高中数学人教A版【精品习题】必修4:第11课时 正弦函数、余弦函数的性质(1)——周期性、奇偶性 Wor
【2019-2020高一数学试题】人教A版必修4《正弦函数、余弦函数的性质(1)》试题 答案解析

正弦函数、余弦函数的性质(1)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x2.函数f (x )=x +sin x ,x ∈R ( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .24.函数y =sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π12 5.下列四个函数中,是以π为周期的偶函数的是( )A .y =|sin x |B .y =|sin2x |C .y =|cos2x |D .y =cos3x6.如果函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( )A .3B .6C .12D .24二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω= .8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)= . 9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)= .三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.——能力提升类——12.已知函数y =2sin ⎝⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( )A .0B .-π4 C.π2 D .π13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )14.设函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为 .15.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.正弦函数、余弦函数的性质(1)(答案解析)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( D ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x解析:A 项,y =sin x 的最小正周期为2π,故A 项不符合题意;B 项,y =cos x 的最小正周期为2π,故B 项不符合题意;C 项,y =sin x2的最小正周期为T =2πω=4π,故C 项不符合题意;D 项,y =cos2x 的最小正周期为T =2πω=π,故D 项符合题意.故选D.2.函数f (x )=x +sin x ,x ∈R ( A ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数又是偶函数 D .既不是奇函数又不是偶函数解析:函数f (x )=x +sin x 的定义域为R ,f (-x )=-x +sin(-x )=-x -sin x =-f (x ),则f (x )为奇函数.故选A.3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( B )A .1B .-1C .0D .2解析:∵T =π,且为奇函数.∴f ⎝ ⎛⎭⎪⎫34π=f ⎝ ⎛⎭⎪⎫34π-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1. 4.函数y =sin ⎝⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( D )A .x =-π6 B .x =-π12 C .x =π6D .x =π12解析:令2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ).故选D. 5.下列四个函数中,是以π为周期的偶函数的是( A ) A .y =|sin x | B .y =|sin2x | C .y =|cos2x |D .y =cos3x解析:A 中的函数周期为π.B 中的函数周期为π2.C 中的函数周期为π2.D 中的函数周期为23π.故选A.6.如果函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( B )A .3B .6C .12D .24解析:函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,∴T =2×π6=π3,又2πω=π3,∴ω=6.选B.二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω=8. 解析:π4=2πω,∴ω=8.8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)=-5. 解析:由f (2 015)=2 015a +b sin2 015+1=7, 得2 015a +b sin2 015=6,∴f (-2 015)=-2 015a -b sin2 015+1=-(2 015a +b sin2 015)+1=-6+1=-5.9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=-1.解析:因为T =2,则f (x )=f (x +2).又f (-1)=f (-1+2)=f (1),且x ∈[1,3)时,f (x )=x -2,所以f (-1)=f (1)=1-2=-1.三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性. 解:由题意知函数定义域为R .f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg(sin x +1+sin 2x )=-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数. 11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 解:(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的最小正周期是2π.——能力提升类——12.已知函数y =2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( B ) A .0 B .-π4 C.π2D .π解析:y =2sin ⎝⎛⎭⎪⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z .显然当k =0时,φ=-π4满足题意.13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )解析:A 项,由f (-x )=f (x )知函数f (x )为偶函数,故A 错.B 项,由函数f (x )为偶函数,周期为2,故B 正确.C 项,由函数f (x )为偶函数,故C 错.D 项,由函数f (x )周期为2.故D 错.14.设函数f (x )=3sin ⎝⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为±45. 解析:由题意得2πω=π2, ∴ω=4,∴f (x )=3sin ⎝ ⎛⎭⎪⎫4x +π6∴f ⎝ ⎛⎭⎪⎫α4+π12=3sin ⎝ ⎛⎭⎪⎫α+π2=3cos α=95. ∴cos α=35,∴sin α=±1-⎝ ⎛⎭⎪⎫352=±45. 15.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.解:当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3.因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32 解得x +π3=-π6或π6, 即x =-π2或-π6.又因为g (x )的最小正周期为π.所以g (x )=32的解集为 ⎩⎨⎧⎭⎬⎫x|x =k π-π2或x =k π-π6,k ∈Z .。
高中数学必修四1.4.2正弦函数、余弦函数的性质(一)习题2新人教A版必修4

1.4.2 正弦函数、余弦函数的性质
1.函数
y= cos
x+
π 2
( x∈ R) 是(
)
A.奇函数
B.偶函数 C.非奇非偶函数
D.无法确定
解析: y= cos
x+
π 2
=- sin
x,所以此函数为奇函数.
答案: A
2.下列函数中,周期为
π
的是
(
)
x
x
A. y= sin 2 B . y= sin 2 x C. y=cos 4 D. y= cos( - 4x)
解析:对 D. y=cos( - 4x) = cos 4 x,
∴
T=
2π 4
=
π 2
,故选
D.
答案: D
3.下列是定义在 R 上的四个函数图象的一部分,其中不是周期函数的是
()
解析:结合周期函数的定义可知 A,B, C 均为周期函数, D 不是周期函数. 答案: D 4.已知函数 f ( x) 的周期为 1.5 ,且 f (1) = 20,则 f (10) 的值是 ________. 解析: f (10) = f (1.5 ×6+ 1) = f (1) = 20. 答案: 20 5.判断下列函数的奇偶性: (1) f ( x) =- 2cos 3 x; (2) f ( x) = xsin( x+π ) . 解: (1) 函数的定义域为 R,且 f ( - x) =- 2cos 3( - x) =- 2cos 3 x=f ( x) ,所以 f ( x) =- 2cos 3 x 为偶函数. (2) 函数的定义域为 R,且 f ( x) = xsin( x+ π ) =- xsin x,所以 f ( - x) = xsin( - x) = -xsin x=f ( x) .故为偶函数 .
高中数学正弦函数、余弦函数的性质1精练精析新人教A版必修4

[精练精析]1.4.2.1正弦函数、余弦函数的性质(一)
素能综合检测
2.下列函数中是偶函数的是()
(A)y=sin2x (B)y=-sinx
(C)y=sin|x| (D)y=sinx+1
【解析】选C.所给选项中的四个函数定义域均为R,对C,由
f(-x)=sin|-x|=sin|x|=f(x),故是偶函数.
3.(2008·天津高考)设函数f(x)=sin(2x- ),x∈R,则f(x)是()
(A)最小正周期为π的奇函数
(B)最小正周期为π的偶函数
(C)最小正周期为的奇函数
(D)最小正周期为的偶函数
【解析】选B.f(x)=sin(2x-)=-cos2x,
f(-x)=-cos(-2x) =-cos2x=f(x),
∴f(x)是偶函数,T==π,
最小正周期为π.
6.函数y=sinx的图象关于原点对称,观察正弦曲线的形状,结合正弦函数的周期性可知,正
弦曲线的对称中心为_____.
【解析】结合正弦函数图象及周期性可知,正弦曲线与x轴的交点,即为其对称中心,其坐标为(kπ,0).
答案:(kπ,0)(k∈Z)
三、解答题(每题8分,共16分)
7.若f(x)是奇函数,当x>0时,f(x)=x2-sinx, 求当x<0时,f(x)的解析式.
【解析】设x<0,则-x>0,
∴f(-x)=(- x)2-sin(-x)=x2+sinx,
又∵f(x)是奇函数,
∴f(-x)=-f(x),∴f(x)=-x2-sinx(x<0).。
【人教A版】高中数学必修四 1.4.2 正弦函数、余弦函数的性质(新教材)

题型二 三角函数值的大小比较
ห้องสมุดไป่ตู้
【典例 2】 比较下列各组数的大小:
(1)sin250°与
sin260°;(2)cos158π与
14π cos 9 .
[思路导引] 利用正、余弦函数的单调性比较大小.
[ 解] (1)∵函数 y=sinx 在[90°,270°]上单调递减,且 90°<250°<260°<270°,∴sin250°>sin260°.
[变式] 将本例(2)中函数改为 y=2cos2x+2sinx-12,其他条 件不变,结果如何?
[解] y=2cos2x+2sinx-12 =2(1-sin2x)+2sinx-12 =-2sin2x+2sinx+32 =-2sinx-122+52. ∵x∈6π,56π,∴sinx∈12,1.所以32≤y≤52. 故原函数的值域32,52.
[针对训练] 1.求函数 y=3sin3π-2x的单调递减区间.
[解] ∵y=3sinπ3-2x=-3sin2x-3π, ∴y=3sin2x-3π是增函数时,y=3sinπ3-2x是减函数. ∵函数 y=sinx 在-2π+2kπ,π2+2kπ(k∈Z)上是增函数,∴ -π2+2kπ≤2x-π3≤2π+2kπ, 即-1π2+kπ≤x≤152π+kπ(k∈Z). ∴函数 y=3sin3π-2x的单调递减区间为-1π2+kπ,152π+kπ (k∈Z).
[答案] y=sinx 在-2π,π2上,曲线逐渐上升,是增函数, 函数值 y 由-1 增大到 1;在2π,32π上,曲线逐渐下降,是减函 数,函数值 y 由 1 减小到-1;
y=cosx 在[0,π]上,曲线逐渐下降,是减函数,函数值由 1 减小到-1,在[π,2π]上,曲线逐渐上升,是增函数,函数值由 -1 增大到 1
高中数学人教A版必修4第一章三角函数1.4.1正弦函数、余弦函数的图象(1) 答案和解析

高中数学人教A版必修4第一章三角函数1.4.1正弦函数、余弦函数的图象(1)学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.点π,2M m⎛⎫-⎪⎝⎭在函数y=sin x的图象上,则m等于( )A.0B.1C.-1D.22.在同一坐标系中函数y=sin x,x∈[0,2π]与y=sin x,x∈[2π,4π]的图象( ) A.重合B.形状相同,位置不同C.形状不同,位置相同D.形状不同,位置不同3.函数y=-sin x,x∈π3,22π⎡⎤-⎢⎥⎣⎦的简图是( )A.B. C.D.4.y=1+sinx,x∈[0,2π]的图象与直线y=2交点的个数是( ) A.0B.1C.2D.3 5.不等式cos x<0,x∈[0,2π]的解集为( )A.π3,22π⎛⎫⎪⎝⎭B.π3,22π⎡⎤⎢⎥⎣⎦C.π0,2⎛⎫⎪⎝⎭D.π,22π⎛⎫⎪⎝⎭6.方程lg x=sin x的解的个数为( )A.0B.1C.2D.3二、填空题7.用“五点法”画出y=2sin x在[0,2π]内的图象时,应取的五个点为________________.8.若sin x =2m +1且x ∈R,则m 的取值范围是________.9.函数y =的定义域是__________.10.直线x sin α+y +2=0的倾斜角的取值范围是________________.三、解答题11.用“五点法”作函数y =-2cos x +3(0≤x ≤2π)的简图. 12.判断方程10xsinx =的根的个数. 13.方程sin x =12a -在x ∈π,3π⎡⎤⎢⎥⎣⎦上有两个实数根,求a 的取值范围.参考答案1.C 【解析】 ∵点π,2M m ⎛⎫-⎪⎝⎭在函数y =sin x 的图象上, ∴sin12m π-==,解得1m =-.选C . 2.B【解析】由题意得,两函数的解析式相同,定义域不同. 所以两函数的图象相同,但位置不同. 选B . 3.D 【解析】 用排除法求解.当x =0时,y =-sin 0=0,故可排除A 、C ; 当x =32π时,y =-sin32π=1,故可排除B . 选D . 4.B 【解析】 方法一:由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =2只有1个交点.选B .方法二:由x ∈[0,2π]可得1sin 1x -≤≤,所以01sin 2x ≤+≤,故函数y =1+sin x 的最大值为2,所以直线y =2与函数y =1+sin x 的图象只有1个交点.选B . 5.A 【解析】方法一:由函数y =cos x 的图象知,在[0,2π]内使cos x <0的x 的范围是π3,22π⎛⎫⎪⎝⎭. 故不等式的解集为π3,22π⎛⎫⎪⎝⎭.选A 方法二: 由0cosx <得,322,22k x k k Z ππππ+<<+∈, 又02x π≤≤, 所以322x ππ<<. 故不等式的解集为π3,22π⎛⎫⎪⎝⎭.选A . 6.D 【解析】在同一坐标系内作出函数y =lg x 与函数y =sin x 的图象如图所示,由图知两函数的图象有三个交点,所以方程有三个解.选D .点睛:判断方程根的个数的方法 (1)通过解方程的方法判断.(2)当方程不容易求解时,可构造两个函数,并在同一坐标系内画出两个函数的图象,通过观察两函数图象公共点的个数来判断方程解的个数,这种方法为数形结合在解题中的运用.用图象法判断方程根的个数时,有时要用函数的奇偶性进行判断. 7.(0,0),π,22⎛⎫ ⎪⎝⎭,(π,0),3π,22⎛⎫- ⎪⎝⎭,(2π,0) 【解析】画函数y =sin x 在[0,2π]内的图象时五个关键点为3(0,0),(,1),(,0),(,1),(2,0)22ππππ-, 因此画y =2sin x 在[0,2π]内的图象时,应取的五个点即把相应的五个关键点的纵坐标变为原来的2倍即可,即为3(0,0),(,2),(,0),(,2),(2,0)22ππππ-. 答案:3(0,0),(,2),(,0),(,2),(2,0)22ππππ- 8.[-1,0]【解析】因为-1≤sin x ≤1,sin x =2m +1, 所以-1≤2m +1≤1, 解得-1≤m ≤0.故实数m 的取值范围是[-1,0]. 答案:[-1,0]9.{}x |2(21),k x k k Z ππ<<+∈ 【详解】 由120log sinx ≥得0<sin x ≤1,由正弦函数图象得22,k x k k Z πππ<<∈+, 所以函数的定义域为{|22,}x k x k k Z πππ<<∈+答案:{|22,}x k x k k Z πππ<<∈+10.π30,,π44π⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭【解析】因为sin α∈[-1,1], 所以-sin α∈[-1,1],所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是π30,,π44π⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 答案:π30,,π44π⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭11.见解析 【解析】 试题分析:根据描点法作图的步骤:列表、描点、连线的步骤求解即可. 试题解析: 由条件列表如下:描点、连线得出函数y =-2cos x +3(0≤x ≤2π)的图象如图所示.点睛:(1)画正弦函数y =cos x 在[0,2π]上的图象时,起关键作用的五个点是(0,1),(,0),(,1)2ππ-,3(,0),(2,1)2ππ. (2)用五点法画cos()y A x ωϕ=+的图象时,五个关键点的横坐标不再是30,,,,222ππππ,而是令x ωϕ+取上述五个值,得到的相应x 的值. 12.方程根的个数为7 【解析】 试题分析:在同一坐标系内画出函数sin y x =和函数10xy =在y 轴右侧的图象,通过两函数图象公共点的个数,并结合函数为奇函数来判断出方程10xsinx =根的个数.试题解析:由题意得,当x =3π时,311010x y π==<;当x =4π时,411010x y π==>. 在同一坐标系内分别作出函数sin y x =和函数10xy =在y 轴右侧的图象,如图所示.由图象知,直线y =10x在y 轴右侧与函数y =sinx 的图象有且只有3个公共点, 又由函数为奇函数的性质可知,在y 轴左侧两函数的图象也有3个公共点,加上原点O (0,0),共有7个公共点. 所以方程10xsinx =根的个数为7.13.11a <≤-【解析】试题分析:根据正弦函数的单调性,得到当[,]3x ππ∈时,在区间[,]3ππ上且2x π≠时,存在两个自变量x 对应同一个sin x .由此得到若()f x 有两个零点,即1sin 2ax -=,在[,]3x ππ∈上有两个零点,由此建立关于a 的不等式,解之即可得到实数a 的取值范围.试题解析:首先作出sin y x =,[,]3x ππ∈的图象,然后再作出12ay -=的图象,如果sin y x =,[,]3x ππ∈与12a y -=的图象有两个交点,方程1sin 2a x -=,[,]3x ππ∈就有两个实数根. 设1sin y x =,[,]3x ππ∈,212ay -=. 1sin y x =,[,]3x ππ∈的图象如图.112a-≤<,即11a -<≤sin y x =,[,]3x ππ∈的图象与1 2ay-=的图象有两个交点,即方程1sin2ax-=在[,]3xππ∈上有两个实根.点睛:本题给出三角函数式,求满足函数在指定区间上有两个零点的参数a的取值范围,着重考查了三角函数的单调性与函数的图象与性质等知识,属于中档题.。
高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数

1.4.2 正弦函数、余弦函数的性质(一)一、A组1.函数f(x)=-2sin的最小正周期为()A.6B.2πC.πD.2解析:T==2.答案:D2.下列函数中,周期为的是()A.y=sinB.y=sin 2xC.y=cosD.y=cos(-4x)解析:对D,y=cos(-4x)=cos 4x,∴T=,故选D.答案:D3.(2016·四川遂宁射洪中学月考)设函数f(x)=sin,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数解析:因为f(x)=sin=-cos 2x,所以f(-x)=-cos 2(-x)=-cos 2x=f(x),所以f(x)是最小正周期为π的偶函数.答案:B4.已知函数f(x)=sin,g(x)=sin的最小正周期分别为T1,T2,则sin(T1+T2)=()A.-B.-C.D.解析:由已知T1=,T2=,∴sin(T1+T2)=sin=sin=-sin=-.答案:B5.(2016·浙江金华一中月考)设f(x)是定义域为R且最小正周期为2π的函数,且有f(x)=则f=()A. B.-C.0D.1解析:因为f(x)是定义域为R且最小正周期为2π的函数,所以f=f=f.又因为0≤≤π,所以f=f=sin.答案:A6.函数y=4sin(2x+π)的图象关于对称.解析:y=4sin(2x+π)=-4sin 2x,易证函数为奇函数,所以其图象关于原点对称.答案:原点7.函数y=sin(ω>0)的最小正周期为π,则ω=.解析:∵y=sin的最小正周期为T=,∴,∴ω=3.答案:38.若f(x)(x∈R)为奇函数,且f(x+2)=f(x),则f(4)=.解析:∵f(x+2)=f(x),∴f(x)的周期为T=2.∴f(4)=f(0).又f(x)(x∈R)为奇函数,∴f(0)=0.∴f(4)=0.答案:09.判断函数f(x)=cos(2π-x)-x3sin x的奇偶性.解:因为f(x)=cos(2π-x)-x3sin x=cos x-x3sin x的定义域为R,f(-x)=cos(-x)-(-x)3sin(-x)=cos x-x3sin x=f(x),所以f(x)为偶函数.10.若函数f(x)是以为周期的偶函数,且f=1,求f的值.解:∵f(x)的周期为,且为偶函数,∴f=f=f=f.而f=f=f=f=1,∴f=1.二、B组1.下列是定义在R上的四个函数图象的一部分,其中不是周期函数的是()解析:显然D中函数图象不是经过相同单位长度图象重复出现.而A,C中每经过一个单位长度,图象重复出现.B中图象每经过2个单位,图象重复出现.所以A,B,C中函数是周期函数,D中函数不是周期函数.答案:D2.函数y=cos(k>0)的最小正周期不大于2,则正整数k的最小值应是()A.10B.11C.12D.13解析:∵T=≤2,∴k≥4π.又k∈Z,∴正整数k的最小值为13.答案:D3.将函数y=sin x的图象向左平移个单位,得到函数y=f(x)的图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点对称解析:y=sin x的图象向左平移个单位,得y=f(x)=sin=cos x的图象,所以f(x)是偶函数,A不正确;f(x)的周期为2π,B不正确;f(x)的图象关于直线x=kπ(k∈Z)对称,C不正确;f(x)的图象关于点(k∈Z)对称,当k=-1时,点为,故D正确.综上可知选D.答案:D4.若函数f(x)是以π为周期的奇函数,且当x∈时,f(x)=cos x,则f=()A. B. C.- D.-解析:∵f(x)的最小正周期是π,∴f=f=f.又f(x)是奇函数,∴f=-f=-cos=-.答案:C5R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则有下面三个式子:①f<f;②f<f;③f(sin 1)<f(cos 1).其中一定成立的是.(填序号)解析:当0≤x≤1时,3≤-x+4≤4,f(-x+4)=-x+4-2=-x+2,∴f[-(x-4)]=f(x-4)=f(x)=-x+2,∴f(x)在[0,1]上是减函数.∵1>sin>cos>0,1>sin 1>cos 1>0,1>cos>sin>0,∴f<f,f(sin 1)<f(cos 1),f>f.答案:②③6.已知函数y=sin x+|sin x|.(1)画出这个函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.解:(1)y=sin x+|sin x|=函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,故函数的最小正周期是2π.7R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈时,f(x)=sin x.(1)求当x∈[-π,0]时,f(x)的解析式;(2)画出函数f(x)在[-π,π]上的简图;(3)求当f(x)≥时x的取值范围.解:(1)∵f(x)是偶函数,∴f(-x)=f(x).∵当x∈时,f(x)=sin x,∴当x∈时,f(x)=f(-x)=sin(-x)=-sin x.又当x∈时,x+π∈,f(x)的周期为π,∴f(x)=f(π+x)=sin(π+x)=-sin x.∴当x∈[-π,0]时,f(x)=-sin x.(2)如图.(3)∵在[0,π]内,当f(x)=时,x=,∴在[0,π]内,f(x)≥时,x∈.又f(x)的周期为π,∴当f(x)≥时,x∈,k∈Z.。
人教a版必修4学案:1.4.2正弦函数、余弦函数的性质(2)(含答案)

1.4.2 正弦函数、余弦函数的性质(二)自主学习知识梳理自主探究正弦曲线与余弦曲线都既是轴对称图形又是中心对称图形,那么:(1)正弦函数y =sin x 的对称轴方程是______________,对称中心坐标是______________.(2)余弦函数y =cos x 的对称轴方程是______________,对称中心坐标是______________.对点讲练知识点一 求正、余弦函数的单调区间例1 求函数y =sin ⎝⎛⎭⎫π3-2x 的单调递减区间.回顾归纳 求y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.变式训练1 求函数y =2cos ⎝⎛⎭⎫π4-x 2的单调增区间.知识点二 比较三角函数值的大小例2 利用三角函数的单调性,比较下列各组数的大小.(1)sin 196°与cos 156°;(2)sin 1,sin 2,sin 3.回顾归纳 用正弦函数和余弦函数的单调性来比较大小时,应先将异名化同名,再将不是同一单调区间的角用诱导公式转化到同一单调区间,再利用单调性来比较大小.变式训练2 比较下列各组数的大小.(1)cos 870°,cos 890°;(2)sin ⎝⎛⎭⎫-37π6,sin 49π3.知识点三 正、余弦函数的最值问题例3 已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.回顾归纳 此类问题应特别注意正、余弦函数值域的有界性,即当x ∈R 时,-1≤sin x ≤1,-1≤cos x ≤1,另外还应注意定义域对值域的影响.变式训练3 若函数y =a -b cos x (b >0)的最大值为32,最小值为-12,求函数y =-4a cosbx 的最值和最小正周期.1.求函数y =A sin(ωx +φ) (A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+3π2(k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法(1)将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.(2)将sin x 或cos x 用所求变量y 来表示,如sin x =f (y ),再由|sin x |≤1,构建关于y 的不等式|f (y )|≤1,从而求得y 的取值范围.课时作业一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.函数y =sin ⎝⎛⎭⎫x -π2 (x ∈k )在( ) A .[0,π]上是增函数 B.⎣⎡⎦⎤-π2,π2上是增函数 C .[0,π]上是减函数 D.⎣⎡⎦⎤-π2,π2上是减函数 3.当-π2≤x ≤π2时,函数f (x )=2sin ⎝⎛⎭⎫x +π3有( ) A .最大值为1,最小值为-1B .最大值为1,最小值为-12C .最大值为2,最小值为-2D .最大值为2,最小值为-14.函数y =sin(x +φ)的图象关于y 轴对称,则φ的一个取值是( ) A.π2 B .-π4C .π B .2π 5.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54二、填空题6.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是________________. 7.函数y =log 12(1+λcos x )的最小值是-2,则λ的值是________.8.函数y =-cos 2x +cos x (x ∈R )的值域是________.三、解答题9.求下列函数的单调增区间.(1)y =1-sin x 2; (2)y =log 12(cos 2x ).10.求下列函数的值域.(1)y =1-2cos 2x +2sin x ; (2)y =2-sin x2+sin x.1.4.2 正弦函数、余弦函数的性质(二)答案(1)x =k π+π2(k ∈Z ) (k π,0) (k ∈Z )(2)x =k π (k ∈Z ) ⎝⎛⎭⎫k π+π2,0 (k ∈Z ) 对点讲练例1 解 由已知函数为y =-sin ⎝⎛⎭⎫2x -π3,则欲求函数的单调递减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调递增区间. 由-π2+2k π≤2x -π3≤π2+2k π (k ∈Z ),解得-π12+k π≤x ≤5π12+k π (k ∈Z ).∴函数的单调递减区间为⎣⎡⎦⎤-π12+k π,5π12+k π (k ∈Z ). 变式训练1 解 y =2cos ⎝⎛⎭⎫π4-x 2=2cos ⎝⎛⎭⎫x 2-π4.由2k π-π≤x 2-π4≤2k π,k ∈Z ,解得2k π-3π4≤x 2≤2k π+π4,k ∈Z .即4k π-3π2≤x ≤4k π+π2,k ∈Z ,∴函数的单调增区间是⎣⎡⎤4k π-3π2,4k π+π2 (k ∈Z ). 例2 解 (1)sin 196°=sin(180°+16°)=-sin 16°, cos 156°=cos(180°-24°)=-cos 24°=-sin 66°, ∵0°<16°<66°<90°,∴sin 16°<sin 66°.从而-sin 16°>-sin 66°,即sin 196°>cos 156°.(2)∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.0<π-3<1<π-2<π2且y =sin x 在⎝⎛⎭⎫0,π2上递增, ∴sin(π-3)<sin 1<sin(π-2), 即sin 3<sin 1<sin 2.变式训练2 解 (1)cos 870°=cos(2×360°+150°)=cos 150°, cos 890°=cos(2×360°+170°)=cos 170°, ∵余弦函数y =cos x 在[0°,180°]上是减函数, ∴cos 150°>cos 170°,即cos 870°>cos 890°.(2)sin ⎝⎛⎭⎫-37π6=sin ⎝⎛⎭⎫-6π-π6=sin ⎝⎛⎭⎫-π6, sin 49π3=sin ⎝⎛⎭⎫16π+π3=sin π3, ∵正弦函数y =sin x 在⎣⎡⎦⎤-π2,π2上是增函数, ∴sin ⎝⎛⎭⎫-π6<sin π3,即sin ⎝⎛⎭⎫-37π6<sin 49π3. 例3 解 ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1, f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1, f (x )min =2a +b =-5.由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 变式训练3 解 ∵y =a -b cos x (b >0),∴y max =a +b =32,y min =a -b =-12.由⎩⎨⎧a +b =32a -b =-12,解得⎩⎪⎨⎪⎧a =12b =1.∴y =-4a cos bx =-2cos x , ∴y max =2,y min =-2,T =2π. 课时作业 1.C 2.A3.D [∵-π2≤x ≤π2,∴-π6≤x +π3≤5π6.∴当x +π3=-π6,即x =-π2时,f (x )有最小值-1.当x +π3=π2,即x =π6时,f (x )有最大值2.]4.A [若y =sin(x +φ)的图象关于y 轴对称.则φ=k π+π2,∴当k =0时,φ=π2.]5.C [y =sin 2x +sin x -1=⎝⎛⎭⎫sin x +122-54 ∵-1≤sin x ≤1,∴当sin x =-12时,y 取最小值-54,当sin x =1时,y 取最大值1.] 6.⎣⎡⎦⎤π2,π 7.±3解析 由题意,1+λcos x 的最大值为4, 当λ>0时,1+λ=4,λ=3; 当λ<0时,1-λ=4,λ=-3. ∴λ=±3.8.⎣⎡⎦⎤-2,14 解析 y =-⎝⎛⎭⎫cos x -122+14 ∵-1≤cos x ≤1,∴当cos x =12时,y max =14.当cos x =-1时,y min =-2.∴函数y =-cos 2x +cos x 的值域是⎣⎡⎦⎤-2,14. 9.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ).(2)由题意得cos 2x >0且cos 2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z .∴k π<x <k π+π4,k ∈Z .∴y =log 12(cos 2x )的增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 10.解 (1)y =1-2cos 2x +2sin x =2sin 2x +2sin x -1=2⎝⎛⎭⎫sin x +122-32 当sin x =-12时,y min =-32;当sin x =1时,y max =3.∴函数y =1-2cos 2x +2sin x 的值域为⎣⎡⎦⎤-32,3. (2)方法一 y =4-(2+sin x )2+sin x =42+sin x-1∵-1≤sin x ≤1,∴1≤2+sin x ≤3, ∴13≤12+sin x ≤1,∴43≤42+sin x ≤4, ∴13≤42+sin x -1≤3,即13≤y ≤3.∴函数y =2-sin x 2+sin x的值域为⎣⎡⎦⎤13,3. 方法二 由y =2-sin x 2+sin x ,解得sin x =2-2yy +1,由|sin x |≤1,得⎪⎪⎪⎪⎪⎪2-2y y +1≤1,∴(2-2y )2≤(y +1)2, 整理得3y 2-10y +3≤0,解得13≤y ≤3.∴函数y =2-sin x 2+sin x 的值域为⎣⎡⎦⎤13,3.。
高中数学 弦函数、余弦函数的性质 第1课时 正弦函数、余弦函数的性质(一)课件 新人教A版必修第一册

[归纳提升] 求三角函数周期的方法 (1)定义法:紧扣周期函数的定义,寻求对定义域内的任意实数 x 都 满足 f(x+T)=f(x)的非零常数 T.该方法主要适用于抽象函数. (2)公式法:对形如 y=Asin(ωx+φ)和 y=Acos(ωx+φ)(其中 A,ω,φ 是常数,且 A≠0,ω≠0),可利用 T=|2ωπ|来求. (3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别 是对于含绝对值的函数一般可采用此法.
4.若函数f(x)满足f(x+3)-f(x)=0,则函数f(x)是周期为__3_的周期 函数.
知识点 2 正弦函数、余弦函数的周期性和奇偶性
函数 周期 最小正周期 奇偶性
y=sin x 2kπ(k∈Z且k≠0)
2π 奇函数
y=cos x 2kπ(k∈Z且k≠0)
2π 偶函数
想一想:(1)正弦曲线对称吗? (2)余弦曲线对称吗? 提示:(1)正弦函数y=sin x是奇函数,正弦曲线关于原点对称. (2)余弦函数y=cos x是偶函数,余弦曲线关于y轴对称.
【对点练习】❶ 求下列函数的最小正周期: (1)y=sin3x+π3; (2)y=|sin x|; (3)y=sin2πx-π4.
[解析] (1)∵ω=3,T=23π. (2)作图如下:
观察图象可知最小正周期为 π. (3)∵ω=2π,∴T=22π=π2.
π
题型二
三角函数奇偶性的判断
典例2 判断下列函数的奇偶性:
∴f-π3=fπ3=sinπ3=
3 2.
[归纳提升] 1.解答此类题目的关键是利用化归的思想,借助于周 期函数的定义把待求问题转化到已知区间上,代入求解即可.
2.如果一个函数是周期函数,若要研究该函数的有关性质,结合 周期函数的定义可知,完全可以只研究该函数在一个周期上的特征,加 以推广便可以得到该函数在其他区域内的有关性质.
高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(1)练习(含解析)新人教A版必修

高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)练习(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)练习(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.4.2 正弦函数、余弦函数的性质(1)练习(含解析)新人教A 版必修4的全部内容。
1。
4.2 正弦、余弦函数的图象与性质(一)一、选择题:1. 下列函数是以π为最小正周期的函数是()A.y=sin x B.y=sin x+2C.y=cos 2x+2 D.y=cos 3x-1【答案】C【解析】y=sin x及y=sin x+2的最小正周期为2π,y=cos 2x+2的最小正周期为π,y=cos 3x-1的最小正周期为错误!,所以选C.2.函数f(x)=3sin错误!,x∈R的最小正周期为()A.错误!B.πC.2πD.4π【答案】D【解析】因为3sin错误!=错误!sin错误!=3sin错误!,即f(x+4π)=f(x),所以函数f(x)的最小正周期为4π.3. 函数f(x)=错误!sin 2x的奇偶性为 ( )A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数【答案】A【解析】∵f(x)的定义域是R. 且f(-x)=2sin 2(-x)=-错误!sin 2x=-f(x),∴函数为奇函数.故选A。
4.已知a∈R,函数f(x)=sin x-|a|(x∈R)为奇函数,则a等于( )A.0 B.1C.-1 D.±1【答案】A【解析】函数定义域为R,因为f(x)为奇函数,所以f(-x)=sin(-x)-|a|=-f(x)=-sin x+|a|,所以|a|=0,从而a=0,故选A.二、填空题:5.函数y=sin错误!的最小正周期为________.【答案】π【解析】y=sin错误!=sin错误!=sin错误!,所以最小正周期为π.6.函数f(x)=sin错误!的奇偶性是。
人教版高中数学A版必修4学案 1.4.2 正弦函数、余弦函数的性质(一)

1.4.2正弦函数、余弦函数的性质(一)明目标、知重点 1.了解周期函数、周期、最小正周期的定义.2.会求函数y=A sin(ωx+φ)及y=A cos(ωx+φ)的周期.3.掌握函数y=sin x,y=cos x的奇偶性,会判断简单三角函数的奇偶性.1.函数的周期性(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x +T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.(2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.2.正弦函数、余弦函数的周期性由sin(x+2kπ)=sin_x,cos(x+2kπ)=cos_x(k∈Z)知y=sin x与y=cos x都是周期函数,2kπ (k∈Z且k≠0)都是它们的周期,且它们的最小正周期都是2π.3.正弦函数、余弦函数的奇偶性(1)正弦函数y=sin x与余弦函数y=cos x的定义域都是R,定义域关于原点对称.(2)由sin(-x)=-sin_x知正弦函数y=sin x是R上的奇函数,它的图象关于原点对称.(3)由cos(-x)=cos_x知余弦函数y=cos x是R上的偶函数,它的图象关于y轴对称.[情境导学]自然界存在许多周而复始的现象,如地球自转和公转,物理学中的单摆运动和弹簧振动,圆周运动等.数学中从正弦函数和余弦函数的定义知,角α的终边每转一周又会与原来的终边重合,也具有周而复始的变化规律,为定量描述这种变化规律,需引入一个新的数学概念——函数周期性.探究点一周期函数的定义思考1观察正弦函数图象知,正弦曲线每相隔2π个单位重复出现其理论依据是什么?答诱导公式sin(x+2kπ)=sin x(k∈Z)当自变量x的值增加2π的整数倍时,函数值重复出现.数学上,用周期性这个概念来定量地刻画这种“周而复始”的变化规律.思考2设f(x)=sin x,则sin(x+2kπ)=sin x可以怎样表示?把函数f(x)=sin x称为周期函数,那么,一般地,如何定义周期函数呢?答 f (x +2k π)=f (x )(k ∈Z )这就是说:当自变量x 的值增加到x +2k π时,函数值重复出现. 一般地,对于函数y =f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,f (x +T )=f (x )都成立,那么就把函数y =f (x )叫做周期函数,不为零的常数T 叫做这个函数的周期.小结 为了突出函数的这个特性,我们把函数f (x )=sin x 称为周期函数,2k π为这个函数的周期 (其中k ∈Z 且k ≠0).思考3 正弦函数y =sin x 的周期是否唯一?正弦函数y =sin x 的周期有哪些?答 正弦函数y =sin x 的周期不止一个. ±2π,±4π,±6π,…都是正弦函数的周期,事实上,任何一个常数2k π(k ∈Z 且k ≠0)都是它的周期. 探究点二 最小正周期导引 如果在周期函数f (x )的所有周期中存在一个最小的正数, 则这个最小正数叫做f (x )的最小正周期. 周期函数不一定都有最小正周期.如:f (x )=C (C 为常数,x ∈R ),对于非零实数T 都是它的周期, 而最小正周期不存在.思考 我们知道±2π,±4π,±6π,…都是y =sin x 的周期,那么函数y =sin x 有最小正周期吗?若有,那么最小正周期T 等于多少?答 正弦函数y =sin x 有最小正周期,且最小正周期T =2π.小结 如果非零常数T 是函数y =f (x )的一个周期,那么kT (k ∈Z 且k ≠0)都是函数y =f (x )的周期.例如,正弦函数y =sin x 和余弦函数y =cos x 的最小正周期都是2π,它们的所有周期可以表示为2k π(k ∈Z 且k ≠0).探究点三 函数y =A sin(ωx +φ)(或y =A ·cos(ωx +φ))(A >0,ω≠0)的周期 思考 求函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))的最小正周期? 答 由诱导公式一知:对任意x ∈R ,都有A sin [(ωx +φ)+2π]=A sin(ωx +φ),所以A sin ⎣⎡⎭⎫ω⎝⎛⎭⎫x +2πω+φ=A sin(ωx +φ), 即f ⎝⎛⎭⎫x +2πω=f (x ), 所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期.由于x 至少要增加2π|ω|个单位,f (x )的函数值才会重复出现,因此,2π|ω|是函数f (x )=A sin(ωx +φ)的最小正周期.同理,函数f (x )=A cos(ωx +φ)也是周期函数,最小正周期也是2π|ω|.探究点四 正弦、余弦函数的奇偶性 导引 正弦曲线余弦曲线思考1 观察正弦曲线和余弦曲线的对称性,你有什么发现?答 正弦函数y =sin x 的图象关于原点对称,余弦函数y =cos x 的图象关于y 轴对称. 思考2 上述对称性反映出正弦、余弦函数分别具有什么性质?如何从理论上加以验证? 答 正弦函数是R 上的奇函数,余弦函数是R 上的偶函数.根据诱导公式得,sin(-x )=-sin x ,cos(-x )=cos x 均对一切x ∈R 恒成立. 例1 求下列三角函数的周期.(1)y =3cos x ,x ∈R ;(2)y =sin 2x ,x ∈R ; (3)y =2sin ⎝⎛⎭⎫12x -π6,x ∈R . 解 (1)∵3cos(x +2π)=3cos x ,∴自变量x 只要并且至少要增加到x +2π, 函数y =3cos x ,x ∈R 的值才能重复出现, 所以,函数y =3cos x ,x ∈R 的周期是2π. (2)∵sin(2x +2π)=sin2(x +π)=sin 2x , ∴自变量x 只要并且至少要增加到x +π, 函数y =sin 2x ,x ∈R 的值才能重复出现, 所以,函数y =sin 2x ,x ∈R 的周期是π. (3)∵2sin ⎣⎡⎦⎤12(x +4π)-π6 =2sin ⎝⎛⎭⎫12x -π6+2π=2sin ⎝⎛⎭⎫12x -π6, ∴自变量x 只要并且至少要增加到x +4π,函数y =2sin ⎝⎛⎭⎫12x -π6,x ∈R 的值才能重复出现, 所以,函数y =2sin ⎝⎛⎭⎫12x -π6,x ∈R 的周期是4π.反思与感悟 对于形如函数y =A sin(ωx +φ),ω≠0时的周期求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期:(1)y =cos 2x ;(2)y =sin ⎝⎛⎭⎫-12x +π3;(3)y =|cos x |. 解 (1)T =2π2=π;(2)T =2π⎪⎪⎪⎪-12=4π;(3)T =2π×12=π.例2 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,求f ⎝⎛⎭⎫5π3的值. 解 ∵f (x )的最小正周期是π, ∴f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-2π=f ⎝⎛⎭⎫-π3 ∵f (x )是R 上的偶函数,∴f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32.∴f ⎝⎛⎭⎫5π3=32. 反思与感悟 解决此类问题关键是综合运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练2 已知函数f (x )对于任意x ∈R 满足条件f (x +3)=1f (x ),且f (1)=12,则f (2 014)等于( ) A.12B .2C .2 013D .2 014 答案 B解析 因为f (x +6)=1f (x +3)=f (x ),所以函数f (x )的周期为6,故f (2 014)=f (4)=1f (1)=2.例3 判断下列函数的奇偶性.(1)f (x )=sin ⎝⎛⎭⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x.解 (1)显然x ∈R ,f (x )=cos 12x ,f (-x )=cos ⎝⎛⎭⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .∴f (x )的定义域关于原点对称. 又∵f (x )=lg(1-sin x )-lg(1+sin x ) ∴f (-x )=lg [1-sin(-x )]-lg [1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ). ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z .∵定义域不关于原点对称, ∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性,要先判断函数的定义域是否关于原点对称,定义域关于原点对称是函数为奇函数或偶函数的前提条件,然后再判断f (-x )与f (x )之间的关系. 跟踪训练3 判断下列函数的奇偶性: (1)f (x )=cos ⎝⎛⎭⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1. 解 (1)f (x )=sin 2x +x 2sin x ,又∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ), ∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12.∴f (x )=0,x =2k π±π3,k ∈Z .∴f (x )既是奇函数又是偶函数.1.函数f (x )=cos(2x +π4)的最小正周期是( )A.π2B .πC .2πD .4π 答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.下列函数中,周期为π2的是( )A .y =sin x2 B .y =sin 2xC .y =cos x4 D .y =cos(-4x )答案 D解析 T =2π|-4|=π2.3.已知f (x )是R 上的奇函数,且f (1)=2,f (x +3)=f (x ),则f (8)=________. 答案 -2解析 ∵f (x +3)=f (x ),∴f (x )是周期函数,3就是它的一个周期,且f (-x )=-f (x ). ∴f (8)=f (2+2×3)=f (2)=f (-1+3) =f (-1)=-f (1)=-2.4.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性. 解 ∵当x ∈R 时,均有sin x +1+sin 2x >0,又∵f (-x )=lg[sin(-x )+1+sin 2(-x )] =lg(1+sin 2x -sin x )=lg(1+sin 2x )-sin 2x1+sin 2x +sin x=lg(sin x +1+sin 2x )-1 =-lg(sin x +1+sin 2x ),∴f (-x )=-f (x ). ∴f (x )为奇函数. [呈重点、现规律]1.求函数的最小正周期的常用方法(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T .如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω.2.判断函数的奇偶性应遵从“定义域优先”原则,即先求定义域,看它是否关于原点对称.一、基础过关1.函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2 B .π C .2π D .4π 答案 D2.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .20 答案 B3.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数答案 B解析 ∵sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ), ∴f (x )是最小正周期为π的偶函数.4.已知f (x )=2sin(ωx +φ)+m ,对任意实数t 都有f (π8+t )=f (π8-t ),且f (π8)=-3,则实数m的值等于( ) A .-1 B .±5C .-5或-1D .5或1 答案 C解析 由f (π8+t )=f (π8-t )知,函数f (x )关于x =π8对称,故sin(ω×π8+φ)=1或sin(ω×π8+φ)=-1.当sin(ω×π8+φ)=1时,由f (π8)=-3知2+m =-3,得m =-5;当sin(ω×π8+φ)=-1时,由f (π8)=-3知-2+m =-3,得m =-1.5.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( ) A .-12 B.12 C .-32 D.32答案 D解析 f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3=-sin ⎝⎛⎭⎫-π3=sin π3=32. 6.函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________. 答案 π 解析 T =2π2=π.7.判断下列函数的奇偶性. (1)f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x ); (2)f (x )=1+sin x +1-sin x ; (3)f (x )=e sin x +e -sin xe sin x -e-sin x .解 (1)x ∈R ,f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x . ∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x =-f (x ).∴该函数是奇函数.(2)对任意x ∈R ,-1≤sin x ≤1, ∴1+sin x ≥0,1-sin x ≥0. ∴f (x )=1+sin x +1-sin x 的定义域为R .∵f (-x )=1+sin (-x )+1-sin (-x )=1-sin x +1+sin x =f (x ),∴该函数是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0, ∴x ∈R 且x ≠k π,k ∈Z . ∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x )e sin (-x )-e -sin (-x )=e -sin x +e sin xe -sin x -e sin x =-f (x ),∴该函数是奇函数.二、能力提升8.下列函数中的奇函数的是( ) A .y =-|sin x | B .y =sin(-|x |) C .y =sin |x | D .y =x sin |x | 答案 D解析 利用定义,显然y =x sin |x |是奇函数.9.若函数f (x )=sin(12x -φ)是偶函数,则φ的一个取值为( )A .2 010πB .-π8C .-π4D .-π2答案 D解析 当φ=-π2时,f (x )=sin(12x +π2)=cos 12x 为偶函数,故选D.10.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 013)=________.答案3解析 ∵f (x )=sin π3x 的周期T =2ππ3=6.∴f (1)+f (2)+f (3)+…+f (2 013)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013) =335⎝⎛⎭⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3) =335×0+f (1)+f (2)+f (3) =sin π3+sin 23π+sin π= 3.11.已知f (x )是以π为周期的偶函数,且x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎡⎦⎤52π,3π时,f (x )的解析式.解 x ∈⎣⎡⎦⎤52π,3π时,3π-x ∈⎣⎡⎦⎤0,π2, ∵x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x . 又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤52π,3π.12.已知函数f (x )=log 12|sin x |. (1)求其定义域和值域;(2)判断其奇偶性;(3)判断其周期性,若是周期函数,求其最小正周期. 解 (1)∵|sin x |>0,∴sin x ≠0,∴x ≠k π,k ∈Z . ∴函数的定义域为{x |x ≠k π,k ∈Z }.∵0<|sin x |≤1,∴log 12|sin x |≥0, ∴函数的值域为{y |y ≥0}.(2)函数的定义域关于原点对称,∵f (-x )=log 12|sin(-x )| =log 12|sin x |=f (x ), ∴函数f (x )是偶函数.(3)∵f (x +π)=log 12|sin(x +π)| =log 12|sin x |=f (x ), ∴函数f (x )是周期函数,且最小正周期是π.三、探究与拓展13.已知函数f (x )对于任意实数x 满足条件f (x +2)=-1f (x )(f (x )≠0). (1)求证:函数f (x )是周期函数.(2)若f (1)=-5,求f (f (5))的值.(1)证明 ∵f (x +2)=-1f (x ), ∴f (x +4)=-1f (x +2)=-1-1f (x )=f (x ), ∴f (x )是周期函数,4就是它的一个周期.(2)解 ∵4是f (x )的一个周期.∴f (5)=f (1)=-5,∴f (f (5))=f (-5)=f (-1)=-1f (-1+2)=-1f (1)=15.。
人教版高中数学-必修4课时作业 1.4.2正弦函数、余弦函数性质(一)

1.4.2 正弦函数、余弦函数的性质(一)课时目标 1.了解周期函数、周期、最小正周期的定义.2.会求f (x )=A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握y =sin x ,y =cos x 的周期性及奇偶性.1.函数的周期性(1)对于函数f (x ),如果存在一个______________,使得当x 取定义域内的____________时,都有____________,那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__________________.2.正弦函数、余弦函数的周期性由sin(x +2k π)=________,cos(x +2k π)=________知y =sin x 与y =cos x 都是______函数,____________________都是它们的周期,且它们的最小正周期都是________.3.正弦函数、余弦函数的奇偶性(1)正弦函数y =sin x 与余弦函数y =cos x 的定义域都是______,定义域关于________对称.(2)由sin(-x )=________知正弦函数y =sin x 是R 上的______函数,它的图象关于______对称.(3)由cos(-x )=________知余弦函数y =cos x 是R 上的______函数,它的图象关于______对称.一、选择题1.函数f (x )=3sin(x 2-π4),x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π 2.函数f (x )=sin(ωx +π6)的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .203.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.下列函数中,不是周期函数的是( )A .y =|cos x |B .y =cos|x |C .y =|sin x |D .y =sin|x |5.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( ) A .-12 B.12 C .-32 D.326.函数y =cos(sin x )的最小正周期是( ) A.π2B .πC .2πD .4π7.函数f (x )=sin(2πx +π4)的最小正周期是________. 8.函数y =sin ⎝⎛⎭⎫ωx +π4的最小正周期是2π3,则ω=______. 9.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是______________.10.关于x 的函数f (x )=sin(x +φ)有以下命题:①对任意的φ,f (x )都是非奇非偶函数;②不存在φ,使f (x )既是奇函数,又是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中的假命题的序号是________.三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x );(2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin xe sin x -e-sin x .12.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52π,3π]时f (x )的解析式.能力提升13.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,则ω的最小值是________.14.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T .如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性应遵从“定义域优先”原则,即先求定义域,看它是否关于原点对称.1.4.2 正弦函数、余弦函数的性质(一)答案知识梳理1.(1)非零常数T 每一个值 f (x +T )=f (x ) (2)最小正周期2.sin x cos x 周期 2k π (k ∈Z 且k ≠0) 2π3.(1)R 原点 (2)-sin x 奇 原点 (3)cos x 偶 y 轴作业设计1.D 2.B3.B [∵sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )的最小正周期为π的偶函数.]4.D [画出y =sin|x |的图象,易知.]5.D [f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3=-sin ⎝⎛⎭⎫-π3=sin π3=32.] 6.B [cos[sin(x +π)]=cos(-sin x )=cos(sin x ). ∴T =π.]7.18.±3解析 2π|ω|=2π3,∴|ω|=3,∴ω=±3. 9.f (x )=sin|x |解析 当x <0时,-x >0,f (-x )=sin(-x )=-sin x ,∵f (-x )=f (x ),∴x <0时,f (x )=-sin x .∴f (x )=sin|x |,x ∈R .10.①④解析 易知②③成立,令φ=π2,f (x )=cos x 是偶函数,①④都不成立. 11.解 (1)x ∈R ,f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x )=-sin 2x ·(-cos x )=sin 2x cos x . ∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x =-f (x ). ∴y =f (x )是奇函数.(2)对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0.∴f (x )=1+sin x +1-sin x 定义域为R . ∵f (-x )=1+sin (-x )+1-sin (-x )=1+sin x +1-sin x =f (x ), ∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x )e sin (-x )-e -sin (-x )=e -sin x +e sin xe -sin x -e sin x=-f (x ), ∴该函数是奇函数.12.解 x ∈[52π,3π]时,3π-x ∈[0,π2], ∵x ∈[0,π2]时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈[52π,3π]. 13.1992π 解析 要使y 在闭区间[0,1]上至少出现50个最小值,则y 在[0,1]上至少含49 34个周期, 即⎩⎨⎧ (49 34)T ≤1T =2πω,解得ω≥1992π. 14.解 ∵sin x +1+sin 2x ≥sin x +1≥0,若两处等号同时取到,则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0. ∵f (-x )=ln(-sin x +1+sin 2x ) =ln(1+sin 2x -sin x ) =ln(1+sin 2x +sin x )-1=-ln(sin x +1+sin 2 x )=-f (x ), ∴f (x )为奇函数.。
新人教A版高中数学【必修4】 1.4.2正弦函数、余弦函数的性质(二)课时作业练习含答案解析

1.4.2正弦函数、余弦函数的性质(二)课时目标 1.掌握y=sin x,y=cos x的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y=sin x,y=cos x的单调性,并能用单调性比较大小.3.会求函数y=Asin(ωx+φ)及y=Acos(ωx+φ)的单调区间.正弦函数、余弦函数的性质:一、选择题1.若y=sin x是减函数,y=cos x是增函数,那么角x在()A.第一象限B.第二象限C.第三象限D.第四象限2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin β B .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定 3.函数y =sin2x +sin x -1的值域为( ) A.[]-1,1 B.⎣⎢⎡⎦⎥⎤-54,-1 C.⎣⎢⎡⎦⎥⎤-54,1 D.⎣⎢⎡⎦⎥⎤-1,54 4.函数y =|sin x|的一个单调增区间是( ) A.⎝ ⎛⎭⎪⎫-π4,π4 B.⎝ ⎛⎭⎪⎫π4,3π4 C.⎝ ⎛⎭⎪⎫π,3π2 D.⎝ ⎛⎭⎪⎫3π2,2π 5.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)二、填空题7.函数y =sin(π+x),x ∈⎣⎢⎡⎦⎥⎤-π2,π的单调增区间是____________.8.函数y =2sin(2x +π3)(-π6≤x≤π6)的值域是________.9.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________. 10.设|x|≤π4,函数f(x)=cos2x +sin x 的最小值是______. 三、解答题11.求下列函数的单调增区间.(1)y =1-sin x2;(2)y =log 12(cos 2x).12.已知函数f(x)=2asin ⎝ ⎛⎭⎪⎫2x -π3+b 的定义域为⎣⎢⎡⎦⎥⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝ ⎛⎭⎪⎫-π2,0,β∈⎝ ⎛⎭⎪⎫π,32π,则( )A .α+β>πB .α+β<πC .α-β≥-32πD .α-β≤-32π14.已知函数f(x)=2sin ωx(ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23B.32 C .2 D .31.求函数y =Asin(ωx +φ)(A>0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2kπ-π2≤ωx +φ≤2kπ+π2 (k ∈Z)解出x 的范围,所得区间即为增区间,由2kπ+π2≤ωx +φ≤2kπ+32π (k ∈Z)解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断. 3.求三角函数值域或最值的常用求法将y 表示成以sin x(或cos x)为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.1.4.2 正弦函数、余弦函数的性质(二) 答案 知识梳理R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2kπ,π2+2kπ](k ∈Z) [π2+2kπ,3π2+2kπ] (k ∈Z) [-π+2kπ,2kπ] (k ∈Z) [2kπ,π+2kπ] (k ∈Z) x =π2+2kπ (k ∈Z)x =-π2+2kπ (k ∈Z) x =2kπ (k ∈Z) x =π+2kπ (k ∈Z) 作业设计 1.C 2.D3.C [y =sin2x +sin x -1=(sin x +12)2-54 当sin x =-12时,ymin =-54; 当sin x =1时,ymax =1.]4.C [由y =|sin x|图象易得函数单调递增区间⎣⎢⎡⎦⎥⎤kπ,kπ+π2,k ∈Z ,当k =1时,得⎝ ⎛⎭⎪⎫π,32π为y =|sin x|的单调递增区间.]5.C [∵sin 168°=sin (180°-12°)=sin 12°, cos 10°=sin (90°-10°)=sin 80°由三角函数线得sin 11°<sin 12°<sin 80°, 即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,故B 不符合.故选A.] 7.⎣⎢⎡⎦⎥⎤π2,π 8.[0,2]解析 ∵-π6≤x≤π6,∴0≤2x +π3≤2π3.∴0≤sin(2x +π3)≤1,∴y ∈[0,2] 9.b<c<a解析 ∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝ ⎛⎭⎪⎫0,π2上递增,且0<π-3<1<π-2<π2,∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2. ∵b<c<a. 10.1-22解析 f(x)=cos2x +sin x =1-sin2x +sin x=-(sin x -12)2+54∵|x|≤π4,∴-22≤sin x≤22.∴当sin x =-22时,f(x)min =1-22.11.解 (1)由2kπ+π2≤x 2≤2kπ+32π,k ∈Z , 得4kπ+π≤x≤4kπ+3π,k ∈Z.∴y =1-sin x2的增区间为[4kπ+π,4kπ+3π] (k ∈Z). (2)由题意得cos 2x>0且y =cos 2x 递减. ∴x 只须满足:2kπ<2x<2kπ+π2,k ∈Z. ∴kπ<x<kπ+π4,k ∈Z.∴y =log 12(cos 2x)的增区间为⎝ ⎛⎭⎪⎫kπ,kπ+π4,k ∈Z.12.解 ∵0≤x≤π2,∴-π3≤2x -x 3≤23π, ∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,易知a≠0. 当a>0时,f(x)max =2a +b =1, f(x)min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a<0时,f(x)max =-3a +b =1, f(x)min =2a +b =-5.由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 13.A [∵β∈⎝ ⎛⎭⎪⎫π,32π,∴π-β∈⎝ ⎛⎭⎪⎫-π2,0,且sin(π-β)=sin β.∵y =sin x 在x ∈⎝ ⎛⎭⎪⎫-π2,0上单调递增,∴sin α>sin β⇔sin α>sin(π-β)⇔α>π-β⇔α+β>π.]14.B [要使函数f(x)=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]。
人教版数学高一必修四练习第1章第11课时正弦函数、余弦函数的性质(一)

第一章 第11课时一、选择题1.下列函数中,最小正周期为π的函数是( ) A .y =sin x2B .y =cos x2C .y =cos xD .y =cos 2x【答案】D【解析】A 中T =4π;B 中T =4π;C 中T =2π.故选D . 2.函数y =4sin -2x +π3+1的最小正周期为( )A .π2B .πC .2πD .4π【答案】B【解析】y =4sin -2x +π3+1的最小正周期为T =2π|-2|=π.故选B .3.函数y =cos k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( )A .10B .11C .12D .13【答案】D【解析】∵函数y =cosk4x +π3(k >0)的最小正周期为T =8πk ,∴8πk≤2,∴k ≥4π.又k ∈Z ,∴k 的最小值为13.故选D .4.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π且当x ∈[0,π2]时,f (x )=sin x ,则f5π3的值为( ) A .-12B .12C .-32D .32【答案】D 【解析】f5π3=f π+2π3=f 2π3=f -π3+π=f -π3=fπ3=sin π3=32.故选D . 二、填空题 5.函数y =2cos π3-ωx 的最小正周期是4π,则ω=________. 【答案】±12【解析】∵T =2π|ω|,∴2π|ω|=4π.∴ω=±12.6.若函数f (x )的定义域为R ,最小正周期为3π2且满足f (x )=⎩⎪⎨⎪⎧cos x -π2≤x <0,sin x 0≤x <π,则f -15π4=________.【答案】22【解析】f -15π4=f-3π2×3+3π4=f 3π4= sin3π4=22. 三、解答题7.已知函数y =12cos x +12|cos x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【解析】(1)y =⎩⎪⎨⎪⎧cos x 2k π-π2≤x ≤2k π+π2,02k π+π2<x <2k π+3π2,(k ∈Z ).其图象如图所示:(2)由图象知,函数的最小正周期是2π.8.设有函数f (x )=a sin kx -π3和函数g (x )=b cos 2kx -π6(a >0,b >0,k >0),若它们的最小正周期之和为3π2且f π2=g π2,fπ4=-3gπ4-1,求这两个函数的解析式.【解析】∵f (x )和g (x )的最小正周期和为3π2,∴2πk +2π2k =3π2,解得k =2. ∵fπ2=gπ2,∴a sin 2×π2-π3=b cos 4×π2-π6,即a =b . 又fπ4=-3gπ4-1,∴a sin π6=-3b cos 5π6-1,即a =3b -2.由⎩⎪⎨⎪⎧a =b ,a =3b -2,解得a =b =1.∴f (x )=sin 2x -π3,g (x )=cos 4x -π6.。
人教A版高中数学必修四正弦、余弦函数的性质1

定义域关于原点对称
cos(-x)= cosx (xR)
y
1
-4 -3
-2
- o
-1
y=cosx (xR) 是偶函数
2
3
4
5 6 x
正弦、余弦函数的性质
四、正弦函数的单调性
y
1
-3 5 -2 3
2
2
-
o
2
-1
2
3
2
2
5 2
x
3
7 2
4
x
2
…
0
…
2
sinx -1
0
1
… 0
…
3 2
-1
y=sinx (xR)
f(x+T)=f(x) 那么函数f(x)就叫做周期函数, 非零常数T叫做这个函数的周期。
如果在周期函数f(x)的所有周期中存 在一个最小的正数,那么这个最小的 正 数就叫做f(x)的最小正周期。
探究新知: 正弦、余弦函数的性质
一、正弦、余弦函数的定义域、值域、周期性
-4 -3
-2
y
1
- o
-1
2
3
课堂小结:
定义域 R 值 域 [ - 1, 1 ] 周期性 T = 2
函数 奇偶性 正弦函数 奇函数 余弦函数 偶函数
单调性(单调区间)
[
2
+2k,
2
+2k],kZ
单调递增
[ +2k, 3 +2k],kZ 单调递减
2
2
[ +2k, 2k],kZ 单调递增 [2k, 2k + ], kZ 单调递减
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第11课时 正弦函数、余弦函数的性质(1)——周期性、奇偶性
课时目标
1.掌握周期函数概念,会求三角函数周期.
2.能判断三角函数的奇偶性.
识记强化
1.周期性: (1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),则函数y =f (x )叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.
(2)y =sin x ,y =cos x 都是周期函数,2k π(k ∈Z ,k ≠0)都是它们的周期,最小正周期是2π.
2.y =A sin(wx +φ),x ∈R 及y =A cos(ωx +φ),x ∈R (其中A 、ω、φ为常数且A ≠0,
ω>0)的周期为T =2πω
. 3.y =sin x ,x ∈R 是奇函数,y =cos x ,x ∈R 是偶函数;sin(-x )=-sin x ,cos(-x )=cos x .
4.反映在图象上,正弦曲线关于原点对称,余弦曲线关于y 轴对称.
课时作业
一、选择题
1.下列说法中正确的是( )
1 A .当x =π2时,sin ⎝ ⎛⎭⎪⎫x +π6≠sin x ,所以π6不是f (x )=sin x 的周期
B .当x =5π12时,sin ⎝ ⎛⎭⎪⎫
x +π6=sin x ,所以π6是f (x )=sin x 的一个周期
C .因为sin(π-x )=sin x ,所以π是y =sin x 的一个周期
D .因为cos ⎝ ⎛⎭⎪⎫π2-x =sin x ,所以π2是y =cos x 的一个周期
答案:A
解析:T 是f (x )的周期,对应f (x )的定义域内任意x 都有f (x +T )=f (x )成立.
2.函数y =-5cos(3x +1)的最小正周期为( )
A.π3 B .3π
C.2π3
D.3π2
答案:C
解析:该函数的最小正周期T =2πω=2π3.
3.函数y =cos ⎝ ⎛⎭⎪⎫
π4-x 3的最小正周期是( )
A .π
B .6π
C .4π D.8π
答案:B
解析:最小正周期公式T =2π|ω|=
2π
|-13|
=6π.
4.下列函数中,最小正周期为π的是( )
A .y =sin x
B .y =cos x。