生了变化?
3.集合元素的基本性质
<1>确定性.集合元素必须是确定的,不能确 定的对象不能构成集合.
1.1.1集合的概念
一、问题导入
问题1: 一个百货商店,第一批进货是 帽子、皮鞋、热水瓶、闹钟共4个品种,第 二批进货是收音机、皮鞋、尼龙袜、茶杯、 闹钟共5个品种,问一共进了多少品种的货? 能否回答一共进了4+5 = 9种呢?
二、问题启发:
问题2: 1.在初中代数中,学过哪些集合? 2.初中几何中,用集合描述过什么图形的概
实数集:实数全体构成的集合,
记作 R
四、问题反馈
例1.用 ∈,
__Q , 3
__R ,
N
0__N , 0 __
填空 _3_ Z,
,
0__Z
例2.已知有1,x, x 2 三个实数构成一个集
合,求x应满足的条件
解:有集合元素的互异性的,得
x1
x
2
1
x 2 x
x R 且 x 1 且 x 0
相关文档
最新文档