第四章 杆件的变形(扭转轴)

合集下载

第四章 扭转(张新占主编 材料力学)

第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到

切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用

材料力学第四章 扭转

材料力学第四章 扭转
则上式改写为
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m

理论力学中的杆件的变形分析

理论力学中的杆件的变形分析

理论力学中的杆件的变形分析杆件在力学中扮演着重要的角色,广泛应用于各种工程领域。

在理论力学中,对于杆件的变形进行分析是十分重要的,它能帮助工程师和设计师预测和评估结构的性能和可靠性。

本文将介绍杆件的变形分析的基本原理和方法。

1. 弹性变形杆件受到外力作用时,会发生弹性变形。

在弹性变形情况下,杆件会迅速恢复到未受力状态,且不会发生永久形变。

弹性变形是基于胡克定律,即应力与应变成正比。

根据胡克定律,可以得到杆件的弹性形变的方程。

2. 杆件的拉伸和压缩当杆件受到拉伸或压缩作用时,会发生轴向变形。

在理论力学中,我们可以使用材料力学的知识来分析杆件的轴向变形。

拉伸和压缩是杆件最常见的变形形式,例如,建筑物的柱子或者桥梁的支撑杆件都会经历拉伸或压缩。

3. 杆件的弯曲当杆件受到弯曲力矩作用时,会发生弯曲变形。

弯曲是指杆件在垂直于其长度方向上发生形状改变。

在理论力学中,我们可以使用梁的理论来分析杆件的弯曲变形。

通过应力和应变的关系以及几何形状的考虑,可以计算出杆件在弯曲过程中的变形情况。

4. 杆件的扭转当杆件受到扭矩作用时,会发生扭转变形。

扭转是指杆件在一个固定的截面上,某一段杆件相对于其他段发生旋转。

通过扭转变形分析,我们可以计算出杆件在扭转过程中的变形情况。

杆件的变形分析对于在工程设计过程中非常重要。

通过对杆件的变形情况进行准确的分析,可以帮助工程师和设计师了解结构的性能和可靠性。

此外,在设计过程中,合理地选择材料和截面形状也是非常关键的,因为不同的材料和截面形状会直接影响杆件的变形情况。

总之,理论力学中的杆件的变形分析是一个复杂但重要的领域。

它涉及到弹性变形、拉伸和压缩、弯曲和扭转等不同类型的变形。

通过对杆件变形进行准确的分析,可以帮助工程师预测结构的行为,并确保结构的性能和安全性。

对于工程设计和结构优化来说,杆件的变形分析是一项必不可少的工作。

材料力学 杆件的变形计算

材料力学 杆件的变形计算

例题4-2: 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa, ν = 0.3,拧紧后,△l =0.04 mm。 试求:(a) 螺栓横截面上的正应力 σ (b) 螺栓的横向变形△d
解:1) 求横截面正应力 :
ε=
∆l 0.04 = = 7.41×10-4 l 54
l = 54 mm ,di = 15.3 mm, E=200 GPa, ν = 0.3, △l =0.04 mm
∆ac = a ′c′ − ac
∆ac ε′ = ac
二、拉压杆的弹性定律 1、等内力拉压杆的弹性定律 P P
PL NL dL = = EA EA
PL dL ∝ A
2、变内力拉压杆的弹性定律
N(x) N(x)
x dx dx 内力在n段中分别为常量时 内力在 段中分别为常量时
※“EA”称为杆的抗拉压刚度。 ※“ ”称为杆的抗拉压刚度。
C1
C点总位移: 点总位移:
∆C = ∆C y + ∆C x = 1.47mm
2 2
C0
Cx
(此问题若用圆弧精确求解) 此问题若用圆弧精确求解)
∆C x = 0.278mm ∆C y = 1.44mm
第二节 圆轴的扭转变形及相对扭转角
为 dx 的两个相邻截面之间有相对转角dϕ 的两个相邻截面之间有相对转角d
800 π × 0.04 4 80 ×109 32 = 0.03978rad / m
综合两段, 综合两段,最大单位扭转角应在BC 段 为 0.03978 rad/m
例4-5 图示一等直圆杆, 图示一等直圆杆,已知 d =40mm a =400mm G =80GPa, ϕ DB=1O , 求 : 1) 最大切应力 2)ϕ AC

材料力学第4章扭转

材料力学第4章扭转

(2)计算扭矩
从受力情况看,在轴的AB,BC,CD三段内,各横截面上的扭矩是不相等的。
现在用截面法,根据平衡方程计算各段内的扭矩。 在AB段,用截面1—1截取,取左段为研究对象,并假设该截面上的扭矩T1为 正,如图4.5(c)所示。由平衡方程 MA+T1=0 于是有 T1=-MA=-1 910 N²m ,得
相反的切应力′,于是组成力偶矩为(′dxdz)dy的力偶。根据平衡方 程 ,得 ′dxdz)dy
( dydz)dx=( 于是
如图4.7(a)所示的单元体在其两对相互垂直的平面上只有切应力而无正应力 。这种应力状态称为纯剪切应力状态。显然,薄壁圆筒发生扭转时处于纯剪
切应力状态。由于这种单元体的前、后两平面上无任何应力,所以可将其改
图4.3 根据平衡方程 ,即
T-Me=0
得 T=Me
显然,若截取后取右段为研究对象,则在同一横截面上可求得扭矩的数值大
小相等而方向相反。为使同一横截面上的扭矩正、负号一致,对扭矩的符号 规定如下:按右手螺旋法则确定扭矩矢量T,当T的指向与横截面的外法线方
向一致时,扭矩为正(见图4.4(a)),反之,为负(见图4.4(b))。
依据上述分析,可知薄壁圆筒的扭转时,横截面上各处的切应力值均相等, 其方向与圆周相切。由于横截面上的扭矩都是该截面上的应力与横面积dA之 乘积的合成,如图4.6(d)所示,可得
所以
(2)切应力互等定理 在承受扭转的薄壁圆筒上,用两个横截面、两个径向截面和两个圆柱面截取 出边长分别为dx,dy,dz的单元体,并放大为图4.7(a)所示。单元体的左、 右两侧面是圆筒横截面的一部分,所以有切应力。切应力值根据公式(4.2) 计算,数值相等但图4.7方向相反,于是组成一个力偶矩为( dydz)dx的力偶 。为保持平衡,单元体的上、下两个面必须有切应力,并组成力偶以与力偶 ( dydz)dx相平衡。由 可知,上、下两个面上存在大小相等、方向

第四章 杆件的变形计算

第四章 杆件的变形计算

第四章杆件的变形计算杆件在载荷作用下都将发生变形,过大的变形将影响杆件的正常使用,必须加以限制,而有时又希望杆件能有较大的变形,以起缓冲作用,如弹簧等,因此必须计算杆件的变形。

本章具体讨论了拉伸(压缩)、扭转、弯曲三种情况的杆件变形计算。

第一节拉(压)杆的轴向变形直杆在沿其轴线的外力作用下,纵向发生伸长或缩短变形,而其横向相应变细或变粗,如图4-1所示。

设杆原长l,宽b,在力F作用下产生变形,变形后长l1,宽b1。

则杆件在轴线方向的伸长为纵向应变为根据虎克定律和拉(压)杆横截面正应力公式,可以得到(4-1)上式表明,杆的轴向变形值与轴力F N及杆长l成正比,与材料的杨氏模量及杆的横截面面积成反比。

因此EA称为拉(压)杆的抗拉(压)刚度,EA值越大,杆件刚度越大,在一定外力作用下单位长度变形量就越小。

另一方面,横向变形,横向应变。

通过试验发现,当材料在弹性范围内时,拉(压)杆的纵向应变与横向应变之间存在如下比例关系:(4-2a)或=-(4-2b)式中比例常数称为泊松比。

弹性模量E、泊松比及切变模量G均是材料的弹性常数,可由实验测得。

对于各向同性材料,可以证明这三个弹性常数之间存在下列关系:(4-3)材料的值小于0.5,表4-1列出几种常见金属材料的E和的值。

例4-1 阶梯形直杆受轴力如图4-2,已知该杆AB段横截面面积A1=800mm2 , 段横截面面积A2=240mm2,杆件材料的弹性模量为E=200GPa。

试求该杆总伸长量。

解(1)求AB、BC段轴力F NAB=40kN(拉),F NBC=-20kN(压)(2)求AB、BC段伸长量AB段BC段由以上计算可以看出,AB段是伸长,而BC段是缩短。

(3)AC杆总伸长AC杆计算结果为负,说明AC杆是缩短而不是伸长。

例4-2 图示桁架,钢杆AC横截面面积A1=960mm ,弹性模量E1=200GPa。

木杆BC横截面,杨氏模量E2=10GPa 。

求铰节点C的位移。

材料力学 第4章_扭转

材料力学     第4章_扭转
z


d x d z d y d y d z d x 0

返回
4. 切应力互等定理

切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。


纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T

dA
横截面上分布内力系对 圆心的矩等于扭矩T。

T d A A d d 2 G d A G d A A dx dx A

第四章 杆件的变形计算

第四章 杆件的变形计算

3)分别作AC1和BC2的垂线交于C0
A F B 30oC2 C
Cx CC2 0.277mm C y CC1 / sin30 CC 2 cot30
C1
1.44mm
C点总位移:
Cy
C C y C x 1.47mm
(此问题若用圆弧精确求解)
2
2
Cx
C0
T3 C
1)根据题意,首先画出扭矩图
T1 d1 A Mx N· m B T2 d2 C T3
2)AB 段单位长度扭转角:
1400
800
AB
M xAB GI pAB
+
x
1400 4 π 0.06 80 10 9 32 0.01375rad / m
3)BC 段单位长度扭转角: M xBC BC
M xi li j i 1 GI pi
n
请注意单位长度扭转角和相对扭转角的区别
例4-3 一受扭圆轴如图所示,已知:T1=1400N· m, T2=600N· m, T3=800N· m, d1=60mm,d2=40mm,剪切弹性模量G=80GPa,计 算最大单位长度扭转角。
T1 d1 A
T2 d2 B
第四章
• • • • •
杆件的变形计算
本部分主要内容:
拉压杆的轴向变形 圆轴的扭转变形与相对扭转角 梁的弯曲变形、挠曲线近似微分方程 用积分法求梁的弯曲变形 用叠加法求梁的弯曲变形
第一节 拉压杆的轴向变形
直杆在其轴线的外力作用下,纵向发生伸长或缩短变形, 而其横向变形相应变细或变粗 杆件在轴线方向的伸长

泊松比ν 、弹性模量 E 、切变模量G 都是材料的弹性常数, 可以通过实验测得。对于各向同性材料,可以证明三者之间存 在着下面的关系

第四章 杆件的变形 · 简单超静定问题

第四章 杆件的变形 · 简单超静定问题

A1
、物理方程-变形与受力关系
FN 1 L1 FN 3 L3 cos E1 A1 E3 A3 补 充 方 程 (3)
F
FN1
A
FN3 FN2

、联立方程(1)、(2)、(3)可得:
x
FN1 FN 2 E3 A3 F E1 A1F cos2 ; FN 3 3 2E1 A1 cos E3 A3 2E1 A1 cos3 E3 A3

0.02 2 160 106
[ FN ] AD sin 50.24 1 0.75 / 0.752 1 [F ] 12.06 KN 2.5 AB
C 0.75m A 1m D D
(2)、B点位移
lCD
B lCD
[ FN ]lCD EA
D1 1.5m
l l
虎克定律 实验证明: 引入比例常数E,则
Fl l A FN l (虎克定律) Fl l EA EA
E——表示材料弹性性质的一个常数,称为拉压弹 性模量,亦称杨氏模量。单位:MPa、GPa. 例如一般钢材: E=200GPa。
EA——杆件的抗拉/压刚度
1)
O
1
B 4F
B
1
α α
2
FNAB FNAC
C
F F
X
0 0
FNAC sin FNAB sin 0
Y
A
LAB
FNAC cos FNAB cos F 0 F FNAC FNAB 2 cos F L FL LAC NAC EA 2 EA cos
轴向拉伸或压缩时的变形 刚度条件 超静定问题
轴向拉伸或压缩时的变形

材料力学-第4章 扭转 ppt课件

材料力学-第4章 扭转  ppt课件

dA
T

O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:

G



G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动

主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me

P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)

理论力学第四章扭转

理论力学第四章扭转
由 M x 0, T Me 0 得T=M e
内力T称为截面n-n上的扭矩。
Me
Me
x T
Me
扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为 负值。
+
T
-
扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
4
32 7640180 80109 π 2 1
86.4 103 m 86.4mm
d1 86.4mm
4.直径d2的选取
按强度条件
A M e1 d1
B d2 C
M e2
M e3
3 16T 3 16 4580
②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
结论:
0, 0
横截面上
0 0
根据对称性可知切应力沿圆周均匀分布;
t D, 可认为切应力沿壁厚均匀分布, 且方向垂直于其半径方向。
t
D
微小矩形单元体如图所示:
①无正应力
②横截面上各点处,只产生垂 直于半径的均匀分布的剪应力
强度计算三方面:
① ②
校核强度:
max
Tm a x WP
设计截面尺寸:
WP
Tmax
[ ]
[ ]
Wt
实:D3 16 空:1D6(3 1 4)
③ 计算许可载荷: Tmax WP[ ]
例4.2 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m, MC=14 kN•m。 材料的许用切应力[t ] = 80MPa ,试校核该轴 的强度。

第4章杆件的变形和刚度

第4章杆件的变形和刚度

拉刚度为EA,B点处受F作用,试求B点位移B。
a
【解】 M A 0,
F

L

1 2
L
cos

FCD
FNCD

2F
cos
FNCD
A
C
C
αD
F
B
LCD

FNCD LCD EA

2Fa
EAcos2
C1
L/2
L/2
B1
CC1
CC LCD
cos cos
B

BB1

2CC1
形。实验结果表明,若在弹性范围内加载,轴向应变x与 横向应变y之间存在下列关系:
y x
为材料的一个弹性常数,称为泊松比(Poisson ratio)。
第4章 杆件的变形和刚度
拉压杆件 的变形分析
【例4-1】 变截面直杆,ADE段为铜制,EBC段为钢制;
在A、D、B、C等4处承受轴向载荷。已知:ADEB段杆的
第4章 杆件的变形和刚度
拉压杆件 的变形分析
【例4-2】 已知杆长L=2m,杆直径d=25mm,=300,材料
的 弹 性 模 量 E=2.1×105MPa , 设 在 结 点 A 处 悬 挂 一 重 物
F=100kN,试求结点A的位移A。
【解】 1. 求轴力
Fx 0,
FNAC sin FNAB sin 0
B1
2C
FNAB FNAC
αα
Fy 0,
FNAC cos FNAB cos F 0
FNAC

FNAB

F
2 cos
A

材料力学课件-第14讲 第四章 扭转(4)

材料力学课件-第14讲 第四章  扭转(4)

Navier (France)
对非圆截面杆是否正确?
St.Venant 研究了扭转,梁弯曲问题,提出了 St.Venant原理。
1855年,提出非圆截面问题的正确解法。
St.Venant (France)
错误分析:受扭矩形杆角点切应力问题
角点切应力为零
边缘切应力平行于周边
?
根据 ,角点切应力最大,但是根据切应力互等定理,我们发现:
对非圆截面杆,平截面假设不再适用。
二、矩形截面轴的扭转(弹性理论解)
边缘处的切应力平行于周边,角点处的切应力为零。 在长边中点,短边中点 也相当大。
max
1
h
b
max
1
( 见表4-1)
狭长矩形截面轴:
接近1/3
h-中心线总长
三、椭圆等非圆截面轴扭转
的计算公式见附录D。
例1:试比较材料相同,长度与扭矩T相等的圆形与正方形截面轴的最大扭转切应力与扭转变形:(1)两轴横截面积相等, (2)圆刚好内切于正方形。
解:1、变形 协调条件
2、装配扭力 偶矩
6、螺栓的切应力
3、 关系
4、装配扭力 偶矩解答
5、轴最大切应力
例3: 管和轴两端由刚性圆盘连接,求管和轴的内力。
问题:
*对应拉压静不定问题是什么?
*取什么为未知量(几个未知量)?
*变形协调方程怎么列?
第四章 扭转(4)
第十四讲知识点 简单扭转静不定问题 一类拉压与扭转静不定问题的对应关系 非圆截面杆件的扭转 自由扭转与限制扭转 矩形截面杆件的扭转 椭圆形截面杆件的扭转
某些拉压与扭转静不定问题对比
力电磁热等各类自然现象内部及它们之间在支配方程方面都存在许多惊人的一致,认识这些数学本质规律的一致,对科学研究和工程实践有重要意义。

材料力学扭转

材料力学扭转


dx

c
x
它们组成的力偶,其矩为
(dxdy )dz
z
(dxdy )dz
y

此力偶矩与前一力偶矩
dy
d
a

b
( dy dz) dx 数量相等而转向相反,从而可得 z

dx

c
x

剪应力互等定理:
单元体两个相互垂直平面上
a
dy
y


b
d
的剪应力同时存在,且大小
相等,都指相(或背离)该
y

程中,认为上,下两面上的外
a
'
d

x
力将不作功。只有右侧面的外 力 (dydz) 对相应的位移 dx 作
z
b dx
dx

了功。
当材料在线弹性范围内内工作时,
y
上述力与位移成正比,因此,单
元体上外力所作的功为
1 2 1 2
z a

'
d

x
dW
( dydz)( dx)
( dxdydz)

M GI
e P

r

o

dA



M I
e p

上式为圆轴在扭转时横截面上任一点处的剪应力计算公式



M I
e p

式中:Me 为横截面上的扭矩; 为求应力的点到圆心的距离:
I p A dA
2
称为横截面对圆心的 极惯性矩

说明:
M n I
p
max
Mn

材料力学课件 第四章 扭 转

材料力学课件 第四章  扭  转

3)结论:
①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相 对转动。 ②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
第四章
扭转
取微端变形
第四章
微小矩形单元体如图所示:
①无正应力
扭转
´
a

b

dy
②横截面上各点处,只产生垂
直于半径的均匀分布的剪应力 , 沿周向大小不变,方向与该截面的
第四章
扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
3.剪切虎克定律:
第四章
T=m
扭转



T ( 2 A 0t)


( L ) R

剪切虎克定律:当剪应力不超过材料的剪切比例极限时 (τ ≤τp),剪应力与剪应变成正比关系。
第四章
扭转
G
功率 角速度
每分钟 的转数
时间
60103 P( KW ) P M 9549 ( N m) 2n(r / min) n
第四章
3.扭矩及扭矩图
扭转
(1)扭矩:构件受扭时,横截面上的内力偶矩,记“T”。 (2) 截面法求扭矩
m
x
0
m m
T m 0 T m
(3)扭矩的符号规定:
P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300
第四章
②求扭矩(扭矩按正方向设)
扭转
m2 1 m3 2 m1 3 m4

材料力学课件-第四章 扭转-薄壁杆件的扭转

材料力学课件-第四章  扭转-薄壁杆件的扭转
部分加厚由于最小壁厚不变,最大应力不变。部分加厚后甚至由于应力集中更危险。
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds

工程力学 第四章 杆件的基本变形

工程力学 第四章 杆件的基本变形

随外力产生或消失 随外力改变而改变 但有一定限度
截 面 法
根据空间任意力系的六个平衡方程
X 0 M
步骤: 1、切开 2、代替
x
Y 0 M
y
Z 0 M
z
0
0
0
求内力和取分离体求约束反力的方法本质 相同。这里取出的研究对象不是一个物体系统或一个完 整的物体,而是物体的一部分。
第四章 杆件的基本变形
杆件的外力与变形特点 内力及其截面法
杆件的外力与变形特点
一、杆件变形的定义 杆件在外力作用下,形状和尺寸的变化。 二、杆件变形的形式 1、基本变形 轴向拉伸与压缩 剪切变形 扭转变形 弯曲变形 2、组合变形 同时发生两种或两种以上的变形形式
轴向拉伸或压缩变形
受力特点:作用线与杆轴重合的外力引起的。
拉 伸
压 缩
变形特点:杆轴沿外力方向伸长或缩短, 主要变形是长度的改变
屋 架 结 构 中 的 拉 压 杆
塔 式 结 构 中 的 拉 压 杆
桥 梁 结 构 中 的 拉 杆
剪 切 变形
受力特点:由垂直于杆轴方向的一对大小相等、 方向相反、作用线很近的横向外力引起的。
变形特点:二力之间的横截面产生相对错动变形 主要变形是横截面沿外力作用方向发生相对错动。
螺 栓
连 接 键
销钉
螺 栓
扭 转 变 形
受力特点:由垂直于杆轴线平面内的力偶作用引起的
变形特点:相邻横截面绕杆轴产生相对旋转变形。
对称扳手拧紧镙帽
自 行 车 中 轴 受 扭
桥 体 发 生 扭 转 变 形
弯曲变形
受力特点:是由垂直于杆件轴线的横向力或作用 在杆件的纵向平面内的力偶引起的
变形特点:杆轴由直变弯,杆件的轴线变成曲线。

理论力学中的杆件的扭转分析

理论力学中的杆件的扭转分析

理论力学中的杆件的扭转分析杆件的扭转分析是理论力学中的一个重要内容,它研究的是杆件在受到扭转力矩作用下的力学行为。

在工程领域中,杆件的扭转分析常用于设计和优化各种结构,如轴、桥梁、风力发电机等。

本文将从理论角度介绍杆件的扭转分析方法,并探讨其在工程实践中的应用。

一、杆件的扭转分析基础要进行杆件的扭转分析,首先需要了解杆件受力的基本原理。

在扭转过程中,杆件会受到作用在两端的扭转力矩。

根据牛顿第三定律,杆件会对扭转力矩产生一个等大反向的力矩。

这两个力矩构成了一个力矩对偶系统,使得杆件绕其轴线发生旋转,即发生扭转变形。

扭转分析中需要考虑的关键参数是杆件的几何形状和材料性质。

杆件的几何形状包括长度、直径等。

杆件的材料性质包括弹性模量和剪切模量等。

这些参数对于杆件的扭转刚度和强度都有很大的影响。

二、杆件的扭转分析方法1.杆件的扭转刚度分析杆件的扭转刚度是指杆件在受到一定扭转力矩作用下所发生的扭转变形与扭转力矩之间的关系。

通常情况下,杆件的扭转变形是线性的,即扭转角与扭转力矩成正比。

扭转刚度可以通过杆件的几何形状和材料性质来计算。

对于直径均匀的圆杆来说,扭转刚度可以通过公式k = G * J / L来计算,其中G为剪切模量,J为截面的极惯性矩,L为杆件的长度。

除了圆杆,其他不规则形状的杆件可以采用类似的方法进行扭转刚度分析。

2.杆件的扭转强度分析杆件的扭转强度是指杆件在受到一定扭转力矩作用下所能承受的最大力矩。

扭转强度分析是为了保证杆件的正常使用,在设计和优化结构时非常重要。

根据杆件的几何形状和材料性质,可以采用各种不同的扭转强度计算方法。

对于圆杆来说,可以采用最大剪应力理论或者最大应变能理论来计算扭转强度。

而对于其他形状的杆件,可以采用相应的杆件形式系数来修正扭转强度。

三、杆件的扭转分析应用杆件的扭转分析在工程实践中有广泛的应用。

以轴为例,轴是一种常见的传动元件,承受着旋转和扭转作用。

在设计轴时,需要考虑轴的强度和刚度,以确保轴在工作过程中不会发生过大的变形和破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tl 若T不 变 , 且 为 等 直 圆 轴 则 , GIp
n
二、刚度条件 1、单位长度扭转角 ´ d T (rad/m ) d x GI p
d T 180 d x GI p
( /m)
GIp反映了截面抵抗扭转变形的能力,称为截面的抗扭刚度。 2、刚度(Stiffness)条件 [ ´] 称作许可单位长度扭转角
Mechanics of Materials
§4-1 轴向拉伸或压缩时的变形
§4-2 拉伸、压缩超静定问题
§4-3 圆轴扭转变形与刚度条件.超静定问题
§4-4 梁的变形.挠曲线微分方程及其积分
§4-5 用叠加法求弯曲变形 §4-6 简单静不定梁 .提高梁得刚度得措施 §4-7 杆的应变能
§4-3 圆轴扭转变形与刚度条件.超静定问题
M1
M2
A L
B
L
C
M1
M2
d=90mm ,L=50cm, ,G=80GPa,
M1 8KN.m
A lm T
5 KN .m

M 2 3KN.m
B
lm
C
(1)轴的最大切应力
Tmax 5 KN .m
B

A
C
max
3KN .m
T 3 d Wt
16
5 103
25.5MPa
一、圆轴扭转时的变形 d T T d dx d x GI p GI p
d
相距为dx的两个横截面的相 对扭转角
相距为l的两个横截面的相对扭转角为:
Ti li 若T分段变化,或各段 I p不同(例如阶梯轴), 则 i 1 GI p i
max
Tmax (rad/m) ——扭转的刚度条件 GI p Tmax 180 ( /m) GI p
max
max
Tmax 180 ( /m) GI p
的数值按照对机器的要求决定:
精密机器的轴:
d 0.08 m 8 cm
例13 某传动轴设计要求转速n = 500 r / min,输入功率P1 = 500 马力, 输出功率分别 P2 = 200马力及 P3 = 300马力,已知:
G=80GPa ,[ ]=70M Pa, [ ´] =1º /m ,试确定:
①AB 段直径 d1和 BC 段直径 d2 ? P1 A 500 B P2 P3 C
一般传动轴:
[] (0.25 ~ 0.5) / m
[ ] (0.5 ~ 1) / m
[ ] (1 ~ 2.5) / m
精度要求不高的轴:
刚度计算的三方面: ① 校核刚度: ② 设计截面尺寸:
max
Ip T G[ ]
max
③ 计算许可载荷: T

A
C
3KN .m
0.00125 rad 0.072
TBC l BC 0.00311 GI p
(3)BC段孔径d’
M1
M2
AB BC
TBC TAB GI pAB GI pBC
I pBC
A lm B lm C

32
( d d 4 ) I pAB
4
TBC TAB
① ② ①
① ② ①
解:
静力平衡方程: M A M B
A B 变形几何方程:
物理关系:
TA l A TB l B 补充方程: G A I P A GB I P B
MA MB
TA l A A GA IP A TB l B B GB I P B

lA l B G A I P A GB I P B
为 75mm。
T (kNm)
2.814
+ -
x
– 4.21
圆轴扭转超静定问题
解决扭转超静定问题的方法
步骤 静力学关系; 物理关系; 变形协调关系; 补充方程;
三关系法
联立求解;
例14有一空心圆管A套在实心圆杆B的一端,两杆在同一截 面处各有一直径相同的贯穿孔,但两孔的中心线的夹角为β 。 设钢管与圆杆的抗扭刚度分别为GAIPA和GBIPB。现在杆B上 施加外力偶,使其扭转到两孔对准的位置,并在孔中装上销 钉。试求在外力偶除去后两杆所受到的约束反力偶矩。
3
3 d2
16T
16 4210 67.4mm 6 3.14 70 10
3
P1 A
P2
P3
B 500
由刚度条件得
C
400
x

d T Ip 32 G [ ]
4
T (kN.m)

7.024
4.21
32 T 32 7024 180 4 d1 4 84mm 2 9 G [ ] 3.14 80 10 1
max
GI p [ ]
有时,还可依据此条件进行选材。
例12 图示等截面圆轴,已知d=90mm ,L=50cm, 轴的材料为钢, M1 8KN.m M 2 3KN.m G=80GPa, 求(1)轴的最大切应力; (2)截面B和截面C的扭转角; (3)若要求BC段的单位扭转角与AB段的相等,则在BC段 钻孔的孔径d´应为多大?
32 T 32 4210 180 4 4 d2 74.4mm 2 9 G [ ] 3.14 80 10 1
综上:
d1 85mm , d 2 75mm d d1 85mm
②全轴选同一直径时
③ 轴上的绝对值最大的扭矩越小越合理,所以,1轮和2轮应 该换位。换位后,轴的扭矩如图所示,此时,轴的最大直径才
②若全轴选同一直径,应为多少?
③主动轮与从动轮如何安排合理?
400
x

T 解:①图示状态下,扭矩如图 (kN.m)

P m 7.024 (kN m) n
7.024
4.21
由强度条件得
T Wt 16 [ ]
d3
16 7024 3 d1 80mm 6 3.14 70 10 16T
M1
M2
d=90mm ,L=50cm, ,G=80GPa,
M1 8KN.m
A
lm B lm C
M 2 3KN.m
(2)扭转角 截面B:
B AB
TABl AB 0.00311rad GI p
5 KN .m

0.178 C AC AB BC
B
相关文档
最新文档