3.1.1 变化率问题
3.1.1变化率问题
由例题二可知, 求y =f ( x)在 x,x x 上的平均变化率的一般步骤为:
第一步:先求y f ( x x) f ( x);
y f ( x x) f ( x) 第二步:计算 . x x
注意:例题二计算平均变化率的方法, 在为后一节定义导数做考:
这一节我们学习了求y =f ( x)在 x,x x 上 的平均变化率。假设x 0,那么这个
x,x x x,此时的这个平均变化率
y =f ( x)在x处的瞬时变化率。
上面这个说法对不对,请发表一下你的看法!
解:这位车手在前三秒钟内赛车车速的平均变化 率是 120 0 40 m s
30
赛车车速度的平均变化率=
速度的增量 时间的增量
问题二:回忆一下吹气球的过程,可以发现,随 着气球内空气容量的增加,气球的半径增加的越 来越慢。请问:当空气容量V从0增加到1L时, 气球半径的平均变化率?(半径r的单位是:dm)
y f ( x2 ) f ( x1 ) = x x2 x1
表示什么?
y f ( x2 ) f ( x1 ) 平均变化率 = 表示 x x2 x1 连接两点的线段所在直线的斜率。
例题二:求函数y x2 x在区间[3,3 x]上的平均变化率。
解: y f (3 x) f (3) (3 x) 2 32
解:当空气容量V从0增加到1L时,气球半径的 平均变化率为 r (1) r (0) 0.62 dm
1 0 L
半径的增量 气球半径的平均变化率= 体积的增量
定义: 如果上述两个问题中的函数关系用 y f ( x) 表示, 那么问题中的变化率可用式子 f ( x2 ) f ( x1 ) x2 x1 表示,我们把这个式子称为函数 y f ( x) 从 x1 到 x 2 的平均变化率。 注意:习惯上令增量y f ( x2 ) f ( x1 ) ,x x2 x1 于是, 平均变化率可以表示为 y x
高中数学选修1-1精品课件2:3.1.1 变化率问题
[点评] 瞬时速度是平均速度在 Δt→0 时的极限值.因此, 要求瞬时速度,应先求出平均速度.
(2012~2013 学年度山东潍坊高二期末测试)已知物体的运
动方程是 S=-4t2+16t(S 的单位为 m;t 的单位为 s),则该物
体在 t=2s 时的瞬时速度为( )
A.3m/s
B.2m/s
C.1m/s
题目类型二、瞬时变化率
[例 2] 以初速度 v0(v0>0)垂直上抛的物体,t 秒时的高 度为 s(t)=v0t-12gt2,求物体在时刻 t0 处的瞬时速度.
[解析] ∵Δs=v0(t0+Δt)-12g(t0+Δt)2-(v0t0-12gt02)=(v0 -gt0)Δt-12g(Δt)2,
∴ΔΔst=v0-gt0-12gΔt,当 Δt→0 时,ΔΔst→v0-gt0. 故物体在时刻 t0 的瞬时速度为 v0-gt0.
题目类型一 平均变化率
[例 1] 求函数 y=x3 在 x0 到 x0+Δx 之间的平均变化率,并 计算当 x0=1,Δx=12时平均变化率的值.
[分析] 直接利用概念求平均变化率,先求出表达式,再 直接代入数据就可以得出相应的平均变化率.
[解析] 当自变量从 x0 变化到 x0+Δx 时,函数的平均变化 率为fx0Δ+xΔx=x0+ΔΔxx3-x03=3x20+3x0Δx+(Δx)2.
3.瞬时变化率、瞬时速度
物体在某一时刻的速度称为瞬时速度.
4.一般地,如果物体的运动规律是 s=s(t),那么物体在
时刻 t 的瞬时速度 v,就是物体在 t 到 t+Δt 这段时间内,当 Δt→0
时平均速度的极限,即 v=lim Δt→0
ΔΔst为 t 时刻的瞬时速度.
1.在高台跳水运动中,运动员在 t1≤t≤t2 这段时间里的位
3.1.1变化率问题
极限(数学术语)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。
此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
极限思想编辑简介极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计极限思想的思维功能极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。
极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。
借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从“直线构成形”认识“曲线构成形”,从量变去认识质变,从近似认识精确。
变化率 问题
(x1, f(x1)) A
x O x1 x2
问题2
这是某市2007年3月18日至4月20日每天最高气温 的变化图,
T (℃ )
C (34, 33.4) 30
20
10
B (32, 18.6)
A (1, 3.5) 10 20 30 34 t(d)
2 0 2
t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
例题讲解
小远从出生到第12个月的体重变化如图所示, 试分别计算小远从出生到第3个月与第6个月到 第12个月体重的平均变化率。 比较这两个时间段小远体重变化的快慢情况。
W(kg)
11 8(月)
例2 在高台跳水运动中,运动
员相对于水面的高度h(单位:
m)与起跳后的时间t(单位:s)
“形” 曲线“陡峭”程度
2.平均变化率的几何意义. 曲线上A、B两点连线的斜率。
“数” 平均变化率
已知函数 f ( x) x 2 ,分别计算 f ( x) 在下列区 间上的平均变化率:
(1)[1,3];
(2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。
4
3 2.1
2.001
34 t(天)
(1)t=32到t=34这两天的温差达到了多少?
(2)t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
定义:
f ( x2 ) - f ( x1 ) 平均变化率: 式子 x2 - x1
称为函数 f (x)从x1到 x2的平均变化率.
令△x = x2 – x1 , △ y = f (x2) – f (x1) ,则
存在函数关系 h(t)=-4.9t2+6.5t+10. 分别计算运动员在0到0.5秒时 间段,1秒到2秒时间段,以及 65 时间段内的平均 0到 秒 49 速度. (1)运动员在这段时间里是静止的吗?
人教A版高中数学选修1-1 第三章3.1.1 变化率问题教学课件 (共21张PPT)
们的意义。
lim f关’(键2)是求出: x0
ff
'
((22);它说xf)明'(6在f)第(22)(h)附近,原
度油下温x降度;大在约第以63(h0C)/附H的近速,
lim f ’(6)
f (6 原油x)温度f 大(6约) 以5 0C/H的
x0
x 速度上升。
课堂小结
1.通过本节课的学习你有哪些收获? 平均变化率、瞬时变化率(即导数) 体会了函数思想、逼近思想方法、概念形成 过程中的抽象概括
t0
t
思考
函数f (x)在x x0处的瞬时变化率怎样表 示?
lim f (x0 x) f (x0般地,函数y f (x)在x x0处的瞬时变化率是
lim y lim f (x0 x) f (x0 )
x x0
x0
x
我们称它为函数 y f (x)在x x0处的导数;
率。
解:y 5(2 x)2 6 (5 22 6) 20x 5x2
则平均变化率为:y 20 5x x
探 究
计算:运动员在 0 t 65
49
这段时间内的平均速度,
h(
65
)
并思考下面的问题:
h(0)
P73
v
49 65 0
0 (1)运动员在这段
时间里是静止的吗?
49
(2)你认为用平均速度描述运动员的运动状态有
t 0时,在2,2+t这段时间内
v
h(2
t)
h(2)
4.9t 2
13.1t
(2 t) 2
t
4.9t 13.1
瞬时速度
我们用 lim h(2 t) h(2) 13.1
人教版高中数学选修1-1《3.1.1变化率问题》
求平均变化 率的步骤
平均变化率 的几何意义
表示函数图象上两点A(x1,f(x1)), B(x2,f(x2))连线(割线)的斜率。
谢谢
高中数学人教A版选修1-1
3.1 变化率与导数
3.1.1 变化率问题
整体介绍
引 言
“人类精神的 分
莱布尼茨
微积分的创立与自然科学中四类问题的处理直接相关: ①已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与 加速度;已知物体的加速度作为时间的函数,求速度与路程。 ②求曲线的切线。
3
情境二 高台跳水
在高台跳水运动中, 运动员相对于水面的高 度 h (单位:m)与起跳后 的时间 t (单位:s) 存在 函数关系
h(t ) 4.9t 2 6.5t 10
思考:如何描述其运动状态呢?
吴敏霞跳水视频
h(t ) 4.9t 2 6.5t 10
如果用运动员在某段时间内的平均速度 v 描述其运动状态, 那么:
x1
x2
求平均变化率的主要步骤
反思与感悟
(1)先计算函数值的改变量Δy=f(x2)-f(x1);
(2)再计算自变量的改变量Δx=x2-x1;
y f ( x2 ) f ( x1 ) (3)计算平均变化率 x2 x1 x
小试牛刀
例练 求平均变化率 (1)函数 f (x) = 2 x +1在区间[ –3 , –1]上的平均变化率 ;
平均变化率
理解
用 x
x2 x1 ,则 y f ( x2 ) f ( x1 )
一变
y 可正、
可负、可0
f ( x2 ) f ( x1 ) x2 x1
x 和 y 的范围有要 思考:
21-22版:3.1.1 变化率问题~3.1.2 导数的概念(步步高)
学核心素养.
3 随堂演练
PART THREE
1.f(x)=2x+1在[1,2]内的平均变化率为
A.0
B.1
√C.2
D.3
解析 f(x)=2x+1 在[1,2]上的平均变化率为ΔΔxy=f22--1f1=2.
12345
2.如图,函数y=f(x)在A,B两点间的平均变化率是
√A.-1
B.1
C.2
D.-2
反思 感悟
求平均变化率的主要步骤 (1)先计算函数值的改变量Δy=f(x2)-f(x1). (2)再计算自变量的改变量Δx=x2-x1. (3)得平均变化率ΔΔyx=fxx22--fx1x1.
跟踪训练1 已知函数f(x)=x2+2x-5的图象上的一点A(-1,-6)及邻近一点
B(-1+Δx,-6+Δy),则
2 题型探究
PART TWO
一、函数的平均变化率
命题角度1 求函数的平均变化率 例1 求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx的值为 1,哪一点附
3 近的平均变化率最大?
解 在x=1附近的平均变化率为 k1=f1+ΔΔxx-f1=1+ΔΔxx2-1=2+Δx; 在x=2附近的平均变化率为 k2=f2+ΔΔxx-f2=2+ΔΔxx2-22=4+Δx; 在x=3附近的平均变化率为 k3=f3+ΔΔxx-f3=3+ΔΔxx2-32=6+Δx. 若 Δx=13,则 k1=2+31=37,k2=4+13=133,k3=6+13=139, 由于k1<k2<k3,故在x=3附近的平均变化率最大.
lim
Δt→0
ΔΔst=Δlitm→0
(2t0+1+Δt)=2t0+1,
则2t0+1=9,∴t0=4. 则物体在4 s时的瞬时速度为9 m/s.
3.1.1变化率问题(实用)
——它反映了函数变化的快慢.
x 是一个整体符号,
而不是 与 x 相乘.
理解: 1,式子中△x
、△
y
的值可正、可负,但
y
的△x值不能为0, △ y 的值可以为0
x
2,若函数f (x)为常函数时, △ y =0
3, 变式
f (x2 ) f (x1) f (x1 x) f (x1)
平均变化率是( B)
Байду номын сангаас
A.4
B.2
1
C. 4
3
D. 4
解:Δy = 32 - 1 = 2 Δx 3 - (-1)
3、函数 y = 2x2在区间[1,1.5]上的
平均变化率为_______5________.
解:由平均变化率的公式
得 y 2(1.52 -1.12) 5.
x
1.5 -1
观察函数 f (x) 的图象, 平均变化率
v
h( 65 ) 49 65
h(0) 0
10 10 65
0
49
49
平均速度不能反映他在这段 时间里运动状态,需要用瞬时速 度描述运动状态.
课后探究:
(1)搜集微积分的发展史资料; (2)生活中的变化率问题的例子; (3)物理中如何求瞬时速度.
仅考虑一个变量的变化是不行的
情境应用,感知概念
情境2:
海南最近12个月新房价格走势
海南在售新房均价:26683 元/平方米(仅供参考)
问题:如何刻画变化的快与慢呢?
求求看:高台跳水
运动员距水面的高度h(单位:米)与起跳后的 时间t(单位:秒)存在函数关系
h(t) 4.9t 2 6.5t 10
高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念新人教A版选修
探究2:根据函数的瞬时变化率与在某点处导数的定 义,回答下列问题:
(1)瞬时变化率与平均变化率的关系是什么?它们的 物理意义分别是什么?
提示 瞬时变化率是平均变化率在Δx 无限趋近于 0 时,ΔΔxy无限趋近的值;瞬时变化率的物理意义是指物体运 动的瞬时速度,平均变化率的物理意义是指物体运动的平 均速度.
(2)瞬时变化率与函数在某点处导数的关系是什么? 提示 函数在某点处的瞬时变化率就是函数在此点 处的导数.
课堂探究案·核心素养提升
题型一 求函数的平均变化率
例1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的
平均变化率,并求当x0=2,Δx=0.1时平均变化率的 值.
【自主解答】 函数 y=f(x)=3x2+2 在区间[x0,x0
【答案】
1 (1)2
(2)见自主解答
●规律总结
1.求函数y=f(x)在点x0处的导数的三个步骤
2.瞬时变化率的几种变形形式
f(x0+Δx)-f(x0) Δx
2×12=5.
题型二 求函数在某点处的导数
例2 (1)函数 y= x在 x=1 处的导数为________.
(2)如果一个质点由定点 A 开始运动,在时间 t 的位 移函数为 y=f(t)=t3+3,
①当 t1=4,Δt=0.01 时,求Δy 和比值ΔΔyt; ②求 t1=4 时的导数.
【自主解答】 (1)Δy= 1+Δx-1, ΔΔxy= 1+ΔΔxx-1= 1+Δ1 x+1,
+
Δ
x]
上
的
平
均
变
化
率
为
f(x0+Δx)-f(x0) (x0+Δx)-x0
=
[3(x0+Δx)2+2]-(3x20+2) Δx
3.1.1变化率问题
1 运动员在这段时间里是静止的吗 ? 2 你认为用平均速 度描述 运动员运 动
状态有什么问题吗 ?
h t2 h t1 h v t t2 t1
探究过程:如图是函数h(t)= -4.9t2+6.5t+10 的图像,结合图形可知, ( 65 ) h(0) , h 49 所以, h
小结:
1.函数的平均变化率
y f ( x2 ) f ( x1 ) x x2 x1
2.求函数的平均变化率的步骤:
(1)求函数的增量:Δy=f(x2)-f(x1);
y f ( x2 ) f ( x1 ) (2)计算平均变化率: x x2 x1
见Word版活页训练
注意:x的值可正可负不可以为0 y的值可正可负也可为0
2、平均变化率的几何意义
割线AB的斜率 课本P74页思考 y
平均变化率 y f ( x2 ) f ( x1 ) f(x2) x x2 x1 表示什么?
B
y=f(x) f(x2)-f(x1)
f(x1) O
A
x2-x1 x
思考
以上解法没有理解“膨胀率”的概念,从 R=1 到 R =m 时球的体积膨胀率即为 R∈[1,m]时的平均变化率. 4π 3 4π 4π ΔV 3 3 [ 正 解 ] Δ V = 3 m - 3 × 1 = 3 (m - 1) , ∴ = ΔR 4π (m3-1) 3 28 = 3 π .∴m2+m+1=7.∴m=2 或 m=-3(舍). m-1 物理学上的平均速度、 膨胀率等就是函数的平均变化 率.
思考 当空气的容量从 1增加到V2时, 气球的平 V r r V2 r V1 均膨胀率是多少 ? V V2 V1
高中数学 北师大选修1-1 3.1.1《变化率问题》
导数研究的问题
变化率问题
研究某个变量相对于另一个变量变化的快慢程度.
气球膨胀率:我们都吹过气球回忆一下吹气球的过程,可以 发现,随着气球内空气容量的增加,气球的半径增加越来越 慢.从数学角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之间的 思函考数:关这系一是现象V (中r), 4哪些r3 量在改变?变量的变化情况?
变式训练3
已知函数
,分别计算 在自变量 从1变化到2和从3变化
到5时的平均变化率,并判断在哪个区间上函数值变化的较快.
答案:
,
;
1.质点运动规律s=t2 +3,则在时间(3,3+t)中
相应的平均速度为( A )
A. 6+t C.3+t
B. 6+t+ 9 t
D.9+t
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s 附近的平均变化率.
第3章 导数及应用
3.1.1 变化率问题
背景介绍
早在十七世纪,欧洲资本主义发展初期,由于工场
的手工业向机器生产过渡,提高了生产力,促进了
科学技术的快速发展,其中突出的成就就是数学研
微积究分中的取奠得基了人丰是硕牛的顿成和果莱―布―尼―兹微,积他分们的分产别生从。运动学和几 何学角度的来研究微积分。微积分靠着解析几何的帮助,成 为十七世纪最伟大的数学发现,此后,微积分得到了广泛的 应用。例如,在军事上,战争中涉及炮弹的最远射程问题, 天文学上,行星与太阳的最近与最远距离问题等等。甚至连 历法、农业都与微积分密切相关。更不用说在我们的日常生 活中所碰到的那些问题了。
25 3t
必做题
3.1.1变化率问题
3.1.1变化率问题习题【知识点总结】1、我们把式子2121()()f x f x x x --称为函数()y f x =从1x 到2x 的平均变化率。
习惯上令21x x x ∆=-,类似有21()()y f x f x ∆=-,于是平均变化率可以表示为y x ∆∆. 2、平均变化率2121()()f x f x y x x x -∆=∆-表示连接两点的线段所在直线的斜率。
3、我们把函数值的增量与自变量的增量的比值叫做函数在这一区间上的平均变化率。
4、求平均变化率的步骤:(1)求函数值的增量21()()y f x f x ∆=-;(2)求自变量的增量21x x x ∆=-;(3)计算2121()()f x f x y x x x -∆=∆-的值. 5、求平均变化率的另一种步骤:(1) 求函数值的增量00()()y f x x f x ∆=+∆-;(2) 计算00()()f x x f x y x x+∆-∆=∆∆的值. 注意:知识点5计算平均变化率的方法,为后一节定义导数做铺垫,要好好理解。
【基本题型练习】1、求函数2y x =在区间[]1,3上的平均变化率。
解:22(3)(1)318y f f ∆=-=-=312x ∆=-=∴ (3)(1)84312y f f x ∆-===∆- 变式一:求函数2y x x =+在区间[]1,3上的平均变化率。
2、求函数2y x x =+在区间[]3,3x +∆上的平均变化率。
解:(3)(3)y f x f ∆=+∆-2222(3)396()96()x x x x x =+∆-=+∆+∆-=∆+∆∴ 26()6y x x x x x∆∆+∆==+∆∆∆ 变式二:求函数23y x =在区间[]3,3x +∆上的平均变化率。
【变式练习参考答案】变式一:求函数2y x x =+在区间[]1,3上的平均变化率。
解:22(3)(1)(3+1(11)8y f f ∆=-=-+=)312x ∆=-=∴ (3)(1)84312y f f x ∆-===∆- 变式二:求函数23y x =在区间[]3,3x +∆上的平均变化率。
课件4:3.1.1 变化率问题
D 3-Δx
2、求y=x2在x=x0附近的平均速度。 2x0+Δx
小结:
1.函数的平均变化率
f f(x2) f (x1)
x
x2 x1
2.求函数的平均变化率的步骤:
(1)求函数的增量Δf=Δy=f(x2)-f(x1); (2)计算平均变化率
f f(x2 ) f (x1)
x
x2 x1
本节内容结束
对一种生活现象改变? 2 变量的变化情况? 3 引入气球平均膨胀率的概念
V (r) 4 r3 r(V ) 3 3V
3
4
当空气容量V从0增加1L时,半径增加了
r(1)-r(0)= 0.62 当空气容量V从1加2L时,半径增加了
r(2)-r(1)= 0.16
探究活动
气球的平均膨胀率是一个特殊的情况,我们把 这一思路延伸到函数上,归纳一下得出函数的平均 变化率
r(V2 ) r(V1) f (x2 ) f (x1)
V2 V1
x2 x1
2、高台跳水
在高台跳水运动中, 运动员相对于水面的高度 h (单 位:m)与起跳后的时间 t (单位:s) 存在函数关系
平均速度不能反映他在这段时间里运动状态, 需要用瞬时速度描述运动状态。
定义:
平均变化率:
式子
f
(x2 ) x2
f (x1) x1
称为函数
f
(x)从x1到
x2的
平均变化率.
令△x = x2 – x1 , △ f = f (x2) – f (x1) ,则
f (x2 ) f (x1) f
x2 x1
h(t) 4.9t2 6.5t 10
如果用运动员在某段时间内的平均速度 描v述其运动
选修1—1_3.1.1_变化率的问题
f ( x2 ) f ( x1 ) y x2 x1 x
从以上的二个例子中,我们可以了解到, 平均变化率是指在某个区间内数值的平均变 化量.
如果上述两个问题中的函数关系用 f ( x) 表示, 那么问题中的变化率可用式子:f x2 f x1
r(2)-r(1) ≈ 0.16(dm)
气球的平均膨胀率为:
r 2 r 1 0.16 dm / L 2 1 可以看出:
随着气球体积逐渐变大,它的平均膨胀 率逐渐变小。
思 考 4 ? V (r ) r
3
3
3 V r (V ) 3 4
当空气容量从V1增加到V2时,气球 的平均膨胀率是多少?
r (V2 ) r (V1 ) V2 V1
问题2:高台跳水
在高台跳水运动中,运动员相对于水面的高度 h(单位:米)与起跳后的时间t(单位:s)存在函 数关系h(t)= - 4.9 t2+ 6.5t +10. 如果我们用运动员在某段时间内的平均速度 v 描述其运动状态,那么: (1)在 0 t 0.5 这段时间里, h(0.5) h(0) v 4.05(m / s) 0.5 0 (2)在 1 t 2 这段时间里,
4 3 V (r ) r 3
3V r (V ) 4
3
当空气容量V从0L增加到1L时,气球半径 增加了
r(1)-r(0)≈ 0.62 (dm)
气球的平均膨胀率为:
r 1 r 0 0.62 dm / L 1 0
当空气容量V从1L增加到2L时,气球半径 增加了
x “增量”:
3.1.1 变化率问题教案2020-2021学年高二数学人教A版选修1-1第一章
《变化率问题》教学设计教材分析:导数与函数、不等式等内容有着密切的联系,是解决最值问题强有力的工具。
本节是导数的起始课,也是后续学习瞬时变化率以及导数的基础。
学情分析:学生对平均值的计算方法是不陌生的,这是这节课的知识基础。
另外,前面也已经学习过了直线斜率的有关知识,也为本节中理解平均变化率提供了知识储备。
但从实际问题抽象出数学模型,对学生来说是有些困难的。
教学目标:(1)初步了解微积分的发展,感受数学家的聪明智慧。
(2)让学生经历从生活中的变化率问题抽象概括出函数平均变化率概念的过程,体会从特殊到一般的数学思想,体现了数学知识来源于生活,又服务于生活。
(3)理解平均变化率的概念,会求函数在定区间和某点附近的平均变化率。
(4)结合平均变化率的几何意义,让学生体会数形结合的思想。
教学重点:1.由生活中的变化率问题归纳得出平均变化率的概念;2.理解平均变化率的概念,体会平均变化率的几何意义,会计算函数的平均变化率;教学难点:数学建模思想的应用教学方法:问答法、自主探究法教学过程:1.整体介绍师:我们用函数来描述物体运动变化的现象,随着对函数的进一步研究,产生了微积分。
微积分是由两位伟大的科学家牛顿、莱布尼茨共同创立的,可以说啊,微积分的创立是数学史上对的里程碑,被誉为“人类精神的最高胜利”。
微积分的创立,与四类问题的处理直接相关:①已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度;已知物体的加速度作为时间的函数,求速度与路程。
②求曲线的切线。
③求已知函数的最大值与最小值。
④求长度、面积、体积、重心等。
在本章中,我们将要学习的导数是微积分的核心概念之一,也是研究解决问题最一般、最有效的工具。
今天,就让我们从变化率问题开始导数的学习吧。
【简要介绍微积分创立的背景,加深学生对微积分的认识,顺利引出本节课的课题】2.引例初探教师ppt 展示姚明的身高变化曲线图,请同学们读图并思考:在哪个年龄段,他的身高变化是最快的呢?【引导学生从形的陡和缓做直观判断,学生不难看出在13-16岁身高变化最快】师:华罗庚曾经说过:数缺形时少直观,形缺数时难入微。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1.1 变化率问题
编写人:李夫 2012.9.15
学习目标 1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义;
2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景.
78~ P 80,找出疑惑之处)
复习1:曲线221259x y +=与曲线22
1(9)259x y k k k
+=<--的( )
A .长、短轴长相等
B .焦距相等
C .离心率相等
D .准线相同
复习2:当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化?
二、新课导学 ※ 学习探究 探究任务一:
问题1:气球膨胀率,求平均膨胀率
吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?
问题2:高台跳水,求平均速度
新知:平均变化率:2121()()f x f x f
x x x
-∆=
-∆
试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,
即
x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,
函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值y
x
∆∆,则上式就表示
为 ,此比值就称为平均变化率.
反思:所谓平均变化率也就是 的增量与 的增量的比值.
※ 典型例题
例1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.
变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则y
x
∆∆=
例2 已知函数2
()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]
小结:
※ 动手试试
练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.
练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.
(发现:y kx b =+在区间[m ,n]上的平均变化率有什么特点?
三、总结提升 ※ 学习小结
1.函数()f x 的平均变化率是
2.求函数()f x 的平均变化率的步骤:
(1)求函数值的增量 (2)计算平均变化率
※ 知识拓展
平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”. 学习评价
※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .0
2. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆-
3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )
A .6t +∆
B .9
6t t
+∆+∆
T(月)
3
9
12
C .3t +∆
D .9t +∆
4.已知21
2
s gt =,从3s 到3.1s 的平均速度是_______
5. 223y x x =-+在2x =附近的平均变化率是____
课后作业
1. 国家环保局对长期超标排污,污染严重而未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理. 下图是国家环保局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W 表示排污量),哪个企业治理得比较好?为什么?
2. 水经过虹吸管从容器甲中流向容器乙,t s 后容器 甲中水的体积0.1()52t V t -=⨯(单位:3
cm ), 计算第一个10s 内V 的平均变化率.。