10.1二元一次方程【课时训练一】含答案

合集下载

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组.6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:12.解二元一次方程组:;.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.,得到一组新的方程,然后在用加减消元法消去未知数解:由题意得:,,∴2.解下列方程组(1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为.所以原方程组的解为,x=代入×﹣.所以原方程组的解为3.解方程组:解:原方程组可化为所以方程组的解为4.解方程组:)原方程组化为y=.所以原方程组的解为5.解方程组:解:即解得所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?的二元一次方程组,.y=x+y=y=x+7.解方程组:(1);(2).)原方程组可化为,∴方程组的解为;)原方程可化为即∴方程组的解为.8.解方程组:解:原方程组可化为则原方程组的解为9.解方程组:解:原方程变形为:y=解之得10.解下列方程组:(1)(2)),代入﹣=所以原方程组的解为)原方程组整理为所以原方程组的解为11.解方程组:(1)(2),解得∴原方程组可化为解得∴∴原方程组的解为12.解二元一次方程组:(1);(2).则方程组的解是;)此方程组通过化简可得:则方程组的解是.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.)把代入方程组得解得:.把代入方程组得解得:.∴方程组为则原方程组的解是14.x=y=∴原方程组的解为15.解下列方程组:(1);(2).)化简整理为故原方程组的解为,故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为∴原方程组的解为。

数学七年级下册苏教版第十章《二元一次方程组》全章教案

数学七年级下册苏教版第十章《二元一次方程组》全章教案

第十章二元一次方程组10.1 二元一次方程(一课时)一、教学目标:1、经历分析实际问题中数量关系的过程,进一步体会方程是刻画现实世界的有效数学模型。

2、了解二元一次方程的概念,并会判断一组数据是否是某个二元一次方程的解。

3、培养学生主动探索、敢于实践、勇于发现、合作交流的精神。

二、教学重难点:重点:二元一次方程的认识。

难点:探求二元一次方程的解。

三、教学方法:引导探索法,讲练结合,探索交流。

四、教学过程:(一)创设情境,感悟新知情境一根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少场?输了多少场?情境二某球员在一场篮球比赛中共得了35分(其中罚球得10分),问他分别投中了多少个两分球?多少个三分球?情境三小亮在“智力快车”竞赛中回答10个问题,小亮能答对几题、答错几题?(学生自己先思考5分钟后,再讨论。

最后由4个人一小组中的一位同学说出讨论结果.)(二)探索活动,揭示新知1、如果设该队赢了x场,输了y场,那么可得方程:()2、你能列出所有输赢的所有可能情况吗?3、如果设投中了()个两分球,()个三分球,根据题意可列方程:()4、请你设计一个表格,列出这名球员投中两分球和三分球的各种情况,根据你所列的表格回答下列问题:(1)这名球员最多投中了()个三分球(2)这名球员最多投中了()个球(3)如果这名球员投中了10个球,那么他投中了()个三分球,()个两分球列出上面三小题的方程:(1)设该队赢了x场,输了y场,2x+y=20(2)设赢了x场,输了y场,2x+3y=35-10(3)设答对x题,答错y题,x+y=10观察方程:(1)这三个方程有哪些共同的特点?(2)你能根据这些特点给它们起一个名称吗?引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?得出结论:像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程计算题含答案

二元一次方程计算题含答案

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.,得到一组新的方程,然后在用加减消元法消,,x=(1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为,,代入×﹣.所以原方程组的解为3.解方程组:解:原方程组可化为所以方程组的解为4.解方程组:)原方程组化为,.所以原方程组的解为5.解方程组:,.所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.的二元一次方程组)依题意得:k=b=x+y=x+(1);(2).)原方程组可化为,;)原方程可化为.8.解方程组:解:原方程组可化为则原方程组的解为9.解方程组:解:原方程变形为:..10.解下列方程组:(1)(2))﹣=所以原方程组的解为)原方程组整理为,所以原方程组的解为(1)(2))原方程组可化简为∴原方程组可化为,∴原方程组的解为(1);(2).;)此方程组通过化简可得:,.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?)把代入方程组.代入方程组.∴方程组为则原方程组的解是14.(,∴原方程组的解为(1);(2).)化简整理为故原方程组的解为)化简整理为故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为,∴原方程组的解为。

2020—2021年湘教版七年级数学下册《二元一次方程组的应用》精品课时训练及参考答案一.doc

2020—2021年湘教版七年级数学下册《二元一次方程组的应用》精品课时训练及参考答案一.doc

新课标2017-2018学年湘教版七年级数学下册课时作业(五)二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( ) A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前错误!未找到引用源。

10.1认识二元一次方程组习题课课件(青岛版)

10.1认识二元一次方程组习题课课件(青岛版)

满足方程2x+4y=26的实际意义的解: x 1 3 5 7 9 11 13
y
6
5
4
3
2
1
0
X Y 8 2 X 4Y 26
x 3 y 5
一般地,二元一次方程组的两个方 程的公共解,叫做这个二元一次方程组
的解。 二元一次方程组有且只有一组解。
练习
1、下列各对数值中是二元一次方程 x+2y=2的解是( A、B、C )
(3)
(4)
(5)
x 1 y2
(6)
x 2y 4 x2
2
X Y 22
使二元一次方程两边的值相等的两个未
知数的值,叫做二元一次方程的解。 X Y
二元一次方程有无穷个解
满足方程x+y=8的实际意义的解: x 0 1 2 3 4 5 6 7 8
y
8
7
6
5
4
3
2
1
0
1、把方程2(x+3)-3(y-2)=5变形为用含x的 式子表示y为 .
y 1 x 2. 方程组 3x 2 y 5
的解是(
D )
x 3 x 3 x 3 x 3 A. B. C. D. y 2 y 2 y 2 y 2 x 2 x y m 3. 若 y 1 是方程组 的解, 2 x y 6n
D
x 1 y 2
课堂练习
1、二元一次方程3x+2y=11 ( D) A、 任何一对有理数都是它的解 B、只有一个解 C t -k=0 2、若 t=-2 是方程 2 3
的解,则k值为 ( B ) 7 -1 A、 B、 6 6 1 -7 C、6 D、 6

《10.1认识二元一次方程组》作业设计方案-初中数学青岛版12七年级下册

《10.1认识二元一次方程组》作业设计方案-初中数学青岛版12七年级下册

《认识二元一次方程组》作业设计方案(第一课时)一、作业目标本作业设计旨在帮助学生掌握二元一次方程组的基本概念和解题方法,通过练习巩固所学知识,提高学生的数学思维能力和解决问题的能力。

二、作业内容1. 掌握二元一次方程组的概念及特点,理解其在实际生活中的应用。

2. 学会通过消元法解简单的二元一次方程组。

3. 掌握方程组的增广矩阵表示法,并能利用增广矩阵解二元一次方程组。

三、作业要求1. 理论知识部分:学生需自行预习并理解二元一次方程组的基本概念和增广矩阵的表示方法,做好笔记并标注疑惑点。

2. 练习题部分:设计练习题,包括基础题和拓展题,题型包括选择题、填空题和解答题。

要求学生独立完成练习题,并在完成后进行自我检查和订正。

3. 作业提交:学生需将作业以电子版形式提交至教师指定的平台或邮箱,同时要求字迹清晰、格式规范。

4. 附加任务:鼓励学生尝试寻找生活中的二元一次方程组实例,并加以分析和解决,以此加深对知识的理解和应用。

四、作业评价1. 教师将根据学生提交的作业进行批改,对正确答案进行标注,对错误答案进行指导性评语,指出错误原因及正确解题方法。

2. 对学生完成的练习题和附加任务进行综合评价,评价内容包括知识点掌握程度、解题思路和解题能力等方面。

3. 对表现优秀的学生给予表扬和鼓励,对表现欠佳的学生进行指导和帮助,促进其进步。

五、作业反馈1. 教师将根据批改情况,对全班学生的掌握情况进行总结,针对普遍存在的问题进行讲解和辅导。

2. 对于学生提交的附加任务中的优秀案例,将在课堂上进行展示和讲解,以鼓励更多学生积极参与实践活动。

3. 定期组织学生进行学习交流和讨论,让学生互相学习和借鉴,共同进步。

六、作业设计注意事项1. 作业量要适中,既要保证学生能够掌握知识点,又要避免过多作业导致学生产生厌学情绪。

2. 题目设计要有层次性,既要包括基础题,也要有适当难度的拓展题,以满足不同层次学生的需求。

3. 作业要突出重点和难点,确保学生在完成作业的过程中能够巩固所学知识,提高解题能力。

人教版 七年级下册数学 第8章 二元一次方程组 课时训练(含答案)

人教版 七年级下册数学 第8章 二元一次方程组 课时训练(含答案)

人教版七年级下册第8章二元一次方程组课时训练一、选择题1. 二元一次方程组的解是()A.3,xy=⎧⎨=⎩B.1,2xy=⎧⎨=⎩C.5,2xy=⎧⎨=-⎩D.2,1xy=⎧⎨=⎩2. (2020·嘉兴)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩,①,②时,下列方法中无法消元....的是()A.①×2–②B.②×(﹣3)–①C.①×(﹣2)+②D.①–②×33. 数学文化中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.4. 已知关于x,y的方程x2m-n-2+4y m+n+1=6是二元一次方程,则m,n的值为()A. m=1,n=-1B. m=-1,n=1C. m=13,n=-43 D. m=-13,n=435. (2020·绥化)“十·一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37A.10,4937466.x yx y=⎧⎨+=⎩+B.10,3749466.x yx y=⎧⎨+=⎩+C.466,493710.x yx y=⎧⎨+=⎩+D.466, 374910. x yx y=⎧⎨+=⎩+6. 滴滴快车是一种便捷的出行工具,计价规则如下表:计算项目里程费时长费远途费两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟7. (2020·随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,8. (2020·恩施)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛1).A. B. C. D.二、填空题9. (2020·_________.10. (2020·绍兴)若关于x,y式A可以是(写出一个即可).11. (2020·岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、斗,根据题意,可列方程组为.12. 某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.13.2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .414. (2020·杭州).15. 已知⎩⎨⎧x =3y =-2是方程组⎩⎨⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.三、解答题16. 解方程组:⎩⎨⎧x -y =2x -y =y +1.17. (12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元. (1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?18. (2020·扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足3x -y =5①,2x +3y =7②,求x -4y 和7x +5y 的值. 本题常规思路是将①②两式联立组成方程组,解得工y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x -4y =-2,由①+②X 2可得7x +5y =19.这样的解題思想就是通常所说的“整体思想”。

(完整版)二元一次方程组练习题(含答案),推荐文档

(完整版)二元一次方程组练习题(含答案),推荐文档

二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:专题:计算题. 分析: 先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法. 解答:解:原方程组可化为, ①×4﹣②×3,得 7x=42, 解得x=6.把x=6代入①,得y=4. 所以方程组的解为.点评: ;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点: 解二元一次方程组. 专题: 计算题. 分析: 把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单. 解答:解:(1)原方程组化为,①+②得:6x=18, ∴x=3.代入①得:y=.所以原方程组的解为. 点评: 要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点: 解二元一次方程组. 专题: 计算题;换元法. 分析: 本题用加减消元法即可或运用换元法求解. 解答:解:,①﹣②,得s+t=4, ①+②,得s ﹣t=6, 即, 解得.所以方程组的解为.点评: 此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?考点: 解二元一次方程组. 专题: 计算题. 分析:(1)将两组x ,y 的值代入方程得出关于k 、b 的二元一次方程组,再运用加减消元法求出k 、b 的值.(2)将(1)中的k 、b 代入,再把x=2代入化简即可得出y 的值. (3)将(1)中的k 、b 和y=3代入方程化简即可得出x 的值.解答: 解:(1)依题意得:①﹣②得:2=4k , 所以k=, 所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x ﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a 、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)

二元一次方程组1.二元一次方程的概念每个方程都含有__________个未知数,并且含有未知数的项的次数都是__________的整式方程叫做二元一次方程.【提示】①在方程中“元”是指未知数,“二元”是指方程中有且只有两个未知数. ②“含未知数的项的次数是1”是指含有未知数的项(单项式)的次数是1,如3xy 的次数是2,所以方程3xy -2=0不是二元一次方程. ③二元一次方程的左边和右边都必须是整式,例如方程1x-y =1的左边不是整式,所以它不是二元一次方程. 2.二元一次方程的解一般地,使二元一次方程两边的值__________的两个未知数的值,叫做二元一次方程的解.【拓展】(1)在二元一次方程中,给定其中一个未知数的值,就可以求出另一个未知数的值.(2)一般情况下,二元一次方程有无数个解,但并不是说任何一对数值就是它的解.3.二元一次方程组由__________二元一次方程组成的方程组叫做二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩. 【提示】①组成二元一次方程组的两个一次方程不一定都是二元一次方程,但这两个方程必须一共含有两个未知数.如33625x x y -=+=⎧⎨⎩也是二元一次方程组. ②在方程组的每个方程中,相同字母必须代表同一未知量,否则不能将两个方程联立. ③二元一次方程组中的各个方程应是整式方程.④二元一次方程组有时也由两个以上的二元一次方程组成.4.二元一次方程组的解一般地,二元一次方程组的两个方程的__________,叫做二元一次方程组的解. (1)二元一次方程组的解,是方程组中每个方程的解.(2)二元一次方程组的解一般情况下是唯一的,但是有的方程组有无数多个解,或无解,如,2224x yx y+=+=⎧⎨⎩有无数多个解,252412x yx y+=+=⎧⎨⎩无解.求二元一次方程的整数解的方法:(1)首先用一个未知数表示另一个未知数,如y=10-2x;(2)给定x一个值,求出y的一个对应值,就可以得到二元一次方程的一组解;(3)根据题意对未知数x、y进行限制,确定x的可能取值,进而确定二元一次方程所有的整数解.K知识参考答案:1.两;1 2.相等3.两个4.公共解一、二元一次方程(组)一个方程是二元一次方程必须满足:(1)等号两边的式子都是整式;(2)有且只有两个未知数;(3)含有未知数的项的次数都是1.【例1】下列方程中,是二元一次方程的是A.xy=5 B.y=6x-3C.x+5y=0 D.x-3=0【答案】B【解析】A、xy=5是二元二次方程,故A错误;B、y=6x-3是二元一次方程,故B正确;C、x+5y=0是分式方程,故C错误;D、x-3=0是一元一次方程,故D错误,故选B.【例2】下列方程组属于二元一次方程组的是A.121x yx y+=⎧⎨-=-⎩B.12xyx y=⎧⎨+=⎩C.331x yz+=⎧⎨+=⎩D.2510x yy+=⎧⎨-=⎩【答案】A二、二元一次方程(组)的解检验一对数值是否是某个二元一次方程组的解,常用的方法是将这对数值分别代入方程组中的每个方程.只有当这对数值同时满足所有方程时,才能说这对数值是此方程组的解;如果这对数值不满足其中的某个方程,那么它就不是此方程组的解.【例3】24xy=-⎧⎨=⎩是下列哪个方程的一个解A.x+y=2 B.x+y=0 C.2x+y=1 D.x-y=2 【答案】A【解析】把24xy=-⎧⎨=⎩代入x+y=2可得-2+4=2;把24xy=-⎧⎨=⎩代入x+y=0可得-2+4=2≠0;把24xy=-⎧⎨=⎩代入2x+y=1可得-2×2+4=0≠1;把24xy=-⎧⎨=⎩代入x-y=2可得-2-4=-6≠2,综上可知,24xy=-⎧⎨=⎩是方程x+y=2的解,故选A.【例4】下列各组数是二元一次方程组31x yx y+=⎧⎨-=-⎩的解的是A.21xy=⎧⎨=⎩B.12xy=⎧⎨=⎩C.12xy=⎧⎨=-⎩D.21xy=⎧⎨=-⎩【答案】B【解析】31x yx y+=⎧⎨-=-⎩①②,①+②,得2x=2,x=1,把x=1代入①,得1+y=3,解得y=2,所以二元一次方程组的解是12xy=⎧⎨=⎩.故选B.。

二元一次方程全章讲义及练习带答案

二元一次方程全章讲义及练习带答案

x
y
0 1

【总结】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.
举一反三:
2x 3y 2 0,
【变式
1】解方程组
2x
3y 7
5
2y
9.
x 4y 5 ①
(2) x: y 4:3

∴原方程组的解是
x
y
7 4
.
解:由②,设 x=4 k ,y=3 k
代入①:4 k -4·3 k =5
y x 24y
3
2
1
0
-1
-4
4
-2
1
2
2
6
3
3
第3页 共36页
类型三、二元一次方程组及解
4.
(淮阳)甲、乙两人共同解方程组
ax 4x5y by来自15 2① ②
由于甲看错了方程①中的 a,
得到方程组的解为
x
y
3 1
.乙看错了方程②中的
b.得到方程组的解为
x
y
5 4
.试计算:
a2010
举一反三:
【变式 1】已知方程 2xm3 1 y24n 5 是二元一次方程,则 m=
,n=
.
2
【答案】-2, 1 4
【变式 2】方程 (a 1)x (a 1) y 0 ,当 a ___时,它是二元一次方程,当a ___ 时,
它是一元一次方程.
【答案】 1;1或 1
类型二、二元一次方程的解
11. 方程|a|+|b|=2 的自然数解是_____________;
第5页 共36页
12.若二元一次方程组
的解中

(完整版)二元一次方程计算题含答案,推荐文档

(完整版)二元一次方程计算题含答案,推荐文档


,然后在用加减消元法
由(1)×2 得:3x﹣2y=2(3), 由(2)×3 得:6x+y=3(4), (3)×2 得:6x﹣4y=4(5), (5)﹣(4)得:y=﹣ ,
把 y 的值代入(3)得:x= ,


点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.
2.解下列方程组 (1)
二元一次方程组解法练习题精选(含答
案)
建议收藏下载参本考答文案与,试题以解析便随时学习!
一.解答题(共 16 小题)
1.求适合
的 x,y 的值.
考点:解二元一次方程组. 809625
分析: 先把两方程变形(去分母),得到一组新的方程
消去未知数 x,求出 y 的值,继而求出 x 的值. 解答:
解:由题意得:
(1)依题意得:
,再运
①﹣②得:2=4k, 所以 k= ,
所以 b= .
(2)由 y= x+ , 把 x=2 代入,得 y= .
(3)由 y= x+
把 y=3 代入,得 x=1. 点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可
得出要求的数. 7.解方程组:
(1)

解得 x=2, 把 x=2 代入①得,2+y=1,
解得 y=﹣1.
故原方程组的解为

(2)①×3﹣②×2 得,﹣13y=﹣39, 解得,y=3, 把 y=3 代入①得,2x﹣3×3=﹣5, 解得 x=2. 故原方程组的解为 .
(3)原方程组可化为
①+②得,6x=36, x=6, ①﹣②得,8y=﹣4, y=﹣ .
解得:

二元一次方程练习题及答案

二元一次方程练习题及答案

一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x 为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41 xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。

10.1-10.2二元一次方程(组)-2020-2021学年苏科版七年级数学下册专题复习提升训练

10.1-10.2二元一次方程(组)-2020-2021学年苏科版七年级数学下册专题复习提升训练

专题复习提升训练卷10.1-10.2二元一次方程(组)-20-21苏科版七年级数学下册一、选择题1、在下列各式中①53x y -+;②8xy y +=;③250x +=;④12+=y x;⑤x y =;⑥2342x y x +=+;⑦2222()x x x x y +=-+,是二元一次方程的有( ).A .2个B .3个C .4个D .5个 2、下列方程组中,是二元一次方程组的是( )A .26235x y y z +=⎧⎨-=⎩B .1221x y x y ⎧+=⎪⎨⎪-=⎩C .425x y x y +=⎧⎨-=⎩D .43x y xy +=⎧⎨=⎩ 3、若1(2)31a a x y --+=是关于x 、y 的二元一次方程,则a =( )A .1B .2C .-2D .2和-24、下列4组数值中,是二元一次方程组⎩⎪⎨⎪⎧2x -3y =-8,x +2y =3的解的是( ) A .⎩⎪⎨⎪⎧x =2,y =4 B .⎩⎪⎨⎪⎧x =1,y =1 C .⎩⎪⎨⎪⎧x =-1,y =2 D .⎩⎪⎨⎪⎧x =1,y =25、若12x y =⎧⎨=-⎩,是关于x 和y 的二元一次方程3mx ny +=的解,则24m n -的值等于( ) A .3 B .6 C .1- D .2-6、关于x ,y 的二元一次方程3x ﹣ay =1有一组解是32x y =⎧⎨=⎩,则a 的值为( ) A .1 B .2 C .3 D .47、已知12x y =⎧⎨=⎩是方程组120ax y x by +=-⎧⎨-=⎩的解,则a +b =( ) A .2 B .﹣2 C .4 D .﹣48、由方程组2x m 1y 3m +=⎧⎨-=⎩,可得x 与y 的关系是( ) A .2x y 4+=- B .2x y 4-=- C .2x y 4+= D .2x y 4-=9、为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .4B .3C .2D .110、已知关于x ,y 的二元一次方程(1)(2)520a x a y a -+++-=,当a 取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是( )A .1,1x y =⎧⎨=-⎩B .2,1x y =⎧⎨=-⎩C .3,1x y =⎧⎨=-⎩D .3,1x y =⎧⎨=⎩二、填空题 11、方程(a -1)x |a |+3y =5是关于x ,y 的二元一次方程,那么a =________.12、若方程组()20390a x y a x -⎧+=⎪⎨-+=⎪⎩是二元一次方程组,则a 的值为________. 13、二元一次方程x+y =6的正整数解为_____.14、下列方程组中,解为12x y =⎧⎨=-⎩的是( ) A .12x y x y +=-⎧⎨-=⎩ B .21y x x y =⎧⎨-=-⎩ C .06x y x y +=⎧⎨-=⎩ D .153x y =⎧⎨+=⎩15、如果⎩⎪⎨⎪⎧x =3,y =2是方程6x +by =32的解,则b =________. 16、若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5 的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为________ 17、已知方程y ﹣2x +5=0,请用含x 的代数式表示y ,y = .18、若关于x 、y 的方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则mn 的值为_____. 19、关于x,y 的方程组03x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⊗⎩,其中y 的值被盖住了.不过仍能求出m , 则m 的值是 .20、将一摞笔记本分给若干个同学,每个同学分8本,则差了7本.若设共有x 个同学,y 本笔记本,则可列方程为 .三、解答题21、已知方程(b +2)x |a |-2+(a -3)y |b |-1=10是关于x ,y 的二元一次方程.(1)求出a ,b 的值,并写出这个二元一次方程;(2)分别求出方程的两个解⎩⎪⎨⎪⎧x =3,y =?,⎩⎪⎨⎪⎧x =?,y =-12中“?”所表示的数.22、已知方程312x y +=.(1)用含x 的代数式表示y ;(2)用含y 的代数式表示x ;(3)求当2x =时y 的值及当24y =时x 的值;(4)写出方程的两个解.23、已知关于x 、y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,求a 、b 的值.24、已知二元一次方程ax +3y +b =0(a ,b 均为常数,且a ≠0).(1)当a =2,b =﹣4时,用x 的代数式表示y ;(2)若⎪⎩⎪⎨⎧-=+=b b y b a x 2312是该二元一次方程的一个解, ①探索a 与b 关系,并说明理由;②若该方程有一个解与a 、b 的取值无关,请求出这个解.25、列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?26、“写规范字”是学校深化德育主题活动之一我校上月举办了“书法比赛”活动,为了表彰获奖者,主办单位的王老师负责购买奖品.他发现:若以2支钢笔和3本笔记本为一份奖品,则活动经费可购买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则活动经费可购买40份奖品.设钢笔价格为x元/支,笔记本价格为y元/本.(1)请用x的代数式表示y.(2)若用这钱全部购买笔记本,总共可以购买几本?(3)若王老师用这钱恰好买30份同样的奖品,他选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的,a b值.专题复习提升训练卷10.1-10.2二元一次方程(组)-20-21苏科版七年级数学下册(解析)一、选择题1、在下列各式中①53x y -+;②8xy y +=;③250x +=;④12+=y x;⑤x y =;⑥2342x y x +=+;⑦2222()x x x x y +=-+,是二元一次方程的有( ).A .2个B .3个C .4个D .5个 【答案】A【分析】根据二元一次方程的定义逐项判断,即可求解.【详解】解:是二元一次方程的是⑤和⑦。

人教版初中数学消元-解二元一次方程组精选课时练习(含答案)1

人教版初中数学消元-解二元一次方程组精选课时练习(含答案)1

A.3
B.5
C.7
D.9
评卷人 得分
二、填空题
x y 2m 1 19.若关于 x、y 的二元一次方程组 x 3y 3 的解满足 x+y>0,则 m 的取值范
围是____.
4x 3y 7 20.若方程组 kx (k 3) y 1 的解满足 x=y,则 k 的值是__________________________
x 1,
A.
y
5
x 1,
B.
y
2
x 3,
C.
y
1
x 2,
D.
y
1 2
5.已知
x、y
是二元一次方程组
3x y
x
3y
12 8
的解,那么
x
y
的值是(
)
A.0
B.5
C.-1
D.1
x 2 y 1......①
6.下列用消元法解二元一次方程组 2x
5y
1......②
中,不正确的是(
17.解方程组
a
b
2②
的最佳方法是
A.代入法消去 a,由②得 a b 2
B.代入法消去 b,由①得 b 7 2a
C.加减法消去 a,①-②×2 得 3b 3
D.加减法消去 b,①+②得 3a 9
x 2y 8 18.已知 x、y 满足方程组 2x y 7 ,则 x+y 的值是( )
y
2
.
x 2
34.
y
1
.
x 1
35.
y
1 3
.
x 1 36. 2
y 5
x 2
37.
y
1

《二元一次方程》同步练习题(附答案)

《二元一次方程》同步练习题(附答案)

二元一次方程和它的解同步练习(附答案)【主干知识】认真预习教材,尝试完成下列各题:1.含有____个未知数,并且含有_____都是一次的方程叫做二元一次方程.2.下列方程中,是二元一次方程的有()个①2x- y=1② x+ =3③x2+x=2④x2+y2=5⑤5(x+y)=7(x-y)⑥xy=-1A.1B.2C.3D.43.使二元一次方程__________的值,叫做二元一次方程的一个解.4.你能找出二元一次方程,2x-y=3的一个解吗?5.若x=4,y=1是二元一次方程mx-2y=4的解,则m=________.点击思维1.你还记得什么是方程什么是一元一次方程吗?类比着来学习二元一次方程.2.方程 +y=5及xy=3中x、y两个未知数的指数都是1,那这样的方程是不是二元一次方程呢?3.一般地,一个二元一次方程有多少个解?【典例分析】例1下列方程中,哪些是二元一次方程,哪些不是?(1)2x-3y+4=0(2)x+3y-2z=4(3)x2-y2=1(4) =1(5)x= -z(6)3ab=7思路分析:要想判断出一个方程是不是二元一次方程,必须紧卡二元一次方程的定义,即同时满足条件(1)含有两个未知数,(2)含有未知数的项的次数都是1•的方程才叫做二元一次方程.•并且注意含有未知数的项的次数不是含有未知数的次数这一点.解:(1)(4)是二元一次方程,(2)(3)(5)(6)都不是二元一次方程.方法点拨:做这种类型的题时,一定要分清方程中含有未知数的项的次数.•像本例(5)中这一项的次数不是1,它是一个分式,整项的次数应是-1,•故不是二元一次方程;还有(6)中ab这一项,它是一个单项式,它的次数应是a、b两字母的指数的和,•故ab的次数是2,不是1,故也不是二元一次方程.记住这两个易出错的地方.例2对于下列每个方程,各求出它的一个正整数解.(1)x+3y=6(2)3x+2y=20思路分析:(1)先将方程x+3y=6变形为x=6-3y,要使方程有正整数解,y只能取1,•才能保证x是正整数.于是方程x+3y=6的正整数解可求.(2)先将方程3x+2y=20,变形为y=10- x,要使方程有正整数解,只需x取正整数2、4、6,y即有正整数值.于是方程3x+2y=20的正整数解可求.解:(1)将方程x+3y=6变形,得x=6-3y令y=1时,则x=6-31=3故方程x+3y=6的正整数解为 ;(2)将方程3x+2y=20变形,得y=10- x令x=2时,y=7故方程3x+2y=20的一个正整数解是 .方法点拨:解决本题的关键是先将两方程变形,即把其中的一个未知数用含有另一个未知数的代数式来表示.这是一项基本项,一定要表示对,•这也是对以后学二元一次方程组的解法作准备的.【基础能力训练】1.下列方程中:①3x-2=y②mn=8③x+y=-6④ -4y=0⑤3a=2 其中是二元一次方程的是________(只填序号).2.若xm+2y|n|=5是二元一次方程,则m=______, n=_______.3.若3xm+1-5yn-3=16是关于x、y的二元一次方程,则m=_____,n=_______.4.下列方程中,是二元一次方程的是()A.2x+y=-3B.3a-2=46C. =6D.26=3a5.根据下列语句,设适当的未知数,列出二元一次方程:(1)甲数比乙数的3倍少7;(2)甲数的2倍与乙数的5倍的和是4 ;(3)甲数的15%与乙数的23%的差是11;(4)甲数与乙数的和的2倍比乙数与甲数差的多0.25.6.请写出一组x、y的值,使它满足方程x+2y=6.7.下列四对数值中,满足二元一次方程4x-y=5的是()A.8.下列方程中,以x表示y的是()A.x+y=8B.x= y-1C.2y=5x+7D.y=2x-19.下列三对数值满足方程x-2y=-7的是________.10.在方程2x-3y=6中,用含x的代数式表示y为:_________.11.已知x=-2是方程2x+m-4=0的一个解,则m=________.12.在方程 x-3y=8中,用含x的代数或表示y,正确的是()A.y=13.已知是二元一次方程3x-ky=2的一个解,则k=_______.14.在二元一次方程x-3y=5中,若x=0,则y=_______;若x=10,则y=______,若y=•-3,由x=______.15.任何一个二元一次方程都有()个解.A.一B.两C.三D.无数16.下列方程中,其中一个解为的是()A.x+y=-2B.x-y=-2C.xy=-2D.x-2y=217.二元一次方程 x-y=3中,若用x的代数式表示y,则y=________.【综合创新训练】18.自编一个二元一次方程,使它的一组解是 .19.已知2.12x+3.13y=60,则21.2x+31.3y-300=________.20.若是方程,2y+3mx=1的解,则m的值是多少?21.求方程2x+y=15的非负整数解 .22.下列各个图是由若干个花盆组成的形如三角形的图案,每条边(•包括两个顶点)有n(n1)盆花,每个图案花盆的总数是s.按此规律推断,以s、n为未知数的二元一次方程是_______.23.先用一个未知数的代数式表示另一个未知数,然后再求出下列每个方程的三组解:(1)2(x-y)=5(2)4x+2y=x-y+124.求下列图中y(或x)的值:25.一根长20米的钢管,刚好截成若干根长3米和2米的规格的钢管,•则共几种不同的截法?【探究学习】应用小思想解决大问题从前,法国有个聪明的孩子,人人都赞美他,称他为神童.一次,国王在后花园里散步,忽然指着水池问身边的大臣:池中有几桶水?大臣们都被这古怪的问题问住了,你看看我,我看看你,答不上来.国王很扫兴,说:给你们三天的时间,谁能答出来谁就有赏.三天过去了,大臣们还是答不上来,这时,有位大臣奏道:城东有个孩子,人称神童,要不叫他来试一试.国王想,全城都称赞这个孩子,这次就考考他.于是,国王下令宣小孩进宫.孩子听了国王的问题,眼睛眨巴了两下,随口答道:如果桶和水池一样大,就是一桶;如果桶比池小一半,就是两桶水;如果桶是水池的三分之一,就是三桶水;如果还没等小孩说完,国王便连连称赞道:答得好,答得妙!真是聪明过人,胜过我的大臣.大臣们听了都很惭愧.细品上述故事,小孩的确答得妙,妙在一个众人认为不易回答的问题,小孩能分情况巧妙地答出.他这种思考问题的方法,在我们今天看来,实质上就是数学上常用的分类讨论的思想方法.所谓分类讨论的思想:首先根据题目要求确定分类对象;其次针对对象选择分类标准进行合理分类;最后对分类合并归纳,作出综合性结论.分类讨论是一种重要的数学思想方法,对培养思维的周密性大有好处.现在我们用分类讨论的思想方法,解答一个二元一次方程的问题.例:方程x+2y=7有几组解,求出其正整数解.解:原方程有无数组解.原方程可变形为y=因为y是正整数,所以y0即 0解这个不等式,得x7所以x取0当x=1时,y=3;当x=2时,y= ;当x=3时,y=2;当x=4时,y= ;当x=5时,y=1;当x=6时,y= .所以正整数解有 .由此题可以看出,分类思想首先是把可能出现的情况都考虑到,其次把不符合条件的去掉,能合并的合并,然后做出答案.答案:【主干知识】1.两未知数的项的次数2.B3.左右两边的值相等的一对未知数4.能例如5.m=【点击思维】1.含有未知数的等式叫做方程.含有一个未知数,•并且未知数的项的次数都是一次的,这样的方程,叫做一元一次方程.二元一次方程的定义和一元一次方程的定义差不多,但要注意它们的区别:①二元一次方程含有两个未知数,而一元一次方程只含有一个未知数;②一个二元一次方程有无数个解,而一元一次方程只有一个解.2.不是.像方程 +y=5中,这一项的次数不是1次的,应是-1次的.xy=3中,xy•这一项它是一个单项式,单项式的次数等于单项式中各个字母的指数的和,因此xy应是二次的,所以它们都不是二元一次方程.3.无数个解.比如二元一次方程3x-2y=11的一些解是【基础能力训练】1.①③2.113.044.A5.(1)设乙数为x,甲数为y,则3x-y=7;(2)设甲数为x,乙数为y,则2x+5y=4 ;(3)设甲数为x,乙数为y,则15%x-23%y=11;(4)设甲数为x,乙数为y,则2(x+y)- (y-x)=0.25.6. 等等,答案不唯一.7.D8.D9. 10.y= (2x-6)11.812.C13. 14.- -415.D16.A17.y= x-3【综合创新训练】18 .像x+y=1,x-y=5等等.19.300解析:把2.12x+3.13y=60两边都乘以10得21.2x+31.3y=•600,•所以21.2x+31.3y-300=600-300=300.20.由二元一次方程的解的定义,把代入2y+3mx=1得4+3m=1,解得m=-1.21.22.s=3n-3解析:若一边上有n盆,则三条边上有3n盆,•但在三角形的三个顶点处多算了一次,故为3n-3.23.(1)y=x- 解是等.(2)x= -y解是等.24.解析:可将2x-y=3变形为y=2x-3再求较为简单.25.设截得的3米的钢管有x根,2米的钢管有y根,则3x+2y=20,根据题意,需求3x+2y=20有几组正整数解的问题,可求出3x+2y=20,共有3组正整数解,分别是,所以共有3种不同的截法.。

新人教版数学七年级下《二元一次方程组》课时练习含答案

新人教版数学七年级下《二元一次方程组》课时练习含答案

新人教版数学七年级下《二元一次方程组》课时练习含答案一、选择题:1.下列方程中,是二元一次方程的是( ) A .324x y z -= B .690xy += C .146y x += D .244y x -=答案:D知识点:二元一次方程的定义 解析:解答:A 中有三个未知数,因此是三元方程,B 中未知项的次数为2,C 中1x不是整式. 分析:把握判定二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边差不多上整式.2.下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 答案:A知识点:二元一次方程组的定义 解析:解答:B 中的方程组中含有三个未知数,C 中x 2这一项是二次的,D 中的x 2这一项是二次的,A 是符合二元一次方程组定义的.分析:二元一次方程组的三个必需条件:①方程组中一共含有两个未知数,②每个含未知数的项次数为1;③一共有两个方程且每个方程差不多上整式方程.3.二元一次方程51121a b -=( )A .有且只有一解B .有许多解C .无解D .有且只有两解 答案:B知识点:二元一次方程的解 解析:解答:不加限制条件时,一个二元一次方程有许多个解. 分析:不加限制条件时,一个二元一次方程有许多个解.4.方程1y x =-与325x y +=的公共解是( )A .3333 (2422)x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩ 答案:C知识点:二元一次方程的解 解析:解答:使两个二元一次方程都成立的两个未知数的值是它们的公共解,因此逐个代入验证. 分析:将选项中的未知数的值代入时,不能满足其中的任意一个都能够将答案排除.5.若()22320x y -++=,则xy的值是( ) A .-1 B .-2 C .-3 D .32答案:C知识点:绝对值的非负性;平方的非负性;解二元一次方程组;代数式求值 解析:解答:因为()22320x y ++=-,又因为()220,320x y ≥+≥-,因此20320x y =⎧⎨+=⎩-解得223x y =⎧⎪⎨=-⎪⎩,因此2233x y ⎛⎫=÷-=- ⎪⎝⎭.分析:目前为止我们所学的具有非负性的只有绝对值与平方,那个要牢牢记住.6.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )A .2B .1C .6D .4 答案:B知识点:二元一次方程组的解 解析:解答:因为x 与y 的值相等,因此我们能够将方程组中的所有y 都换成x 即43235x x kx x -=⎧⎨+=⎩,那么1x k x =⎧⎨=⎩,因此k =1.分析:将方程组中的所有x 换成y 有一样的解法.7.下列各式,属于二元一次方程的个数有( ) ①27xy x y +-=; ②41x x y +=-; ③15y x+=; ④x y =; ⑤222x y -= ⑥62x y - ⑦1x y z ++= ⑧()2212y y x y x -=-+y A .1 B .2 C .3 D .4 答案:C知识点:二元一次方程的定义 解析:解答:其中②④⑧是二元一次方程,因此选择C .分析:依照二元一次方程的定义来判定,含有两个未知数且含未知数的项的次数是1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方 程组中符合题意的有( )246.22x y A y x +=⎧⎨=-⎩246.22x y B x y +=⎧⎨=+⎩216.22x y C y x +=⎧⎨=+⎩246.22x y D y x +=⎧⎨=+⎩答案:B知识点:二元一次方程组的应用 解析:解答:题目中的相等关系是①男生人数+女生人数=年级总人数,②男生人数比女生人数的2倍少2人则女生人数的2倍比男生人数多2,因此能够列出B . 分析:列二元一次方程组的关键是找到题目中的相等关系.9.假如21ax y +=是关于x 、y 的二元一次方程,那么a 的值应满足( ) A .a 是有理数 B .a ≠0 C .a =1 D .a 是正有理数答案:B知识点:二元一次方程的定义解析:解答:二元一次方程中含有两个未知数,因此a ≠0,若a=0,则等式中只含有y 一个未知数,那个等式就不是二元一次方程. 分析:紧扣二元一次方程的定义解题.10.若()()217a x b y -++=是关于x 、y 的二元一次方程,则( ) A .a ≠2B .b ≠-1C .a ≠2且b ≠-1D .a ≠2或b ≠-1 答案:C知识点:二元一次方程的定义解析:解答:二元一次方程中含有两个未知数,因此a ≠2且b ≠-1,若a=2或b =-2,则等式中只含有一个未知数或不含有未知数,那个等式就不是二元一次方程. 分析:紧扣二元一次方程的定义解题.11.已知二元一次方程组⎩⎨⎧=--=+②.643①,3y x y x 下列说法中,正确的是( )A.同时适合方程①、②的x 、y 的值是方程组的解B.适合方程①的x 、y 的值是方程组的解C.适合方程②的x 、y 的值是方程组的解D.同时适合方程①、②的x 、y 的值不一定是方程组的解 答案:A知识点:二元一次方程组的解解析:解答:二元一次方程组的解是二元一次方程组的两个方程的公共解,因此选A . 分析:紧扣二元一次方程组的解的定义解题.12.已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解,那么a 的值是( )A .1B .3C .-3D .-1答案:A知识点:二元一次方程的解;解一元一次方程解析:解答:将11x y =⎧⎨=-⎩代入方程23x ay -=得23a +=,解得1a =.分析:依照二元一次方程组的解的定义能够得到关于a 的一元一次方程,进而求得a 的值.13.方程4x +3y =16的所有正整数解的个数是( ) A .4 B . 3 C .2 D .1 答案:D知识点:二元一次方程的解解析:解答:因为要求的是方程的正整数解,因此能够将x 从1开始取值,同时y 的值也是正整数时,未知数x 、y 的值确实是方程的正整数解,因此那个方程的正整数解为14x y =⎧⎨=⎩.分析:当2,3x =时,y 的值不是整数;当x 取大于3的整数时,y 的值不是正数,因此方程的正整数解只有14x y =⎧⎨=⎩.14.方程234mx y x -=+是关于x 、y 的二元一次方程,则m 的值范畴是( ) A .m ≠0 B .m ≠−2 C .m ≠3 D .m ≠4 答案:D知识点:二元一次方程的定义 解析:解答:因为方程两边都含有x 的未知数,因此应该先将含有x 的项进行移项与合并得到()324m x y --=,又因为那个方程是关于x 、y 的二元一次方程,因此m -3≠0即m ≠3.分析:一个方程是关于x 、y 的二元一次方程则那个方程中的其它字母能够看作已知数进行运算,同时含未知数的项系数不为0.15.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有( ) A .4个 B .5个 C .6个 D .许多个 答案:B知识点:二元一次方程的应用;二元一次方程的解 解析:解答:设那个两位数十位与个位上的数字分别为x 、y ,那么依照题意可知即求5x y +=的非负整数解,其中0x ≠,因此解得14x y =⎧⎨=⎩,25x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩,5x y =⎧⎨=⎩,因此共有五个符合条件的两位数.分析:依照题意及两位数的实际意义将问题转化成求解二元一次方程的正整数解,然而实际中十位上的数字是不能够为0的,然而个位上的数字是能够为0的. 二、填空题16.已知方程2x +3y -4=0,用含x 的代数式表示y 为:y =_______;用含y 的代数式表示x 为:x =________. 答案:4243,32x y-- 知识点:二元一次方程的应用 解析:解答:因为2x +3y -4=0,因此3y =4-2x ,因此423x y -=,同理可得432yx -=. 分析:将一个二元一次方程写成用含x 的代数式表示y 时,能够将x 看作一个已知数,解一个关于y 的一元一次方程,用含y 的代数式表示x 时是一样的道理.17、在二元一次方程1322x y -+=中,当x =4时,y =_______;当y =-1时,x =______. 答案:43;-10知识点:二元一次方程的解 解析:解答:将x =4代入二元一次方程得14322y -⨯+=,解得43y =;将y =-1代入二元一次方程得()13122x -+⨯-=,解得x =-10. 分析:依照二元一次方程的解,将一个未知数的值代入方程即可求得另一个未知数的解.18、若33125m n x y ---=是二元一次方程,则m =_____,n =______. 答案:43;2 知识点:二元一次方程的定义;解一元一次方程 解析: 解答:因为33125m n xy ---=是二元一次方程,因此3m -3=1,n -1=1,因此43m =,n =2.分析:依照二元一次方程的定义,所含未知数的次数差不多上1可列得3m -3=1,n -1=1. 19.已知2,3x y =-⎧⎨=⎩是方程x -ky =1的解,那么k =_______.答案:-1知识点:二元一次方程的解;解一元一次方程 解析: 解答:因为23x y =-⎧⎨=⎩ 是方程1x ky -=的解,因此231k --=,解得1k =-.分析:求方程中所含的字母系数的值,先把方程的解代入方程中,列出关于字母系数的方程,解之即可. 20、以57x y =⎧⎨=⎩为解的一个二元一次方程是_________.答案:23x y -=;答案不唯独知识点:二元一次方程的解;二元一次方程的定义 解析:解答:符合二元一次方程的定义及所给的解即可,答案不唯独.分析:因为22573x y -=⨯-=,因此可列的二元一次方程23x y -=.三、解答题21.当y =-3时,二元一次方程3x +5y =-3和3y -2ax =a +2(关于x ,y 的方程)有相同的解,求a 的值. 答案:119-知识点:二元一次方程的解;解一元一次方程 解析:解答:解:∵y =-3时,3x +5y =-3,∴3x +5×(-3)=-3,∴x =4,∵方程3x +5y =-3•和3x -2ax =a +2有相同的解,∴3×(-3)-2a ×4=a +2,∴a =119-. 分析:依照题意先求得两个二元一次方程的公共解,再将公共解代入方程3y -2ax =a +2中从而求得a 的值.22.已知x ,y 是有理数,且()()221210x y -++=,则x -y 的值是多少?答案:12-知识点:二元一次方程的解;平方的非负性;绝对值 解析:解答:解:由()()221210x y -++=,可得10x -=│且210y +=,∴11,2x y =±=-. 当x =1,y =12-时,x -y =1+12=32;当x =-1,y =12-时,x -y =-1+12=12-.分析:任何有理数的平方差不多上非负数,且题中两非负数之和为0,则这两非负数()21x -与()221y +都等于0,从而得到│x │-1=0,2y +1=0. 23.已知方程1352x y +=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41x y =⎧⎨=⎩.答案: x -y =3知识点:二元一次方程的解;二元一次方程的定义 解析:解答:解:体会确实是41x y =⎧⎨=⎩方程12x+3y=5的解,再写一个方程x -y =3.分析:任写一个关于x 、y 的二元一次代数式,将41x y =⎧⎨=⎩代入求得的值写在等式右边即可;注意答案不唯独. 24.依照题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?答案:解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,依照题意得130.8220x y x y +=⎧⎨+=⎩.(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼? 答案:解:设有x 只鸡,y 个笼,依照题意得415(1)y xy x+=⎧⎨-=⎩.知识点:二元一次方程组的应用解析:解答:解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,依照题意得130.8220x y x y +=⎧⎨+=⎩.(2)设有x 只鸡,y 个笼,依照题意得415(1)y xy x +=⎧⎨-=⎩.分析:实际问题的关键在于找到相等关系,(1)的相等关系为:两种邮票共有13枚与共花去20元;(2)中的相等关系为:每个笼中放4只鸡,则余外一只鸡与每个笼里放5只,则多一个笼子.25、是否存在整数m ,使关于x 的方程()2922x m x +=--在整数范畴内有解,你能找到 几个m 的值?你能求出相应的x 的解吗?答案: 存在四个m 的值,使得那个方程在整数范畴内有解;m =1,x =-7 ;m =-1,x =7 ;m =7,x =-1 ;m =-7,x =1 知识点:二元一次方程的应用解析:解答:解:存在四组,理由:∵原方程可化简为mx =-7,∴当m =1时,x =-7;m =-1时,x =7;m =7时,x =-1;m =-7时x =1.分析:原方程的化简过程为:移项得()2229x m x +-=-,合并同类项得()227m x +-=-,即7mx =-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档