2019全国中考数学真题分类汇编:整式
中考数学试题分类汇编 整式与分式
中考数学试题分类汇编:整式与分式一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2m 3 3、下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 4、下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=-4、化简:(a +1)2-(a -1)2=( )(A )2 (B )4 (C )4a (D )2a 2+25、下列计算中,正确的是( )A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()a b a b = 6.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。
7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。
8、下列计算正确的是( )A 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+ D 、87y y y =∙ 9、代数式2346x x -+的值为9,则2463x x -+的值为( )A .7 B .18 C .12D .9 10、下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+ C .221a a -- D .21a + 二、填空题1、当x=2,代数式21x -的值为_______.2、因式分解:xy 2–2xy +x = .3、分解因式:2218x -= .4、分解因式:2x -9= 。
2019年全国各地中考数学试题分类汇编(第一期) 专题3 整式与因式分解(含解析)
整式与因式分解一.选择题1. (2019•南京•2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.2. (2019•江苏泰州•3分)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1 B.1 C.2 D.3【分析】将代数式4a2﹣6ab+3b变形后,整体代入可得结论.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.3 (2019•湖南长沙•3分)下列计算正确的是()A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b2【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【解答】解:A.3a与2b不是同类项,故不能合并,故选项A不合题意;B.(a3)2=a6,故选项B符合题意;C.a6÷a3=a3,故选项C不符合题意;D.(a+b)2=a2+2ab+b2,故选项D不合题意.故选:B.【点评】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.4. (2019•湖南怀化•4分)单项式﹣5ab的系数是()A.5 B.﹣5 C.2 D.﹣2【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,可得答案【解答】解:单项式﹣5ab的系数是﹣5,故选:B.【点评】本题考查单项式,注意单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.5. (2019•湖南邵阳•3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m3【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键.6. (2019•湖南湘西州•4分)下列运算中,正确的是()A.2a+3a=5a B.a6÷a3=a2C.(a﹣b)2=a2﹣b2 D.+=【分析】直接利用合并同类项法则以及完全平方公式、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A.2a+3a=5a,故此选项正确;B.a6÷a3=a3,故此选项错误;C.(a﹣b)2=a2﹣2ab+b2 ,故此选项错误;D.+,故此选项错误.故选:A.【点评】此题主要考查了合并同类项以及完全平方公式、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7. (2019•湖南岳阳•3分)下列运算结果正确的是()A.3x﹣2x=1 B.x3÷x2=xC.x3•x2=x6D.x2+y2=(x+y)2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、完全平方公式分别分析得出答案.【解答】解:A.3x﹣2x=x,故此选项错误;B.x3÷x2=x,正确;C.x3•x2=x5,故此选项错误;D.x2+2xy+y2=(x+y)2,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.8.(2019安徽)(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.9. (2019安徽)(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与A.c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.(2019甘肃省天水市)(4分)下列运算正确的是()A. 错误!未找到引用源。
2019年全国中考数学真题分类汇编:整式(含答案)
2019年全国中考数学真题分类汇编:整式一、选择题()的结果是()1. (2019年安徽省)计算3a-aA.a2B.-a2C.a4D.-a4【考点】整式的乘法、同底数幂相乘【解答】D2.(2019年上海市)下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x【考点】整式的加减法、整式的乘除法【解答】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式,故D错误;故选:B.3. (2019年四川省广安市)下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5﹣=5 D.×=【考点】整式的加减法、整式的乘除法、二次根式混合运算【解答】解:A、a2+a3不是同类项不能合并;故A错误;B、3a2•4a3=12a5故B错误;C、5﹣=4,故C错误;D、,故D正确;故选:D.4. (2019年重庆市)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 【考点】代数式求值、有理数的混合运算【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.5. (2019年山东省滨州市)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x3÷x2=x D.(2x2)3=6x6【考点】整式的运算【解答】解:A、x2+x3不能合并,错误;B、x2•x3=x5,错误;C、x3÷x2=x,正确;D、(2x2)3=8x6,错误;故选:C.6. (2019年山东省滨州市)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为()A.4 B.8 C.±4 D.±8【考点】同类项、整式的运算【解答】解:由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.7. (2019年山东省德州市)下列运算正确的是()A. B.C. D.【考点】积的乘方运算、完全平方公式、幂的乘方、平方差公式【解答】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.8. (2019年山东省菏泽市)下列运算正确的是()A.(﹣a3)2=﹣a6B.a2•a3=a6C.a8÷a2=a4D.3a2﹣2a2=a2【考点】整式的加减乘除法、幂的乘方【解答】解:A、原式=a6,不符合题意;B、原式=a5,不符合题意;C、原式=a6,不符合题意;D、原式=a2,符合题意,故选:D.9. (2019年山东省青岛市)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【考点】幂的乘方、积的乘方以及合并同类项【解答】解:原式=4m2•2m3=8m5,故选:A.10. (2019年山东省枣庄市)下列运算,正确的是()A.2x+3y=5xy B.(x﹣3)2=x2﹣9C.(xy2)2=x2y4D.x6÷x3=x2【考点】合并同类项、完全平方公式、积的乘方、同底数幂的乘除运算【解答】解:A、2x+3y,无法计算,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、(xy2)2=x2y4,正确;D、x6÷x3=x3,故此选项错误;故选:C.11. (2019年四川省达州市)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b2【考点】合并同类项、完全平方公式、积的乘方、同底数幂的乘除运算【解答】解:A、a2+a3,无法计算,故此选项错误;B、a8÷a4=a4,故此选项正确;C、(﹣2ab)2=4a2b2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.12. (2019年四川省资阳市)下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.a6÷a3=a2D.(a3)2=a6【考点】同底数幂的乘法和除法、幂的乘方、同底数幂的乘除运算【解答】解:A、a3•a2=a5,错误;B、a3+a2不能合并,错误;C、a6÷a3=a3,错误;D、(a3)2=a6,正确;故选:D.13. (2019年四川省资阳市)4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5b B.2a=3b C.a=3b D.a=2b【考点】整式的混合运算、完全平方公式【解答】解:S1=b(a+b)×2++(a﹣b)2=a2+2b2,S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2,∵S1=2S2,∴a2+2b2=2(2ab﹣b2),整理,得(a﹣2b)2=0,∴a﹣2b=0,∴a=2b.故选:D.14. (2019年广西贺州市)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)2【考点】分解因式【解答】解:4a2﹣1=(2a+1)(2a﹣1),故选:B.15. (2019年江苏省泰州市)若2a-3b=-1,则代数式4a2-6ab+3b的值为()A.-1 B.1 C.2 D.3【考点】分解因式【解答】原式=2 a(2a-3b)+3b=2 a×(-1)+ 3b=-(2 a-3b)= -(-1) =1.故答案为:B.16. (2019年河南省)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【考点】整式的运算、完全平方公式、二次根式的运算【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.17. (2019年湖北省十堰市)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2【考点】整式的运算、完全平方公式【解答】解:A、2a+a=3a,故此选项错误;B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.故选:D.18. (2019年浙江省衢州市)下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a8【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.19. (2019年甘肃省天水市)下列运算正确的是()A.(ab)2=a2b2B.a2+a2=a4C.(a2)3=a5D.a2•a3=a6【考点】合并同类项法则、同底数幂相乘、幂的乘方、【解答】解:A选项,积的乘方:(ab)2=a2b2,正确B选项,合并同类项:a2+a2=2a2,错误C选项,幂的乘方:(a2)3=a6,错误D选项,同底数幂相乘:a2•a3=a5,错误故选:A .20.(2019年甘肃省)计算(﹣2a )2•a 4的结果是( ) A .﹣4a 6B .4a 6C .﹣2a 6D .﹣4a 8【考点】积的乘方运算、同底数幂的乘法运算、 【解答】解:(﹣2a )2•a 4=4a 2•a 4=4a 6. 故选:B .21. (2019年湖北省宜昌市)化简(x ﹣3)2﹣x (x ﹣6)的结果为( ) A .6x ﹣9B .﹣12x +9C .9D .3x +9【考点】完全平方公式、单项式乘以多项式 【解答】解:原式=x 2﹣6x +9﹣x 2+6x =9. 故选:C . 二、填空题1. (2019年天津市)计算x x ⋅5的结果等于 。
全国各地2019年中考数学真题分类解析汇编 03整式与因式分解
整式与因式分解一、选择题1. ( 2018•安徽省,第2题4分)x2•x3=()A. x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. ( 2018•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A. a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. ( 2018•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. ( 2018•福建泉州,第2题3分)下列运算正确的是()5. ( 2018•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()6. ( 2018•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. ( 2018•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. ( 2018•珠海,第3题3分)下列计算中,正确的是()9. (2018四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2018•新疆,第3题5分)下列各式计算正确的是()11.(2019年云南省,第2题3分)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2018•温州,第5题4分)计算:m6•m3的结果()13.(2018•舟山,第6题3分)下列运算正确的是()14.(2018•毕节地区,第3题3分)下列运算正确的是()+=15.(2018•毕节地区,第4题3分)下列因式分解正确的是()A. 2x2﹣2=2(x+1)(x﹣1)B. x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D. x2﹣x+2=x(x﹣1)+216.(2018•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),,17.(2018•武汉,第5题3分)下列代数运算正确的是()18.(2018•襄阳,第2题3分)下列计算正确的是()19.(2018•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.,,)),))2=7+420.(2018•邵阳,第2题3分)下列计算正确的是()21.(2018•邵阳,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()22.(2018•四川自贡,第2题4分)(x4)2等于()y= y(x+1)(x﹣1).( )A.24×5B.77×113C.24×74×114D.26×76×116分析:直接将原式提取因式进而得出A的因子.解:∵A=25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.故选:C.点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键.25.(2018·台湾,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x 2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式.解:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5). 故选D .点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.26.(2018·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可.解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.(2018·云南昆明,第4题3分)下列运算正确的是( )A. 532)(a a =B. 222)(b a b a -=-C. 3553=-D. 3273-=-28.(2018•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x分析:原式利用单项式乘以多项式法则计算即可得到结果.解:原式=6x 3+2x ,故选C]点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.29.(2018·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是【 】A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+-【答案】C .【解析】30. (2018•湘潭,第2题,3分)下列计算正确的是( ) =232. (2019年江苏南京,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. (2018•泰州,第2题,3分)下列运算正确的是()35.(2018•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.36.(2018•滨州,第2题3分)一个代数式的值不能等于零,那么它是()37.(2018•济宁,第2题3分)化简﹣5ab+4ab的结果是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. ( 2018•广东,第11题4分)计算2x3÷x= 2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. ( 2018•珠海,第7题4分)填空:x2﹣4x+3=(x﹣ 2 )2﹣1.3. ( 2018•广西贺州,第13题3分)分解因式:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. ( 2018•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()5.( 2018•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()6.(2019年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2018•温州,第11题5分)分解因式:a2+3a= .8.(2019年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2= .分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2018•武汉,第12题3分)分解因式:a3﹣a= a(a+1)(a﹣1).10.(2018•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是 n(m﹣1)2.11.(2018•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .12.(2018•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2018•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 ab (用a、b的代数式表示).()()(2)解不等式:5(x﹣2)﹣2(x+1)>3.15. (2018•湘潭,第10题,3分)分解因式:ax﹣a= a(x﹣1).a= 3 .= 2m.9= (x﹣3)(4x+3).9= (x﹣3)(4x+3).20.(2018•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y(3x﹣y)2.的算式 a•a..a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.+1三.解答题1. ( 2018•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. ( 2018•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.a=原式=2×(3.(2018•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20180;(2)化简:(a+1)2+2(1﹣a)﹣10+9+1=24.(2018•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)+4﹣4×=25. (2018·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-. 【答案】7. 【解析】。
2019届中考数学试题分类汇编:整式(含解析)
(2019•郴州)下列运算正确的是()(2019•郴州)已知a+b=4,a﹣b=3,则a2﹣b2= 12 .(2019•衡阳)下列运算正确的是()(2019•衡阳)先化简,再求值:(1+a )(1﹣a )+a (a ﹣2),其中.时,原式(2019,娄底)下列运算正确的是( ) A.()347a a = B.632a a a ÷= C.()33326ab a b = D.5510a a a -⋅=-(2019,娄底)先化简,再求值:()()()33482x y x y x y xy xy +---÷,其中1x =-,3y =. (2019•湘西州)下面是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为 1 .(用科学记算器计算或笔算)(2019•湘西州)下列运算正确的是()(2019•益阳)下列运算正确的是()(2019•益阳)因式分解:xy2﹣4x= x(y+2)(y﹣2).(2019•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.a=(2019,永州)定义a bc d为二阶行列式.规定它的运算法则为a bad bcc d=-.那么当1x=时,二阶行列式1101xx+-的值为 .(2019•株洲)下列计算正确的是()(2019•株洲)先化简,再求值:(x﹣1)(x+1)﹣x(x﹣3),其中x=3.2019•巴中)下列计算正确的是()分析:根据合并同类项的法则、同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可解:A、a2与a3,不是同类项不能直接合并,故本选项错误;B、a6÷a2=a4,故本选项错误;C、a2•a3=a5,故本选项错误;D、(a4)3=a12,计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的乘除、合并同类项的知识,解答本题的关键是掌握各部分的运算法则.(2019•达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
2019年中考数学专题复习卷:整式(含解析)
整式一、选择题1.下列运算中,正确的是()A.x3+x3=x6B.x3·x9=x27C.(x2)3=x5D.x x2=x-12.计算结果正确的是()A. B.C.D.3.下列各式能用平方差公式计算的是()A. B.C. D.4.计算(a-3)2的结果是()A. a2+9B. a2+6a+9C. a2-6a+9D. a2-95.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是()A.B.C.D.6.下列四个式子:①4x2y5÷ xy=xy4;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷3x2y=3x6y;④(12m3+8m2-4m)÷(-2m)=-6m2+4m-2.其中正确的有( )A.0个B.1个C.2个D.3个7.下列等式成立的是()A. 2﹣1=﹣2B. (a2)3=a5 C. a6÷a3=a2 D.﹣2(x﹣1)=﹣2x+28.计算(x+1)(x+2)的结果为()A. x2+2B. x2+3x+2C. x2+3x+3D. x2+2x+29.若3×9m×27m=321,则m的值是( )A. 3B. 4C. 5D. 610.下列各式中,结果为x3-2x2y+xy2的是( )A.x(x+y)(x-y)B.x(x2+2xy+y2)C.x(x+y)2D.x(x-y)211.一个长方体的长、宽、高分别为5x-3,4x和2x,则它的体积等于( )A.(5x-3)·4x·2x=20x3-12x2B.·4x·2x=4x2C.(5x-3)·4x·2x=40x3-24x2D.(5x-3)·4x=20x2-12x12.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2分,则他共得到()A. 2分B. 4分 C. 6分 D. 8分二、填空题13.计算:=________.14.计算: =________15.已知,,则的值是________16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为________17.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为________.18.若把代数式化为的形式,其中、为常数,则________19.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为________20.已知a﹣=3,那么a2+ =________.21.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为________.22.若4x2+mx+1是一个完全平方式,则常数m的值是________.三、解答题23. (1)计算(x-2)2-x(x+1)(2)先化简:,再求出当m=-2时原式的值。
全国各地2019年中考数学分类解析(159套)专题3 整式
2019年全国中考数学试题分类解析汇编(159套63专题)专题3:整式一、选择题1. (2019上海市4分)在下列代数式中,次数为3的单项式是【 】A . xy 2B . x 3+y 3C . .x 3yD . .3xy【答案】A 。
【考点】单项式的次数。
【分析】根据单项式的次数定义可知:A 、xy 2的次数为3,符合题意;B 、x 3+y 3不是单项式,不符合题意;C 、x 3y 的次数为4,不符合题意;D 、3xy 的次数为2,不符合题意。
故选A 。
2. (2019重庆市4分)计算()2ab 的结果是【 】 A .2ab B .2a b C .22a b D .2ab【答案】C 。
【考点】幂的乘方与积的乘方。
【分析】根据幂的乘方与积的乘方运算法则直接得出结果:原式=22a b 。
故选C 。
3. (2019安徽省4分)计算32)2(x -的结果是【 】A.52x -B. 68x -C.62x -D.58x -【答案】B 。
【考点】积的乘方和幂的运算【分析】根据积的乘方和幂的运算法则可得: 233236(2)(2)()8x x x -=-=-。
故选B 。
4. (2019安徽省4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是【 】A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元【答案】B 。
【考点】列代数式。
【分析】根据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%)。
故选B 。
5. (2019山西省2分)下列运算正确的是【 】A .B .C . a 2a 4=a 8D . (﹣a 3)2=a 6 【答案】D 。
【考点】算术平方根,实数的运算,同底数幂的乘法,幂的乘方与积的乘方。
全国2019年中考数学真题分类汇编 第2讲 整式及因式分解(无答案)
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……第2讲 整式及因式分解知识点1 列代数式 知识点2 求代数式的值 知识点3 整式的相关概念 知识点4 整式的运算 知识点5 因式分解知识点1 列代数式(2018安徽)6.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则( B ) A.a b )2%1.221(⨯+= B.a b 2%)1.221(+= C.a b 2%)1.221(⨯+= D.a b 2%1.22⨯=(2018上海)(2018大庆)(2018桂林)5.用代数式表示:a 的2倍与3 的和.下列表示正确的是( ) A.2a -3 B.2a +3 C.2(a -3) D.2(a +3) (2018柳州)(2018吉林)知识点2 求代数式的值(2018贵阳)当 x = -1 时,代数式 3x + 1 的值是( B ) (A )-1 (B )-2 (C )-4(D )-4(2018徐州)(2018岳阳)12.已知221a a +=,则23(2)2a a ++的值为 .(2018临沂)16.已知m n mn +=,则()()11m n --= . (2018云南)(2018昆明)(2018资阳)(2018吉林)(2018菏泽)10.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为 . (2018苏州)(2018黄冈)10.若1a a -=,则221a a+值为 . (2018成都)(2018枣庄)15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为c b a ,,,则该三角形的面积为)]2([4122222c b a b a S -+-=已知ABC ∆的三边长分别为1,2,5,则ABC ∆的面积为 1 .(2018重庆A 卷)8.按如图所示的运算程序,能使输出的结果为12的是A.3,3==y xB.2,4-=-=y xC.4,2==y xD.2,4==y x【答案】C【解析】由题可知,代入x 、y 值前需先判断y 的正负,再进行运算方式选择。
2019年中考数学知识点:整式
小编精心整理了《2019年中考数学知识点:整式》,希望您能有所收获,祝考生们考试取得好成绩。
更多相关资讯敬请关注本网的更新!2019年中考数学知识点:整式一、代数式1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。
单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2. 多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3. 多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算1. 同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。
同类项与系数无关,与字母排列的顺序也无关。
2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。
4. 幂的运算:5. 整式的乘法:1) 单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2019全国中考数学真题分类汇编之05:整式
一、选择题1.(2019·泰州)若2a -3b =-1,则代数式4a 2-6ab+3b 的值为( ) A .-1B .1C .2D .3【答案】A【解析】因为2a -3b =-1,4a 2-6ab+3b =2a(2a -3b)+3b =-2a+3b =-(2a -3b)=-1,故选A.2.(2019·滨州)若8m y 与63y n 的和是单项式,则(m+n )3的平方根为( ) A .4B .8C .±4D .±8【答案】D【解析】∵8m y 与63y n 的和是单项式,∴m=3,n=1,∴(m+n )3=43=64,∵(±8)2=64,∴(m+n )3的平方根为±8.故选D .3. (2019·威海) 下列运算正确的是( )A .(a 2)3=a 5B .3a 2+a =3a 3C .a 5÷a 2=a 3(a≠0)D .a (a +1)=a 2+1【答案】C【解析】根据幂的乘方法则,得(a 2)3=a 6,故A 错误;根据同类项的定义及合并同类项法则,知3a 2与a 不是同类项,不能合并, 故B 错误; 根据同底数幂的除法法则,得a 5÷a 2=a 3(a≠0),故C 正确; 根据单项式乘多项式法则,得a (a +1)=a 2+a ,故D 错误.4.(2019·盐城)下列运算正确的是( )【答案】B【解析】,)(,32,,63232213372525a a a a a a a a a a a a a a ===+==÷==⋅⨯-+故选B.5.(2019·青岛)计算223(2)(3)m m m m --+g g 的结果是( )A . 8m 5B . -8m5C . 8 m5D . -4m 5+ 12m 5【答案】A【解析】本题考查整式的乘法运算,根据运算法则进行计算,原式=4m 2·(-m 3+3m 3)= 4m 2·2m 3=8m 5,故选A .6.(2019·山西)下列运算正确的是( )A.2a+3a =5a 2B.(a+2b)2=a 2+4b 2C.a 2·a 3=a 6D.(-ab 2)3=-a 3b 6【答案】D【解析】A.2a+3a =5a,故A 错误;B.(a+2b)2=a 2+2ab+4b 2,故B 错误;C.a 2·a 3=a 5,故C 错误;D.(-ab 2)3=-a 3b 6,正确,故选D.7.(2019·淮安)计算2a a ⋅的结果是( )A.3aB.2aC.3aD.22a 【答案】A 【解析】2a a ⋅321a a==+.8.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x y C .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 。
2019年全国各地中考数学真题分类解析:整式与因式分解
整式与因式分解一、选择题1. ( 2018•安徽省,第2题4分)x2•x3=()A. x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. ( 2018•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A. a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. ( 2018•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. ( 2018•福建泉州,第2题3分)下列运算正确的是()5. ( 2018•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()6. ( 2018•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. ( 2018•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. ( 2018•珠海,第3题3分)下列计算中,正确的是()9. (2018四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2018•新疆,第3题5分)下列各式计算正确的是()11.(2019年云南省,第2题3分)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2018•温州,第5题4分)计算:m6•m3的结果()13.(2018•舟山,第6题3分)下列运算正确的是()14.(2018•毕节地区,第3题3分)下列运算正确的是()+=15.(2018•毕节地区,第4题3分)下列因式分解正确的是()A. 2x2﹣2=2(x+1)(x﹣1)B. x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D. x2﹣x+2=x(x﹣1)+216.(2018•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),,17.(2018•武汉,第5题3分)下列代数运算正确的是()18.(2018•襄阳,第2题3分)下列计算正确的是()19.(2018•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.,,)),))2=7+420.(2018•邵阳,第2题3分)下列计算正确的是()21.(2018•邵阳,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()22.(2018•四川自贡,第2题4分)(x4)2等于()y= y(x+1)(x﹣1).( )A.24×5B.77×113C.24×74×114D.26×76×116分析:直接将原式提取因式进而得出A的因子.解:∵A=25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.故选:C.点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键.25.(2018·台湾,第15题3分)计算多项式10x3+7x2+15x﹣5除以5x2后,得余式为何?( )A.15x-55x2B.2x2+15x﹣5 C.3x﹣1 D.15x﹣5分析:利用多项式除以单项式法则计算,即可确定出余式.解:(10x3+7x2+15x﹣5)÷(5x2)=(2x+75)…(15x﹣5).故选D .点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.26.(2018·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可.解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.(2018·云南昆明,第4题3分)下列运算正确的是( )A. 532)(a a =B. 222)(b a b a -=-C. 3553=-D. 3273-=-28.(2018•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x 分析:原式利用单项式乘以多项式法则计算即可得到结果.解:原式=6x 3+2x ,故选C点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.29.(2018·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是【 】A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+-【答案】C.【解析】30. (2018•湘潭,第2题,3分)下列计算正确的是()=2A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. (2018•泰州,第2题,3分)下列运算正确的是()35.(2018•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.36.(2018•滨州,第2题3分)一个代数式的值不能等于零,那么它是()37.(2018•济宁,第2题3分)化简﹣5ab+4ab的结果是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. ( 2018•广东,第11题4分)计算2x3÷x= 2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. ( 2018•珠海,第7题4分)填空:x2﹣4x+3=(x﹣ 2 )2﹣1.3. ( 2018•广西贺州,第13题3分)分解因式:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. ( 2018•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()5.( 2018•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()6.(2019年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2018•温州,第11题5分)分解因式:a2+3a= .8.(2019年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2= .分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2018•武汉,第12题3分)分解因式:a3﹣a= a(a+1)(a﹣1).10.(2018•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是 n(m﹣1)2.11.(2018•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .12.(2018•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2018•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 ab (用a、b的代数式表示).()()(2)解不等式:5(x﹣2)﹣2(x+1)>3.15. (2018•湘潭,第10题,3分)分解因式:ax﹣a= a(x﹣1).a= 3 .= 2m.9= (x﹣3)(4x+3).9= (x﹣3)(4x+3).20.(2018•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y(3x﹣y)2.的算式 a•a..a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.+1三.解答题1. ( 2018•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n 2=2(2n+1)﹣1.点评: 此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. ( 2018•福建泉州,第19题9分)先化简,再求值:(a+2)2+a (a ﹣4),其中a=.a=原式=2×(3.(2018•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20180;(2)化简:(a+1)2+2(1﹣a )﹣10+9+1=24.(2018•舟山,第17题6分)(1)计算:+()﹣2﹣4cos 45°;(2)化简:(x+2)2﹣x (x ﹣3)+4﹣4×=25. (2018·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-. 【答案】7.【解析】。
全国专卷2019年中考数学真题分类解析汇编 03整式与因式分解
整式与因式分解一、选择题1. (2014•安徽省,第2题4分)x2•x3=()A. x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. (2014•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A. a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. (2014•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. (2014•福建泉州,第2题3分)下列运算正确的是()5. (2014•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()6. (2014•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. (2014•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. (2014•珠海,第3题3分)下列计算中,正确的是()9. (2014四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2014•新疆,第3题5分)下列各式计算正确的是()11.(2014年云南省,第2题3分)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2014•温州,第5题4分)计算:m6•m3的结果()13.(2014•舟山,第6题3分)下列运算正确的是()]14.(2014•毕节地区,第3题3分)下列运算正确的是()+=15.(2014•毕节地区,第4题3分)下列因式分解正确的是()A. 2x2﹣2=2(x+1)(x﹣1)B. x2+2x﹣1=(x﹣1)2 C.x2+1=(x+1)2D. x2﹣x+2=x(x﹣1)+2216.(2014•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),17.(2014•武汉,第5题3分)下列代数运算正确的是()18.(2014•襄阳,第2题3分)下列计算正确的是()19.(2014•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.,=1+)1+,))2).20.(2014•邵阳,第2题3分)下列计算正确的是()21.(2014•邵阳,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()22.(2014•四川自贡,第2题4分)(x4)2等于()23.(2014•四川自贡,第11题4分)分解因式:x2y﹣y= y(x+1)(x﹣1).24.(2014·台湾,第2题3分)若A 为一数,且A =25×76×114,则下列选项中所表示的数,何者是A 的因子?( )A .24×5B .77×113C .24×74×114D .26×76×116分析:直接将原式提取因式进而得出A 的因子. 解:∵A =25×76×114=24×74×114(2×72), ∴24×74×114,是原式的因子. 故选:C .点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键. 25.(2014·台湾,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式. 解:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5).故选D .点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.26.(2014·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可. 解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5) =(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5) =﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1) =﹣(3x 6﹣4x 5)(2x +1). 故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.(2014·云南昆明,第4题3分)下列运算正确的是( ) A . 532)(a a = B . 222)(b a b a -=- C . 3553=- D . 3273-=-28.(2014•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( ) A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x分析:原式利用单项式乘以多项式法则计算即可得到结果. 解:原式=6x 3+2x ,故选C]点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.29.(2014·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是【 】 A .()22x 9- B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+- 【答案】C . 【解析】30. (2014•湘潭,第2题,3分)下列计算正确的是()2+=231. (2014•益阳,第2题,4分)下列式子化简后的结果为x6的是()32. (2014年江苏南京,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. (2014•泰州,第2题,3分)下列运算正确的是()34.(2014•扬州,第2题,3分)若□×3xy=3x2y,则□内应填的单项式是()35.(2014•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.36.(2014•滨州,第2题3分)一个代数式的值不能等于零,那么它是()37.(2014•济宁,第2题3分)化简﹣5ab+4ab的结果是()38.(2014年山东泰安,第2题3分)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. (2014•广东,第11题4分)计算2x3÷x= 2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. (2014•珠海,第7题4分)填空:x2﹣4x+3=(x﹣ 2 )2﹣1.3. (2014•广西贺州,第13题3分)分解因式:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. (2014•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()5.(2014•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()6.(2014年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2014•温州,第11题5分)分解因式:a2+3a= .8.(2014年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2= .分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2014•武汉,第12题3分)分解因式:a3﹣a= a(a+1)(a﹣1).10.(2014•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是n(m﹣1)2.11.(2014•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .12.(2014•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2014•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).()()14.(2014•浙江宁波,第19题6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.15. (2014•湘潭,第10题,3分)分解因式:ax﹣a= a(x﹣1).16. (2014•益阳,第9题,4分)若x2﹣9=(x﹣3)(x+a),则a= 3 .17. (2014•株洲,第9题,3分)计算:2m2•m8= 2m10.18. (2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9= (x﹣3)(4x+3).19.(2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9= (x﹣3)(4x+3).20.(2014•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y (3x﹣y)2.21.(2014•滨州,第14题4分)写出一个运算结果是a6的算式a2•a4.22.(2014•菏泽,第11题3分)分解因式:2x3﹣4x2+2x= 2x(x﹣1)2=__________ .23.(2014•济宁,第11题3分)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.可知道剩余电线的长度.故总长度是(+1三.解答题1. (2014•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. (2014•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.时,原式=2×(3.(2014•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)﹣;4.(2014•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)+4﹣4×=225. (2014·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-. 【答案】7. 【解析】。
2019中考数学试题分类汇编 考点4 整式(含解析)
学习资料专题考点4 整式一.选择题(共28小题)1.(2019•云南)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.2.(2019•湘西州)下列运算中,正确的是()A.a2•a3=a5B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab【分析】根据合并同类项的法则,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、2a﹣a=a,错误;C、(a+b)2=a2+2ab+b2,错误;D、2a+3b=2a+3b,错误;故选:A.3.(2019•河北)若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C.0 D.【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.4.(2019•温州)计算a6•a2的结果是()A.a3B.a4C.a8D.a12【分析】根据同底数幂相乘,底数不变,指数相加进行计算.【解答】解:a6•a2=a8,故选:C.5.(2019•遵义)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.6.(2019•桂林)下列计算正确的是()A.2x﹣x=1 B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=2【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A、2x﹣x=x,错误;B、x(﹣x)=﹣x2,错误;C、(x2)3=x6,正确;D、x2+x=x2+x,错误;故选:C.7.(2019•香坊区)下列计算正确的是()A.2x﹣x=1 B.x2•x3=x6C.(m﹣n)2=m2﹣n2D.(﹣xy3)2=x2y6【分析】根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、2x﹣x=x,错误;B、x2•x3=x5,错误;C、(m﹣n)2=m2﹣2mn+n2,错误;D、(﹣xy3)2=x2y6,正确;故选:D.8.(2019•南京)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a18【分析】根据幂的乘方,即可解答.【解答】解:a3•(a3)2=a9,故选:B.9.(2019•成都)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x5【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.10.(2019•资阳)下列运算正确的是()A.a2+a3=a5B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a6【分析】根据合并同类项的法则,幂的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2+a3=a2+a3,错误;B、a2×a3=a5,错误;C、(a+b)2=a2+2ab+b2,错误;D、(a2)3=a6,正确;故选:D.11.(2019•黔南州)下列运算正确的是()A.3a2﹣2a2=a2B.﹣(2a)2=﹣2a2C.(a+b)2=a2+b2D.﹣2(a﹣1)=﹣2a+1【分析】利用合并同类项对A进行判断;利用积的乘方对B进行判断;利用完全平方公式对C进行判断;利用取括号法则对D进行判断.【解答】解:A、原式=a2,所以A选项正确;B、原式=﹣4a2,所以B选项错误;C、原式=a2+2ab+b2,所以C选项错误;D、原式=﹣2a+2,所以D选项错误.故选:A.12.(2019•威海)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.13.(2019•眉山)下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.x6÷x3=x2D. =2【分析】根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.【解答】解:(x+y)2=x2+2xy+y2,A错误;(﹣xy2)3=﹣x3y6,B错误;x6÷x3=x3,C错误;==2,D正确;故选:D.14.(2019•湘潭)下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x3【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、x2+x3,无法计算,故此选项错误;B、x2•x3=x5,正确;C、(﹣x2)3=﹣x6,故此选项错误;D、x6÷x2=x4,故此选项错误;故选:B.15.(2019•绍兴)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④【分析】直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.16.(2019•滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.17.(2019•柳州)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.18.(2019•广安)下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a3【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.【解答】解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选:C.A.(﹣)2=9 B.20190﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=【分析】直接利用二次根式以及单项式乘以单项式运算法则和实数的计算化简求出即可.【解答】解:A、,错误;B、,错误;C、3a3•2a﹣2=6a(a≠0),正确;D、,错误;故选:C.20.(2019•赣州模拟)下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6【分析】根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.21.(2019•广西)下列运算正确的是()A.a(a+1)=a2+1 B.(a2)3=a5C.3a2+a=4a3 D.a5÷a2=a3【分析】根据单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方的运算法则,分别对每一项进行分析即可得出答案.【解答】解:A、a(a+1)=a2+a,故本选项错误;B、(a2)3=a6,故本选项错误;C、不是同类项不能合并,故本选项错误;D、a5÷a2=a3,故本选项正确.故选:D.A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【分析】根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.【解答】解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.23.(2019•武汉)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【分析】根据多项式的乘法解答即可.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.24.(2019•河北)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【分析】根据完全平方公式进行计算,判断即可.【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.25.(2019•遂宁)下列等式成立的是()A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a2【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案.【解答】解:A、x2+3x2=3x2,故此选项错误;B、0.00028=2.8×10﹣4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(﹣a+b)(﹣a﹣b)=a2﹣b2,故此选项错误;故选:C.26.(2019•河北)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【分析】根据倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则逐一判断可得.【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.27.(2019•宜昌)下列运算正确的是()A.x2+x2=x4B.x3•x2=x6C.2x4÷x2=2x2D.(3x)2=6x2【分析】根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.【解答】解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.28.(2019•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.二.填空题(共11小题)29.(2019•株洲)单项式5mn2的次数 3 .【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:单项式5mn2的次数是:1+2=3.故答案是:3.30.(2019•长春)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.31.(2019•大庆)若2x=5,2y=3,则22x+y= 75 .【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75.故答案为:75.32.(2019•淮安)(a2)3= a6.【分析】直接根据幂的乘方法则运算即可.【解答】解:原式=a6.故答案为a6.33.(2019•苏州)计算:a4÷a= a3.【分析】根据同底数幂的除法解答即可.【解答】解:a4÷a=a3,故答案为:a334.(2019•达州)已知a m=3,a n=2,则a2m﹣n的值为 4.5 .【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m﹣n的值为多少即可.【解答】解:∵a m=3,∴a2m=32=9,∴a2m﹣n===4.5.故答案为:4.5.35.(2019•泰州)计算:x•(﹣2x2)3= ﹣4x7.【分析】直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.【解答】解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.36.(2019•天津)计算2x4•x3的结果等于2x7.【分析】单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.依此即可求解.【解答】解:2x4•x3=2x7.故答案为:2x7.37.(2019•玉林)已知ab=a+b+1,则(a﹣1)(b﹣1)= 2 .【分析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.【解答】解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.38.(2019•安顺)若x2+2(m﹣3)x+16是关于x的完全平方式,则m= ﹣1或7 .【分析】直接利用完全平方公式的定义得出2(m﹣3)=±8,进而求出答案.【解答】解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.39.(2019•金华)化简(x﹣1)(x+1)的结果是x2﹣1 .【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1三.解答题(共11小题)40.(2019•河北)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.41.(2019•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464 ;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34= 1 .【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:log a(M•N)=log a M+log a N和log a=log a M﹣log a N的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【解答】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴==a m﹣n,由对数的定义得m﹣n=log a,又∵m﹣n=log a M﹣log a N,∴log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)log32+log36﹣log34,=log3(2×6÷4),=log33,=1,故答案为:1.42.(2019•咸宁)(1)计算:﹣+|﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).【分析】(1)先化简二次根式、计算立方根、去绝对值符号,再计算加减可得;(2)先计算多项式乘多项式、单项式乘多项式,再合并同类项即可得.【解答】解:(1)原式=2﹣2+2﹣=;(2)原式=a2﹣2a+3a﹣6﹣a2+a=2a﹣6.43.(2019•衢州)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.44.(2019•吉林)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.45.(2019•扬州)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+1846.(2019•宜昌)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=﹣4时,原式=﹣4+4=.47.(2019•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.【分析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.48.(2019•淄博)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【分析】先算平方与乘法,再合并同类项,最后代入计算即可.【解答】解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当时,原式=2(+1)()﹣1=2﹣1=1.49.(2019•邵阳)先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b的值代入计算即可求出值.【解答】解:原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=时,原式=﹣4.50.(2019•乌鲁木齐)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=+1.【分析】先去括号,再合并同类项;最后把x的值代入即可.【解答】解:原式=x2﹣1+4x2﹣4x+1﹣4x2+2x =x2﹣2x,把x=+1代入,得:原式=(+1)2﹣2(+1)=3+2﹣2﹣2=1.。
2019年中考数学试题汇编整式(word版有答案解析)
整式一.选择题(共16 小题)1.( 2019?泰州)若 2a﹣ 3b=﹣ 1,则代数式2的值为()4a ﹣ 6ab+3bA.﹣1 B .1 C. 2 D. 32.( 2019?重庆)按以下图的运算程序,能使输出y 值为 1 的是()A .m=1, n= 1B .m=1, n= 0 C. m= 1, n =2 D. m= 2, n=13.( 2019?台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总合为 10 份意大利面,x 杯饮料, y 份沙拉,则他们点了几份 A 餐?()A .10﹣ xB .10﹣ y C. 10﹣ x+y D. 10﹣ x﹣ y4.( 2019?邢台二模)若m+n= 7, 2n﹣ p= 4,则 m+3n﹣ p=()A.﹣11 B.﹣ 3 C. 3 D. 115.( 2019?宿迁三模)若(4 4 3 2)2x+1)= a0x +a1x +a2x +a3x+a4,则 a0+a2+a4的值为(A .82B .81 C. 42 D. 417 7 6 56.( 2019?南安市一模)已知( 2x﹣ 3)= a0x +a1x +a2x ++a6x+a7,则 a0+a1+a2+ +a7=()A .1 B.﹣ 1 C. 2 D. 07.( 2019?霍邱县二模) 2018 年电影《我不是药神》反应了用药贵的事实,进而惹起了社会的宽泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据检查,某种原价为345 元的药品进行了两次降价,第一次降价15% ,第二次降价的百分率为x,则该药品两次降价后的价钱变成多少元?()A .345( 1﹣15%)( 1﹣x)B. 345(1﹣ 15%)(1﹣ x%)C.D.8.( 2019?重庆模拟)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.依据以下图的计算程序,若输入的值x=﹣ 2,则输出的值为()A.﹣7 B.﹣ 3 C.﹣ 5 D. 59.( 2019?平房区二模)甲、乙两个商家对标价相同的同一件商品进行价风格整,甲的方案是:先抬价8%,再降价8%;乙的方案是:先降价8%,再抬价8%;则甲、乙两个商家对这件商品的最后订价()A .甲比乙多B.乙比甲多C.甲、乙相同多D.没法确立10.( 2019 春 ?南岸区校级月考)依据如图的程序运算:当输入x= 50 时,输出的结果是101;当输入x= 20 时,输出的结果是167.假如当输入x 的值是正整数,输出的结果是A.3 个 B.4 个127,那么知足条件的C.5 个x 的值最多有()D.6 个11.( 2019 春 ?沙坪坝区校级月考)如图是一个计算程序,按这个计算程序的计算规律,若输入的数是9,则输出的数是()A 1 2 3 4 5B 3 6 11 18 27A .50B .63 C. 83 D. 10012.( 2019 春 ?兴化市期中)如图,两个正方形的面积分别为25,9,两暗影部分的面积分别为 a,b( a> b),则(a﹣b)等于()A .4B .9 C. 16 D. 252 213.( 2019?柳州模拟)已知 a +2a= 1,则代数式 3a +6 a﹣ 1 的值为()A .0B .1 C.﹣ 1 D. 214.( 2019 春 ?南京期中)如图,把六张形状大小完整相同的小长方形卡片(如图① )不重叠的放在一个底面为长方形(长为7cm,宽为 6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用暗影表示,则图② 中两块暗影部分的周长和是()A .16cmB .24cm C. 28cm D. 32cm 15.(2019?慈溪市模拟)把四张形状大小完整相同的小长方形卡片(如图① ),分两种不一样形式不重叠的放在一个底面长为m,宽为n 的长方形盒子底部(如图② 、图③ ),盒子底面未被卡片覆盖的部分用暗影表示,设图② 中暗影部分图形的周长为l 1,图③中两个暗影部分图形的周长和为l 2,若,则m, n 知足()A .m=nB .m=n C. m=n D. m=n16.( 2019?鄞州区模拟)如图, 4 张如图 1 的长为a,宽为b( a> b)长方形纸片,按图 2 的方式搁置,暗影部分的面积为S1,空白部分的面积为S2,若S2= 2S1,则a,b 知足()A .a=B .a= 2b C. a= b D. a= 3b 二.填空题(共 4 小题)17.( 2019?河北)如图,商定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即 4+3= 7 则( 1)用含x 的式子表示 m=( 2)当 y=﹣2 时, n 的值为;.2﹣ 2kx+k218.( 2019?海安县一模)已知当 2≤ x≤3 时,对于 x 的多项式 x ﹣ k﹣ 1( k 为大于 2 的常数)有最小值﹣2,则常数 k 的值为.19.( 2019?临海市一模)如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含 x 的代数式表示 y, y=.20.( 2019 春 ?江油市校级月考)当x= 1 时,代数式5 3= 2019,当 x=﹣ 1 时,ax +bx +cx+15 3.ax +bx +cx+1=三.解答题(共 10 小题)21.( 2019?贵阳)如图是一个长为a,宽为 b 的矩形,两个暗影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母 a, b 的代数式表示矩形中空白部分的面积;(2)当 a= 3, b= 2 时,求矩形中空白部分的面积.22.( 2019?长安区三模)以下算式是一类两个两位数相乘的特别计算方法:67× 63= 100 ×( 6 2+6 ) +7× 3= 4221,38× 32=100 ×( 3 2+3 ) +8× 2= 1216.( 1)模仿上边方法计算,求44×46 和 51×59 的值44× 46=;51× 59=;( 2)察看上述算式我们发现:十位数字相同,个位数字和为10 的两个两位数相乘,可以使用上述方法进行计算.假如用a,b 分别表示两个两位数的个位数字, c 表示十位上的数字.请用含a, b, c 的式子表示上边的规律,并说明其正确性;( 3)模仿(1)的计算方法,增补达成3342× 3358 的计算过程:3342×3358 ==.23.( 2019 春 ?沙坪坝区校级月考)已知A、B、C 是数轴上 3 点, O 为原点, A 在 O 右边,C 在 B 右边,线段OA= 2BC= m,点D 在线段 BC 上,对于x 的多项式P 的一次项系数4为 n,BD= nCD ,且 l6x +mx= P?( 2x﹣ 1)+7.( 1)求 m,n 的值:( 2)若OA、 BC 中点连线的长度也为m,求线段OB 的长;( 3)若A、 C 重合,E 是直线OA 上一动点, F 是线段OA 延伸线上随意一点,求OE+ +AE 的最小值.24.( 2019 春 ?鼓楼区校级期中)某菜农用780 元购进某种蔬菜200 千克,假如直接批发给菜商,每千克售价 a 元,假如拉到市场销售,每千克售价 b 元( b> a).已知该蔬菜在市场上均匀每日可售出20 千克,且该菜农每日还需支付15 元其余花费.假定该蔬菜能全部售完.( 1)当 a=,b= 6 时,该菜农批发给菜商和在市场销售获取的销售额分别是多少元?( 2)设 W1和 W 分别表示该菜农批发给菜商和在市场销售的收益,用含a, b 的式子分别表示出W1和 W;( 3)若 b= a+k(0< k< 2),试依据k 的取值范围,议论选择哪一种销售方式较好.25.( 2019 春 ?瑞安市期中)如图,将一张长方形纸板按图中虚线裁剪成9 块,此中有 2 块是边长都为m 厘米的大正方形, 2 块是边长都为n 厘米的小正方形, 5 块是长为m 厘米,宽为 n 厘米的如出一辙的小长方形,且m>n,设图中全部裁剪线(虚线部分)长之和为L 厘米.( 1)L=(试用m,n的代数式表示)( 2)若每块小长方形的面积为10 平方厘米,四个正方形的面积和为58 平方厘米,求L 的值.26.( 2019?河东区一模)某单位要印刷“市民文明出行,恪守交通安全”的宣传资料,甲印刷厂提出:每份资料收 1 元印刷费,另收150 元的制版费;乙印刷厂提出:每份资料收2.5 元印刷费,不收制版费设在同一家印刷厂一次印制数目为x 份( x 为正整数)( 1)依据题意,填写下表一次印制数目51020x 甲印刷厂收费(元)155乙印刷厂收费(元)(Ⅱ)在印刷品数目大于800 份的状况下选哪家印刷厂印制省钱?27.( 2019 春 ?瑶海区期中)书是人类进步的阶梯!为爱惜书一般都将书籍用封皮包好,现有一本如图 1 的数学课本,其长为26cm、宽为、厚为 1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm 封皮睁开后如图(2)所示,求:( 1)则小海宝所用包书纸的面积是多少?(用含x 的代数式表示)(2)当封面和封底各折进去 2cm 时,请帮小海宝计算一下他需要的包装纸起码需要多少平方厘米?28.( 2019 春 ?南关区校级月考)滴滴快车是一种便利的出行工具,计价规则以下表:计费项目里程费时长费远途费单价 1.8 元/公里0.45 元 /分钟0.4 元 /公里注:车资由里程费、时长费、远途费三部分组成,此中里程费按行车的实质里程计算;时长费按行车的实质时间计算;远途费的收取方式为:行车里程10 公里之内(QUOTE 含 10 公里)不收远途费,超出10 公里的,高出部分每公里收0.4 元.(1)若小东乘坐滴滴快车,行车里程为 20 公里,行车时间为 30 分钟,则需付车资元.(2)若小明乘坐滴滴快车,行车里程为 a 公里,行车时间为 b 分钟,则小明对付车资多少元(用含 a、 b 的代数式表示,并化简.)( 3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5 公里与 14.5 公里,假以下车时两人所付车资相同,那么这两辆滴滴快车的行车时间相差多少分钟?29.( 2018 秋 ?蒸湘区校级期末)甲、乙两家商铺销售相同牌子和规格的羽毛球拍和羽毛球,每副球拍订价300 元,每盒羽毛球订价40 元,为庆贺五一节,两家商铺睁开促销活动如下:甲商铺:全部商品9 折优惠;乙商铺:每买 1 副球拍赠予 1 盒羽毛球.某校羽毛球队需要购置 a 副球拍和 b 盒羽毛球( b> a).( 1)按上述的促销方式,该校羽毛球队在甲、乙两家商铺各应花销多少元?试用含a、b 的代数式表示;( 2)当a= 10,b=20 时,试判断分别到甲、乙两家商铺购置球拍和羽毛球,哪家廉价?30.( 2018 秋 ?南安市期末)福建省教育厅日前公布文件,从2019 年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个订价150 元,跳绳每条订价30 元.现有A、 B 两家网店均供给包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按订价的90%付款.已知要购置足球 40 个,跳绳 x 条( x> 40)( 1)若在 A 网店购置,需付款元(用含x 的代数式表示).若在 B 网店购置,需付款元(用含x 的代数式表示).(2)若 x= 100 时,经过计算说明此时在哪家网店购置较为合算?(3)当 x=100 时,你能给出一种更加省钱的购置方案吗?试写出你的购置方法,并计算需付款多少元?参照答案与试题分析一.选择题(共 16 小题)1.【解答】 解: 4a 2﹣6ab+3b ,= 2a (2a ﹣ 3b )+3b ,=﹣ 2a+3b ,=﹣( 2a ﹣ 3b ),= 1,应选: B .2.【解答】 解:当 m = 1,n = 1 时, y = 2m+1 = 2+1= 3,当 m = 1, n =0 时, y =2n ﹣ 1=﹣ 1,当 m = 1, n =2 时, y =2m+1= 3,当 m = 2, n =1 时, y =2n ﹣ 1= 1,应选: D .3.【解答】 解: x 杯饮料则在 B 和 C 餐中点了 x 份意大利面, y 份沙拉则在 C 餐中点了 y 份意大利面,∴点 A 餐为 10﹣ x ;应选: A .4.【解答】 解:∵ m+n = 7, 2n ﹣ p = 4,∴ m+3n ﹣ p =( m+n ) +( 2n ﹣ p )= 7+4= 11,应选: D .45.【解答】 解:令 x =1,得 3=a0+a 1+a 2+a 3 +a 4,①令 x =﹣ 1,得 1= a 0﹣ a 1+a 2 ﹣a 3+a 4, ② ① +② 得: 2( a 0+a 2+a 4)= 82,则 a 0+a 2+a 4= 41,应选: D .6.【解答】 解:当 x =1 时,( 2﹣ 3) 7=a 0+a 1+a 2++a 6+a 7,则 a 0+a 1+a 2++a 7=﹣ 1,应选: B .7.【解答】解:由题意可得,该药品两次降价后的价钱变成:345( 1﹣ 15% )( 1﹣ x),应选: A.28.【解答】解:当 x=﹣ 2, x +1= 4+1= 5.应选: D.9.【解答】解:甲:把本来的价钱看作单位“1”,1×( 1﹣ 8%)×( 1+8% )=92%×=99.36%;乙:把本来的价钱看作单位“ 1”,1×( 1+8%)×( 1﹣ 8%)=92%×=99.36%;则甲、乙两个商家对这件商品的最后订价相同多.应选: C.10.【解答】解:依据题意得:2x+1= 127,解得: x= 63;2x+1= 63,解得: x= 31;2x+1= 31,解得: x= 15;2x+1= 15,解得: x= 7;2x+1= 7,解得: x= 3;2x+1= 3,解得: x= 1,则知足条件x 的值有 6 个,应选: D.211.【解答】解:若输入的数是9,则输出的数为9 +2= 81+2 = 83,应选: C.12.【解答】解:设空白出长方形的面积为x,依据题意得:a+x= 25, b+x= 9,两式相减得:a﹣ b= 16,应选: C.213.【解答】解:当 a +2 a= 1 时,23a +6 a﹣ 1=3( a 2+2a)﹣ 1=3×1﹣1=3﹣ 1=2应选: D.14.【解答】解:设小长方形的长为xcm,宽为 ycm(x> y),则依据题意得: 3y+x= 7,暗影部分周长和为:2( 6﹣ 3y+6﹣ x)+2× 7=12+2(﹣ 3y﹣ x)+12+14=38+2×(﹣ 7)=24(cm)应选: B.15.【解答】解:图②中经过平移,可将暗影部分的周长变换为长为m,宽为 n 的长方形的周长,即图②中暗影部分的图形的周长l 1为 2m+2n图③中,设小长形卡片的宽为x,长为 y,则 y+2x= m所求的两个长方形的周长之各为:2m+2 (n﹣ y) +2( n﹣ 2x),整理得, 2m+4n﹣ 2m= 4n即 l 2为 4n∵,∴ 2m+2 n=× 4n整理得,应选: C .16.【解答】 解:由图形可知,,,∵ S 2= 2S 1,∴ a 222),+2b = 2( 2ab ﹣ b ∴ a2﹣ 4ab+4b 2= 0, 即( a ﹣ 2b ) 2= 0,∴ a = 2b , 应选: B .二.填空题(共 4 小题)17.【解答】 解:( 1)依据商定的方法可得: m =x+2x = 3x ;故答案为: 3x ;( 2)依据商定的方法即可求出nx+2 x+2x+3= m+n = y .当 y =﹣ 2 时, 5x+3=﹣ 2.解得 x =﹣ 1.∴ n = 2x+3=﹣ 2+3= 1.故答案为: 1.22 2﹣ k ﹣ 1( k > 2), 18.【解答】 解: x ﹣ 2kx+k ﹣ k ﹣1=( x ﹣ k )① 当 2< k ≤ 3 时,当 x = k 时取最小值,∴﹣k ﹣ 1=﹣ 2,∴ k = 2,不合题意;② 当 k >3 时,当 x = 3 时取最小值,∴ 9﹣ 6k+k 2﹣ k ﹣ 1=﹣ 2,∴ k = 4 或,∵ k> 3,∴ k= 4;综上, k= 4;故答案为: 4.19.【解答】解:依据题意得:第一行第三列,第二行第二列,第三行第一列的三个数之和为:第一行第一列的数为:x+y+7﹣ x﹣ 4=y+3,第一行第二列的数为:x+y+7﹣( y+3)﹣ 7= x﹣3,第三行第二列的数为:x+y+7﹣( x﹣ 3)﹣ x= 10﹣x+y,第三行的三个数之和为:y+( 10﹣ x+y) +4= x+y+7,整理得: y= 2x﹣ 7,故答案为: 2x﹣7.x+y+7,5 320.【解答】解:把 x= 1 代入 ax +bx +cx+1 得a+b+c+1= 2019,∴a+b+c= 2018,5 3再把 x=﹣ 1 代入 ax +bx +cx+1 得﹣a﹣ b﹣ c+1=﹣( a+b+c) +1=﹣ 2018+1 =﹣ 2017.故答案为:﹣ 2017三.解答题(共10 小题)21.【解答】解:( 1) S= ab﹣a﹣ b+1;(2)当 a= 3, b= 2 时, S= 6﹣ 3﹣ 2+1= 2;22.【解答】解:( 1)由题意可得,244× 46= 100×( 4 +4 ) +4× 6= 2024,251× 59= 100×( 5 +5 ) +1× 9= 3009,2 2) +1× 9= 3009;故答案为: 100×( 4 +4)+4× 6= 2024; 100×( 5 +52( 2)(10c+a)×( 10c+b)= 100( c +c)+ab,证明以下:( 10c+a)×( 10c+b)=100c 2+10bc+10ac+ab=100c 2+10c( b+a)+ab= 100c 2+100c+ab= 100( c 2+c ) +ab ;( 3) 3342× 3358= 3342×( 3348+10)= 3342× 3348+334202= 100×( 334 +334) +2×8+33420= 11222436故答案为: 100×( 3342+334) +2× 8+33420; 11222436.423.【解答】 解:( 1)∵ l6x +mx =P?( 2x ﹣1) +7,设 P = 8x 3+ax 2+nx+b ,∴ 16x 43232= l6x 4+2ax +2nx +2bx ﹣ 8x ﹣ ax ﹣ nx ﹣ b+7 +mx ,∴ a = 4, n = 2,2b ﹣ n = m , b = 7,∴ m = 12, n = 2;( 2)∵ m =12,∴ OA = 12, BC = 6,∵ O 为原点, A 在O 右边, ∴ A 表示的数是 12,∴ OA 的中点表示的是 6,∵ OA 、 BC 中点连线的长度也为 m ,∴ BC 中点在数轴上表示的数是18 或﹣ 6,∴ B 点表示的数是 15 或﹣ 9,∴ BO = 15 或 BO = 9;( 3)∵ BC = 6, n = 2, BD = nCD , A 、 C 重合,∴ B 点表示的数是 6,D 点表示的数是 10,设 E 点表示的数是 a ,F 点表示的数是 b ,OE+ +AE = |a|++|12﹣ a|= |a|+|12﹣ a|+,当 a <0 时, OE+ +AE =17﹣> 17;当 0≤a ≤ 10 时, OE++AE = 17﹣ ,∴ 12≤ OE+ +AE ≤ 17;当 10<a< 12 时, OE+ +AE= 7+ ,∴ 12<OE+ +AE< 13;当 a≥12 时, OE+ +AE=﹣ 17≥ 13;∴ 12≤OE+ +AE,∴ OE+ +AE 的最小值是12;24.【解答】解:由题意,可得直接批发商的销售额为200a 元,拉到市场的销售额为200b 元( 1)当 a= 4.5 时,直接批发商的销售额为:200×= 900 元,当 b=6 时,拉到市场的销售额为:200× 6=1200 元( 2)由题意,进菜的成本为=3.9 元直接批发商的收益为:W1= 200( a﹣)= 200a﹣ 780拉到市场的收益为:W= 200( b﹣)﹣×15= 200b﹣ 930(3)由题意,当 b= a+k( 0< k< 2)时, W= 200( a+k)﹣ 930= 200a+200k﹣ 930则 W﹣ W1= 200a+200 k﹣930﹣( 200a﹣ 780)= 200k﹣ 150∴ ①当< k< 2 时, W> W1,选择拉到市场销售比直接给批发商好;②当 k= 0.75 时, W=W1,两种销售方式都能够;③当 0< k< 0.75 时, W< W1,选择直接给批发商比拉到市场销售好;25.【解答】解:( 1) L = 6m+6 n,故答案为: 6m+6n;2 2(2)依题意得, 2m +2n = 58,mn= 10,2 2∴m +n = 29,∵( m+n)2 2 2 =m +2mn+n ,∴( m+n)2=29+20 =49,∵m+n> 0,∴m+n= 7,∴图中全部裁剪线(虚线部分)长之和为42cm.26.【解答】解:( 1)甲每份资料收1 元印刷费,另收 150 元的制版费;故答案为 160, 170, 150+x;乙每份资料收 2.5 元印刷费,故答案为25, 50,;( 2)对甲来说,印刷大于800 份时花销大于150+800 ,即花销大于950 元;对乙来说,印刷大于800 份时花销大于× 800,即花销大于2000 元;故去甲更省钱;27.【解答】解:( 1)小海宝所用包书纸的面积是:(× 2+1+2 x)( 26+2 x)=( 38+2x)( 26+2x)2 2=4x +128x+988 ( cm );(2)当 x= 2cm 时,2 2S= 4×2 +128 ×2+988 = 1260( cm ).答:需要的包装纸起码是1260 平方厘米.28.【解答】解:( 1)×××( 20﹣ 10)=(元),故答案为:;(2)当 a≤ 10 时,小明对付费( 1.8a+0.45 b)元;当 a>10 时,小明对付费(a﹣ 10)=(﹣ 4)元;( 3)小王与小张乘坐滴滴快车分别为 a 分钟、 b 分钟,×=××(﹣ 10)整理,得﹣=,∴a﹣ b= 24所以,这两辆滴滴快车的行车时间相差24 分钟.29.【解答】解:( 1)由题意可得,在甲商铺购置的花费为:(300a+40b)× =(270a+36b)(元),在乙商铺购置的花费为:300a+40 (b﹣ a)=( 260a+40b)(元);(2)当 a= 10,b= 20 时,在甲商铺购置的花费为:270× 10+36× 20= 3420(元),在乙商铺购置的花费为:260× 10+40× 20= 3400(元),∵3420> 3400 ,∴当 a= 10, b=20 时,到乙商铺购置球拍和羽毛球廉价.30.【解答】解:依题意( 1)A 店购置可列式:40× 150+( x﹣ 40)× 30= 4800+30x在网店 B 购置可列式:(40× 150+30x)×= 5400+27x故答案为: 4800+30x; 5400+27x(2)当 x= 100 时在 A 网店购置需付款: 4800+30 x=4800+30× 100= 7800 元在 B 网店购置需付款: 5400+27 x=5400+27× 100= 8100 元∵7800< 8100∴当 x=100 时,应选择在 A 网店购置合算.(3)由( 2)可知,当 x=100 时,在 A 网店付款 7800 元,在 B 网店付款 8100 元,在 A网店购置 40 个足球配送 40 个跳绳,再在 B 网店购置 60 个跳绳共计需付款:150× 40+30× 60× 90%= 7620∵7620< 7800 <8100∴省钱的购置方案是:在 A 网店购置40 个足球配送40 个跳绳,再在 B 网店购置60 个跳绳,付款7620 元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2019·泰州)若2a -3b =-1,则代数式4a 2-6ab+3b 的值为( ) A .-1B .1C .2D .3【答案】A【解析】因为2a -3b =-1,4a 2-6ab+3b =2a(2a -3b)+3b =-2a+3b =-(2a -3b)=-1,故选A.2.(2019·滨州)若8x my 与6x 3y n的和是单项式,则(m+n )3的平方根为( ) A .4B .8C .±4D .±8【答案】D【解析】∵8x m y 与6x 3y n 的和是单项式,∴m=3,n=1,∴(m+n )3=43=64,∵(±8)2=64,∴(m+n )3的平方根为±8.故选D .3. (2019·威海) 下列运算正确的是( )A .(a 2)3=a 5B .3a 2+a =3a 3C .a 5÷a 2=a 3(a ≠0)D .a (a +1)=a 2+1【答案】C【解析】根据幂的乘方法则,得(a 2)3=a 6,故A 错误;根据同类项的定义及合并同类项法则,知3a 2与a 不是同类项,不能合并, 故B 错误; 根据同底数幂的除法法则,得a 5÷a 2=a 3(a ≠0),故C 正确; 根据单项式乘多项式法则,得a (a +1)=a 2+a ,故D 错误.4.(2019·盐城)下列运算正确的是( )【答案】B【解析】,)(,32,,63232213372525a a a a a a a a a a a a a a ===+==÷==⋅⨯-+故选B.5.(2019·青岛)计算223(2)(3)m m m m --+的结果是( )A . 8m 5B . -8m5C . 8 m5D . -4m 5+ 12m 5【答案】A【解析】本题考查整式的乘法运算,根据运算法则进行计算,原式=4m 2·(-m 3+3m 3)= 4m 2·2m 3=8m 5,故选A .6.(2019·山西)下列运算正确的是( )【解析】A.2a+3a =5a,故A 错误;B.(a+2b)2=a 2+2ab+4b 2,故B 错误;C.a 2·a 3=a 5,故C 错误;D.(-ab 2)3=-a 3b 6,正确,故选D.7.(2019·淮安)计算2a a ⋅的结果是( )A.3aB.2aC.3aD.22a 【答案】A 【解析】2a a ⋅321a a==+.8.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52x B .323x y C .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 。
9.(2019·长沙)下列计算正确的是【 】A .3a+2b=5abB .(a 3)2=a 6C .a 6÷a 3=a 2D .(a+b)2=a 2+b 2【答案】B【解析】根据整式的运算法则进行判断,对于选项A ,3a 与2b 不是同类项,不能合并同类项,则是错误的;对于选项B ,根据幂的乘方法则(a 3)2=a 6,则是正确的;对于选项C ,根据同底数幂的除法法则,底数不变,指数相减,则是错误的;对于选项D ,(a+b)2表示a 与b 和的平方,其结果为a 2+2ab+b 2,则是错误的.故本题选:B . 10.(2019·娄底)下列计算正确的是( )A. ()328-= B . ()326a a = C . 236a a a = D . 2422x x x -=【答案】B【解析】A 、根据乘方的定义()()()()322228-=---=-,该选项不正确;()32236a a a ⨯==C 、根据同底数的幂相乘,底数不变,指数相加得23235a a a a +==,该选项不正确;D 、根据整式加减的法则,只有同类项才能合并,故2422x x x -=不正确.11.(2019·衡阳)下列各式中,计算正确的是( )A. 8a -3b =5abB. (a 2)3=a 5C. a 8÷a 4=a 2D. a 2·a =a 3【答案】D .【解析】故选D .10.(2019·武汉)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】设y 1=2+22+...+2100,y 2=2+22+...+249,∴250+251+252+...+299+2100=y 1-y 2=(2+22+ (2100)-(2+22+…+249)=(2101-2)-(250-2)=2101-2-250+2=2101-250=250(251-1)=250(2×250-1).∵250=a ,∴原式=a (2a -1)=2a 2-a .故选C .12.(2019·黄冈)下列运算正确的是( )A.a ·a 2=a 2B.5a ·5b =5abC.a 5÷a 3=a 2D.2a +3b =5ab【答案】C【解析】选项A ,由同底数幂的法则可知a ·a 2=a 3,选项A 错误;选项B , 5a ·5b =25ab ,选项B 错误;选项C 由同底数幂的除法法则可知是正确的;选项D 不是同类项,不能合并. 13.(2019·安徽)计算a 3·(﹣a)的结果是A. a 2B. ﹣a 2C. a 4D. ﹣a 4 【答案】D把系数、同底数幂分别相乘,作为积的因式,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 原式=-a 3·a =-a 3+1=-a 4. 故选D . 14. (2019·怀化) 单项式-5ab 的系数是( ) A.5 B.-5 C.2 D.-2【答案】B.【解析】单项式-5ab 的系数是-5. 故选B .15. (2019·岳阳)下列运算结果正确的是( )A .3x -2x =1B .x 3÷x 2=xC .x 3·x 2=x 6D .x 2+y 2=(x +y )2 【答案】B【解析】选项A :3x -2x =x ;选项B 正确;选项C :x3·x2=x5;选项D :x2+y2=(x +y)2-2xy ,故选B .16. (2019·滨州)下列计算正确的是( ) A .x 2+x 3=x 5 B .x 2·x 3=x 6 C .x 3÷x 2=x D .(2x 2)3=6x 6【答案】C【解析】A 中,两项不是同类项,不能合并,故A 错误;B 中,x2·x3=x2+3=x5,故B 错误;C 中,x 3÷x 2=x 3-2=x ,故C 正确;D 中,(2x 2)3=23·(x 2)3=8x 6,故D 错误.故选C .17. (2019·聊城) 下列计算正确的是 ( )A.a 6+a 6=2a 12B.2-2÷20×23=32C.()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭D.()531220a a a a ⋅-⋅=-【答案】D【解析】A.a6+a6=2a6,故A 错误;B.2-2÷20×23=2,故B 错误; C.()32275122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭ ,故C 错误;D.()53122018. (2019·泰安)下列运算正确的是 ( ) A.a 6÷a 3=a 3B.a 4·a 2=a 8C.(2a 2)3=6a 6D.a 2+a 2=a 4【答案】A【解析】A.正确;B.a 4·a 2=a 6,故B 错误;C.(2a 2)3=23(a 2)3=8a 6,故C 错误;D.a 2+a 2=2a 2,故D 错误;故选A.19.(2019·潍坊)下列运算正确的是( )A .3a ×2a =6aB .a 8÷a 4=a 2C .-3(a -1)=3-3aD .32911)39a a =( 【答案】C【解析】选项A :3a ×2a=6a 2;选项B :a 8÷a 4=a 4;选项C 正确;选项D :32611)39a a =(,故选C .20. (2019·枣庄) 下列运算,正确的是 ( ) A.2x+3y =5xyB.(x -3)2=x 2-9C.(xy 2)2=x 2y 4D.x 6÷x 3=x 2【答案】C【解析】A.不是同类项,不能合并;B.(x -3)2=x 2-6x+9,故B 错误;C.正确;D.x 6÷x 3=x 3,故D 错误;故选C.21. (2019·枣庄)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是【答案】D【解析】根据图中规律可发现,每行的点数和均为10,故选D.22.1.(2019·巴中) 下列四个算式中,正确的是( ) A.a+a =2aB.a 5÷a 4=2aC.(a 5)4=a 9D.a 5-a 4=a【答案】B【解析】A.合并同类项,正确;B.a 5÷a 4=a,故B 错误;C.(a 5)4=a 20,故C 错误;D.不是同类项,不能计算,故D 错误;故选A.23. (2019·达州)下列计算正确的是( )A.532a a a =+B.448a a a =÷C.2224-2-b a ab =)( D.222b a b a +=+)( 【答案】B【解析】A 选项2a 和3a 不是同类项不能合并,错误;B 选项正确;C 选项22242-b a ab =)(,错误;D 选项错误.24. (2019·凉山)下列各式正确的是( )A. 2a 2+ 3a 2=5a 4B.a 2•a = a 3C .( a 2)3= a 5D . a a =2【答案】B【解析】∵222235a a a +=;23a a a ⋅=;236()a a =a ,故选B.25. (2019·眉山)下列运算正确的是A . 2x 2y+3xy=5x 3y 2B . (-2ab 2)3=-6a 3b 6C .(3a+b )2=9a 2+b 2D . (3a+b )(3a-b )=9a 2-b 2【答案】D【解析】解:A 、2x2y 和3xy ,不是同类项,不能合并,故A 选项运算错误;B 、(-2ab 2)3=-8a 3b 6,故B 选项运算错误;C 、(3a+b )2=9a 2+6ab+b 2,故C 选项运算错误;D 、(3a+b )(3a-b )=9a 2-b 2,故D 选项运算正确,故选D.A.3a2-2a2=a2B.-(2a)2=-2a2C.(a-b)2=a2-b2D.-2(a-1)=-2a+1【答案】A【解析】如下表,故选A.27、(2019·攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时。