菱形的判定学案
数学菱形教案【优秀6篇】
数学菱形教案【优秀6篇】作为一位优秀的人民教师,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。
我们应该怎么写教案呢?下面是为大伙儿带来的6篇《数学菱形教案》,可以帮助到您,就是最大的乐趣哦。
数学菱形教案篇一一、教学目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点1.教学重点:菱形的两个判定方法。
2.教学难点:判定方法的证明方法及运用。
三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算。
这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成。
程度好一些的班级,可以选讲例3.四、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。
转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直。
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形。
数学菱形教案篇二重难点分析本节的重点是菱形的性质和判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
八年级数学下册 第十九章 菱形的判定学案 新人教版
八年级数学下册第十九章菱形的判定学案新人教版第十九章菱形的判定学案一、学习目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算; 2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.二、重点、难点1.教学重点:菱形的两个判定方法.2.教学难点:判定方法的证明方法及运用.三、课堂引入 1.复习(1)菱形的定义:()(2)菱形的性质1 ()性质2 ()(3)运用菱形的定义进行菱形的判定,应具备几个条件?2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1:()注意此方法包括两个条件:(1)是一个();(2)两条对角线().问题1:对角线互相垂直的四边形是菱形吗?为什么?(如果不是用图来证实,虽然对角线AC⊥BD,但它们都不是菱形).答:通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2:().四、例习题分析例1 (教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.证明:五、随堂练习 1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形. 2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
人教版八年级下册数学第2课时 菱形的判定教案
第2课时菱形的判定教学设计课题菱形的判定授课人素养目标 1.理解并掌握菱形的判定方法,体会类比数学思想方法的作用.2.引导学生从边和对角线探究菱形的判定定理,养成主动探索的学习习惯.3.运用菱形的判定方法进行证明或计算,发展学生的推理能力.教学重点菱形的判定方法的理解与应用.教学难点菱形的判定定理与性质定理的区别和联系教学活动教学步骤师生活动活动一:类比推理,导入新课设计意图通过类比学习,激发学生的好奇心和求知欲,引入本节课要研究的内容.【类比导入】前面我们学习平行四边形和矩形时,都可以用性质得出相应的判定,那么我们学习菱形的判定时是否也可以反推菱形的性质来得到它的判定呢?我们大家一起来尝试一下吧!【教学建议】引导学生进行类比、思考、分析,由平行四边形和矩形的判定推断菱形的判定,并回忆上一课时菱形的概念.活动二:动手验证,探究新知设计意图通过图形的变化,让学生感受四边形是菱形时对角线的特征,引导学生得出菱形的判定方法.探究点1对角线互相垂直的平行四边形是菱形如图,用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?它是什么四边形?答:这个四边形的对角线总是互相平分,它是平行四边形.(2)继续转动木条,观察橡皮筋围成的四边形什么时候变成菱形?答:当这个四边形的对角线互相垂直时变成菱形.猜想:对角线互相垂直的平行四边形是菱形.【教学建议】让学生动手实践得到菱形的判定方法,教师注意提醒学生:这里对角线互相垂直的前提条件是在平行四边形内,如果是一般的四边形,则应教学步骤师生活动设计意图利用逆向思维思考性质,让同学们在解决问题的过程中总结判定定理.下面我们来进行验证:已知:如图,在ABCD 中,对角线AC ,BD 相交于点O ,且BD ⊥AC.求证:ABCD 是菱形.证明:∵四边形ABCD 是平行四边形,∴AO =CO.∵BD ⊥AC ,∴AB =BC(线段垂直平分线上的点到这条线段两个端点的距离相等).∴ABCD 是菱形.归纳总结:对角线互相垂直的平行四边形是菱形.几何语言:∵四边形ABCD 是平行四边形,且AC ⊥BD ,∴ABCD 是菱形.例1(教材P 57例4)如图,ABCD 的对角线AC ,BD 交于点O ,且AB =5,AO =4,BO =3.求证:ABCD 是菱形.证明:∵AB =5,AO =4,BO =3,∴AB 2=AO 2+BO 2,∴∠AOB =90°.∴AC ⊥BD ,∴ABCD 是菱形.【对应训练】1.如图,在ABCD 中,对角线AC 与BD 交于点O ,若添加一个条件,可推出ABCD 是菱形,则该条件可以是(C )A.AB =AC B .AC =BD C.AC ⊥BD D .AB ⊥AC2.教材P58练习第2题.探究点2四条边相等的四边形是菱形老师拿四根长度一样的新粉笔,首尾顺次相接拼成一个四边形,在黑板上画出相应的图形并标上字母(如图),得到的四边形ABCD 是菱形吗?是猜想:四条边相等的四边形是菱形.下面我们来进行验证:如图,在四边形ABCD 中,AB =BC =CD =AD.求证:四边形ABCD 是菱形.证明:∵AB =CD ,BC =AD ,∴四边形ABCD 是平行四边形.又AB =BC ,∴四边形ABCD 是菱形.归纳总结:四条边相等的四边形是菱形.几何语言:∵AB =BC =CD =AD ,∴四边形ABCD 是菱形.【对应训练】1.如图,在矩形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点.求证:四边形EFGH 是菱形.证明:∵四边形ABCD 是矩形,∴∠A =∠B =∠C =∠D =90°,AD =BC ,AB =CD.满足对角线互相垂直且平分.【教学建议】提醒学生:若已知邻边相等,要证明这个四边形是菱形,可用两种方法:(1)先证明这个四边形是平行四边形,再利用邻边相等得到菱形;(2)直接证明四条边都相等.教学步骤师生活动∵E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,∴AH =DH =BF =CF ,AE =BE =CG =DG.∴△AHE ≌△BFE ≌△CFG ≌△DHG(SAS),∴HE =FE =FG =HG ,∴四边形EFGH 是菱形.2.教材P58练习第3题.活动三:综合运用,巩固提升设计意图巩固学生对菱形的判定的认识.例2如图,在ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF于点O ,交BC 于点E ,连接EF.(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,CE =3,求ABCD 的面积.(1)证明:∵四边形ABCD 是平行四边形,∴AO =EO ,AD ∥BC ,∴∠EBF =∠AFB.∵BF 平分∠ABC ,∴∠ABF =∠EBF ,∴∠ABF =∠AFB ,∴AB =AF.∵BO ⊥AE ,AO =EO ,∴AB =EB ,∴BE =AF.∵BE ∥AF ,∴四边形ABEF 是平行四边形.又AB =AF ,∴ABEF 是菱形.(2)解:如图,过点F 作FG ⊥BC 于点G.∵四边形ABEF 是菱形,AE =6,BF =8,OE =12AE =3,OB =12BF=4.在Rt △BOE 中,BE =OB 2+OE 2=42+32=5.∵S 菱形ABEF =12AE·BF =BE·FG ,∴12×6×8=5FG ,∴FG =245.∵BC =BE +CE =5+3=8,∴SABCD =BC·FG =8×245=1925.【教学建议】学生独立思考并完成例题,教师点评.提醒学生注意:(1)已知角方面的条件可考虑利用其得到边的相等关系,为证明菱形创造条件;(2)进行第(2)问计算时,求ABCD 的面积,可利用第(1)问的结论,先由菱形的两种面积计算方法求得关键的线段长.活动四:随堂训练,课堂总结【随堂训练】相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:菱形的判定方法有哪几种?矩形和菱形小结:【知识结构】【作业布置】1.教材P 60习题18.2第6,10题.2.相应课时训练.教学步骤师生活动板书设计18.2.2菱形第2课时菱形的判定解题方法:根据题设条件灵活选择菱形的判定方法.(1)用边来判定:①先说明四边形是平行四边形,再说明有一组邻边相等;②说明四边形的四条边都相等.(2)用对角线进行判定:①先说明四边形是平行四边形,再说明四边形的对角线互相垂直;②说明四边形的对角线互相垂直平分.注意:对角线垂直的四边形不一定是菱形,必须是对角线互相垂直的平行四边形才是菱形.例1如图,四边形ABCD 是平行四边形,DE ∥BF ,且分别交对角线AC 于点E ,F ,连接BE ,DF.(1)求证:AE =CF ;(2)若BE =DE ,求证:四边形EBFD 为菱形.证明:(1)∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF.∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB.在△ADE 和△CBF中,∠DAE =∠BCF ,∠AED =∠CFB ,AD =CB ,∴△ADE ≌△CBF(AAS ),∴AE =CF.(2)由(1)知△ADE ≌△CBF ,∴DE =BF.∵DE ∥BF ,∴四边形EBFD 是平行四边形.又BE =DE ,∴四边形EBFD 为菱形.例2如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC ,分别交AB ,DC 于点E ,F ,连接AF ,CE.(1)若OE =32,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AO =CO ,∴∠FCO =∠EAO.在△AOE 和△COF 中,∠FCO =∠EAO ,AO =CO ,∠AOE =∠COF ,∴△AOE ≌△COF(ASA ).∴OE =OF =32,∴EF =2OE =3.(2)四边形AECF 是菱形.理由:∵△AOE ≌△COF ,∴AE =CF.∵AE ∥CF ,∴四边形AECF 是平行四边形.1.菱形的概念.2.菱形的判定定理1.3.菱形的判定定理2.教学反思新课导入时让学生动手制作菱形,感知菱形判定的条件,让学生在轻松愉快的氛围中自然、水到渠成地得到菱形的判定定理.在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.又EF ⊥AC ,∴四边形AECF 是菱形.例1如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,AB =3,AC =2,则四边形ABCD 的面积为(A )A .42B .62C .82D .5解析:如图,过点A 分别作AE ⊥CD 于点E ,AF ⊥BC 于点F ,连接BD 交AC 于点O.∵两条纸条宽度相同,∴AE =AF.∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ABCD =BC·AF =CD·AE ,AE =AF ,∴BC =CD ,∴四边形ABCD 是菱形.∴AO =CO =12AC =12×2=1,BO =DO ,AC ⊥BD.∴BO =AB 2-AO 2=32-12=22,∴BD =4 2.∴四边形ABCD 的面积=12BD·AC =12×42×2=42.故选A .例2如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB的延长线上,且DE =BF ,连接AE ,CF.(1)求证:△ADE ≌△CBF ;(2)连接AF ,CE.当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AD =CB.∴∠ADB =∠CBD ,∴∠ADE =∠CBF.在△ADE 和△CBF =CB ,ADE =∠CBF ,=BF ,∴△ADE ≌△CBF(SAS ).(2)解:当BD 平分∠ABC 时,四边形AFCE 是菱形.理由:∵BD 平分∠ABC ,∴∠ABD =∠CBD.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD ∥BC ,∴∠ADB =∠CBD.∴∠ABD =∠ADB ,∴AB =AD ,∴ABCD 是菱形.∴AC ⊥BD ,∴AC ⊥EF.∵DE =BF ,∴OE =OF.又OA =OC ,∴四边形AFCE 是平行四边形.∵AC ⊥EF ,∴四边形AFCE 是菱形.。
菱形的判定教案
菱形的判定教案一、教学目标1. 知识与技能:(1)理解菱形的定义及性质;(2)掌握菱形的判定方法;(3)能够运用菱形的性质和判定方法解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力;(2)学会运用排除法、反证法等数学方法。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、克服困难的意志品质;(3)培养学生合作交流、分工协作的能力。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:(1)四条边相等;(2)对角线互相垂直,且平分;(3)相邻角互补,对角相等;(4)对角线将菱形分成的角为直角。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形;(2)对角线互相垂直,且平分的四边形是菱形;(3)对角互补,对角相等的四边形是菱形;(4)对角线将菱形分成的角为直角的四边形是菱形。
三、教学重点与难点1. 教学重点:(1)菱形的定义及性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的综合运用;(2)菱形判定方法的灵活运用。
四、教学方法1. 采用问题驱动法,引导学生探索菱形的性质和判定方法;2. 利用多媒体课件,展示菱形的实物模型和图形,增强学生的空间想象力;3. 通过小组讨论、互助合作等方式,培养学生的合作精神和团队意识;4. 运用排除法、反证法等数学方法,提高学生的逻辑思维能力。
五、教学过程1. 导入新课:展示一组四边形,引导学生观察、讨论它们的共同特点,从而引出菱形的定义。
2. 探索菱形的性质:(1)让学生自主探究菱形的性质,总结出四条边相等、对角线互相垂直平分等性质;(2)通过多媒体课件展示菱形的实物模型和图形,帮助学生直观地理解菱形的性质;(3)运用排除法、反证法等数学方法,证明菱形的性质。
3. 学习菱形的判定方法:(1)让学生根据已知的菱形性质,尝试给出菱形的判定方法;(2)通过多媒体课件展示判定方法的应用,让学生学会灵活运用;(3)进行判定方法的训练,提高学生的判断能力。
最新人教版八年级数学下册 18.2.2 第2课时 菱形的判定 优质学案
18.2.2 菱形第2课时菱形的判定学习目标:记忆菱形的三种判定方法;重难点:菱形判定方法的应用。
学习过程一、复习旧知菱形的定义是什么?(一组邻边相等的四边形是菱形)性质:(1)边的性质:对边平行,四条边都;(2)角的性质:对角;(3)对角线的性质:两条对角线互相、,每条对角线平分一组对角;(4)对称性:是轴对称图形,有条对称轴,是两条对角线所在的直线.二、探究新知1、菱形的四边都相等。
反过来,四边都相等的四边形是菱形,对吗?答:简单说理:由此得到菱形的判定定理1(从四边形⇒菱形):几何语言表述:在四边形ABCD中∵AB= = =∴2、(1)菱形的定义:一组邻边相等的四边形是菱形由此得到菱形的判定定理⇒---定义法:几何语言表述: 在□ABCD中∵或或或∴(2)教具:两根一长一短的细木条,钉子、橡皮筋.操作:教师在两根细木条的中点处固定一个小钉子,做成一个可转动的十字,再将四周围上一根橡皮筋,做成一个四边形,问:这个四边形是怎样的四边形?(答:).问:将木条转成互相垂直的位置,这时这个平行四边形是怎样的平行四边形呢?为什么?由此得到菱形判定定理3(从平行四边形⇒菱形)---对角线法:你能证明上面的这个判定定理3吗?已知:平行四边形ABCD中,对角线AC⊥BD 求证:四边形ABCD是菱形证明:3、思考:下列命题是否为真命题,如果是,简单说明理由,如果不是,请画图或举反例说明你的理由。
①有一组邻边相等的四边形是菱形;②三边都相等的四边形是菱形;③对角线互相垂直的四边形是菱形; ④对角线互相垂直平分的四边形是菱形归纳方法三、课堂小结菱形的判定方法:(1)从边的条件去考虑:①②定义法 .(2)从对角线的条件去考虑:③对角线互相 ,又是平行四边形.④对角线互相 且 ,只是四边形。
四、课堂作业1、在平行四边形ABCD 中,请你再添加一个条件 ,使得ABCD 是菱形2、如图,AD 是三角形ABC 的角平分线,DE ∥AB,DF ∥AC,求证:四边形AEDF 是菱形五、课后反思3、如图:矩形ABCD 中,E 、F 、G 、H 分别是各边的中点,求证:EFGH 是菱形(多种方法,看谁的方法最好)FC FDE AB。
菱形的判定 (23张PPT)学案
5.2.2 菱形的判定导学案班级姓名学习目标:1.经历菱形的判定方法的探究过程,掌握菱形的三种判定方法.2.经历利用菱形的定义探究菱形其它判定方法的过程,培养学生动手实验、观察、推理的意识,发展逻辑思维能力和演绎能力.3.在探究菱形判定方法的活动中获得成功的体验,通过运用菱形的判定和性质,锻炼克服困难的意志,建立自信心.学习重点:菱形的判定定理的探究学习难点:菱形的性质与判定的综合应用一.课前预学1.菱形的定义____________________________________________________________2.菱形的特征____________________________________________________________3.菱形的性质________________________________________________________________________________________________________________________二、课中导学我们可以根据定义来判定一个四边形是菱形.有一组邻边相等的平行四边形叫做菱形数学语言:_______________________________________________________________________________________ _______________________________取一张长方形纸片,按下图的方法对折两次,并沿图(3)中的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上。
议一议:(1)剪出的这个图形是哪一种四边形?一定是菱形吗?(2)根据折叠、裁剪的过程,这个四边形的边和对角线分别具有什么性质?(3)一个平行四边形具备怎样的条件,就可以判定它是菱形?想一想在四边形ABCD中,AB=BC=CD=DA,则四边形ABCD是菱形吗?总结归纳菱形的判定方法1:____________________________________________________________数学语言:__________________________________________________________________________________________________【思考】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?已知:如图,在□ABCD中,对角线AC、BD互相垂直,O为垂足。
八年级数学下册 18.2.2菱形的判定学案(新版)新人教版
八年级数学下册 18.2.2菱形的判定学案(新版)新人教版1、掌握菱形的判定,学会运用菱形的判定解决一些问题2、经历探索菱形判定的过程,发展学生主动探索,研究的习惯◇过程与方法:发展学生主动探索,研究的习惯◇情感与价值:帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣、【学习重点】XXXXX:菱形的性质【学习难点】XXXXX:菱形的性质的探究学法指导:指导学生学会数学语言,培养学生表达数学语言的能力。
课前预习知识准备一什么样的平行四边形是菱形?菱形有哪些性质?教材助读二1、有一组的平行四边形是菱形。
2、对角线的平行四边形是菱形。
预习自测三1、下列给出的条件中,能判定一个四边形是菱形的是()A、一组对边平行且相等,有一个角是直角B、两组对边分别相等,并且有一条对角线平分一组对角C、两条对角线互相平分,并且一组邻角相等D、一组对边平行,一组对边相等,并且对角线互相垂直2、在四边形ABCD中,给出四个条件:①AB=CD;② AD∥BC ;③AC⊥ BD ④AC平分∠BAD,由其中三个条件可推出四边形ABCD是菱形,你认为这三个条件是请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学探究解决。
课中探究学始于疑一什么样的平行四边形是菱形?什么样的四边形是菱形?质疑探究二基础知识探究探究点一菱形的判定定理一学生画图:先画两条等长的线段AB、AD,然后分别以B,D为圆心,AB为半径画弧,得两弧的交点C,连接BC,CD,得四边形ABCD?画出的四边形是什么四边形?为什么?(引导学生用菱形的定义说明)归纳总结:探究点二菱形的判定定理二用一长一短的两根细木条,在它们的中点处固定一个小钉,做成一个可转动的字,四周上套一根橡皮筋,做成一个四边形。
转动木条,这个四边形什么时候变成菱形?学生猜想后动手操作验证或多媒体演示学生总结,老师补充引导学生写出已知,求证,进行证明归纳总结XXXXX:知识综合应用探究探究点一菱形的判定例1、如图,平行四边形ABCD的对角线AC,BD交于点O,AB=5,AO=4 ,BO=3、求证:平行四边形ABCD是菱形。
菱形的判定 教案
菱形的判定教案教案标题:菱形的判定教案目标:1. 学生能够理解什么是菱形,并能够准确判定一个图形是否为菱形。
2. 学生能够运用菱形的特征进行问题解决,如计算菱形的周长和面积等。
教案步骤:引入活动:1. 引入菱形的概念,通过展示一张菱形的图片,询问学生是否知道这是什么形状,并引导学生描述菱形的特征。
探究活动:2. 提供一系列图形,包括正方形、长方形、梯形和菱形,让学生观察并分类这些图形。
3. 引导学生发现菱形的特征,如四条边长度相等、对角线互相垂直且长度相等等。
4. 指导学生运用这些特征来判定一个图形是否为菱形,通过提供一些实际例子进行练习。
展示活动:5. 展示一个图形,要求学生判断它是否为菱形,并解释判断的依据。
6. 让学生互相交换图形并进行判断,加强他们的理解和运用能力。
应用活动:7. 提供一些练习题,要求学生计算给定菱形的周长和面积。
8. 引导学生运用菱形的特征,如对角线长度和夹角等,来解决实际问题,如找出具有相同周长的不同菱形。
总结活动:9. 总结菱形的特征和判定方法,让学生用自己的话进行总结。
10. 鼓励学生提出问题和疑惑,并进行解答。
教案评估:11. 布置一些练习题,要求学生判断给定图形是否为菱形,并计算菱形的周长和面积。
12. 观察学生在应用活动中的表现,评估他们对菱形的理解和运用能力。
教案延伸:13. 引导学生研究其他多边形的特征和判定方法,扩展他们的几何知识。
这个教案旨在帮助学生理解菱形的特征和判定方法,通过实际问题的解决来巩固他们的学习。
教师可以根据学生的实际情况适当调整教学步骤和活动,确保教学的有效性和学生的参与度。
【学案】菱形的判定
科目数学 课题菱形的判定学 习目 标1、掌握菱形的判定定理并解决实际问题,会根据已知条件画出菱形2、能够运用综合法证明菱形的判定定理及其推论。
3、经历探索菱形判定的过程,培养学生的动手能力、观察能力及推理能力。
难点:运用综合法解决菱形的相关题型。
学法指导及使用说明:知识链接: 平行四边形的性质与判定 【学习过程】 一、课前自主学习菱形的对边 。
菱形的四边 。
菱形的性质: 菱形的对角线 。
菱形是 对称图形,又是 对称图形。
菱形的面积= 或 菱形的面积= 二、课内探索新知。
菱形的判定方法:方法一:(定义)有一组邻边相等的平行四边形是菱形 方法二:用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形? 通过探究,得到:对角线 的平行四边形是菱形。
证明上述结论:已知菱形的一条对角线你会做菱形吗?试一试备注(教师复备栏及学生笔记)备注(教师方法三:一个同学先画两条等长的线段、,然后分别以B、D为圆心,为半径画弧,得到两弧的交点C,连接、,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。
通过探究,得到:的四边形是菱形。
证明上述结论:三、例题巩固课本四、我的课堂我做主1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形.D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是()A.两条对角线相等B.两条对角线互相垂直C.两条对角线相等且垂直D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组或两条对角线.4、已知:如图的对角线的垂直平分线与边、分别交于E、F 复备栏及学生笔记)求证:四边形是菱形五、小结收获:六、课后作业备注(教师复备栏及学生笔记备注(教师复备栏及学生笔记备注(教师复备栏及学生笔记。
八年级数学下册 9.4 菱形的判定学案(新版)苏科版
八年级数学下册 9.4 菱形的判定学案(新版)苏科版1、会证明菱形的性质定理和判定定理2、能运用菱形的性质定理与判定定理进行计算与证明3、能运用菱形的性质定理与判定定理进行比较简单的综合推理与证明重点菱形判定定理的证明与应用难点、菱形判定定理的证明与应用【学习过程】ABCD自学课本79-80菱形的判定_____________________________________是菱形。
___________________________________是菱形。
________________________________________是菱形。
【基础题】1、判断(1)对角线互相垂直的四边形是菱形。
()(2)对角线互相平分的四边形是菱形。
()(3)两组对边分别平行,且对角线的四边形是菱形。
( )(4)两组对边分别相等,且对角线互相垂直的四边形是菱形。
()2、下列图形中,即是中心对称图形又是轴对称图形的是()A、等边三角形B、菱形C、等腰梯形D、平行四边形3、下列说法正确的是()A、菱形的对角线相等B、两组邻边分别相等的四边形是菱形C、对角线互相垂直的四边形是菱形D、菱形的对角线互相垂直平分、4、菱形的两条对角线长分别为6和8,则它的面积为______,周长为_____、【中档题】5、已知:如图,□ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F。
求证:四边形AFCE是菱形。
6、已知:如图,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,请判断四边形AEDF的形状,并说明理由。
7、如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形、8、如图,在Rt△ABC中,∠ACB=90,∠BAC=60,DE•垂直平分BC,垂足为D,交AB于点E,又点F在DE的延长线上,且AF=CE、求证:四边形ACEF为菱形。
CDEMABFN9、两个完全相同的矩形纸片、如图放置,,求证:四边形为菱形、【提高题】10、如图, 在△ABC中, AB=AC, 点M在边BC上, 过点M分别作AB、AC的平行线, 与AC、AB分别相交于点D、E、当点M位于BC的什么位置时, 四边形AEMD是菱形?请给予证明、。
八年级数学下册 18.2.2 菱形 第2课时 菱形的判定学案 (新版)新人教版
八年级数学下册 18.2.2 菱形第2课时菱形的判定学案 (新版)新人教版课前预习要点感知菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形、预习练习1-1 下列命题中,正确的是(D)A、有一个角是60的平行四边形是菱形B、有一组邻边相等的四边形是菱形C、有两边相等的平行四边形是菱形D、四条边都相等的四边形是菱形1-2 如图,四边形ABCD 的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的条件是(B)A、BA=BCB、AC,BD互相平分C、AC=BDD、AB∥CD02当堂训练知识点1 有一组邻边相等的平行四边形是菱形1、如图,若要使▱ABCD成为菱形,则可添加的条件是(C)A、AB=CDB、AD=BCC、AB=BCD、AC=BD2、(海南中考)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是(B)A、AB=BCB、AC=BCC、∠B=60D、∠ACB=603、已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB、求证:四边形AEDF是菱形、证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形、∵AD平分∠BAC,∴∠1=∠2、∵DE∥AC,∴∠2=∠3、∴∠1=∠3、∴AE=DE、∴四边形AEDF是菱形、知识点2 对角线互相垂直的平行四边形是菱形4、(潍坊中考)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC或AD=BC或AD∥BC或AB=BC,使ABCD成为菱形、(只需添加一个即可)5、如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF、(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形、证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB、又∵D是BC的中点,∴BD=DC、∴△BDF≌△CDE(AAS)、(2)由(1)知:△BDF≌△CDE,∴DF=DE,DB=DC、∴四边形BFCE是平行四边形、又∵AB=AC,BD=DC,∴AD⊥BC、∴四边形BFCE是菱形、知识点3 四条边都相等的四边形是菱形6、如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为(B)A、平行四边形B、菱形C、矩形D、以上都不对03课后作业7、(遵义中考)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是(C)A、AB=ADB、AC⊥BDC、AC=BDD、∠BAC=∠DAC8、如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点C、D,则直线CD即为所求、根据他的作图方法可知四边形ADBC一定是(B)A、矩形B、菱形C、正方形D、平行四边形9、如图,剪两张对边平行且宽度相等的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是菱形、10、如图,在矩形ABCD中,E是AD边上一点,连接BE,作BE的垂直平分线分别交AD、BC于点F,G,FG与BE的交点为O,连接BF和EG、试判断四边形BFEG的形状,并说明理由、解:四边形BFEG是菱形、理由如下:∵FG垂直平分BE,∴BO=EO,∠BOG=∠EOF=90,即FG⊥BE、在矩形ABCD中,AD∥BC,∴∠GBO=∠FEO、∴△BOG≌△EOF(ASA)、∴BG=EF、∴四边形BFEG是平行四边形、又∵FG⊥BE,∴四边形BFEG是菱形、11、如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF、求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形、证明:(1)∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90、∵四边形ABCD是平行四边形,∴∠A=∠C、在△AED和△CFD中,∴△AED≌△CFD(AAS)、(2)∵△AED≌△CFD,∴AD=CD、又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形、挑战自我12、如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF、(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论、解:(1)证明:∵E是AD的中点,∴AE=ED、∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE、∴△AFE≌△DBE(AAS)、∴AF=DB、∵AD是BC边上的中线,∴DB=DC、∴AF=DC、(2)四边形ADCF是菱形、理由:由(1)知,AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形、又∵AB⊥AC,∴△ABC 是直角三角形、∵AD是BC边上的中线,∴AD=BC=DC、∴四边形ADCF是菱形、。
菱形判定定理教案
菱形判定定理教案【篇一:菱形的判定(公开课教案)】菱形的判定授课教师:黄石授课班级:初二(10)班一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法.二、教学重点: 菱形判定方法的探究.三、教学难点: 菱形判定方法的探究及灵活运用.四、教学过程:活动1、引入新课,激发兴趣1、复习(1)菱形的定义:一组邻边相等的平行四边形是菱形。
(2)菱形的性质1 菱形的两组对边分别平行,四条边都相等;性质2 菱形的两组对角分别相等,邻角互补;性质3 菱形的两条对角线互相平分,菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
2、导入(1)如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么?根据菱形的定义可知:一组邻边相等的平行四边形是菱形.所以只要再有一组邻边相等的条件即可.(2)要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法【问题牵引】用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。
问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?学生猜想:对角线互相垂直的平行四边形是菱形。
教师提问:这个命题的前提是什么?结论是什么?学生用几何语言表示命题如下:已知:在□abcd中,对角线ac⊥bd,【归纳定理】通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1): 对角线互相垂直的平行四边形是菱形。
提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。
对角线互相垂直且平分的四边形是菱形。
活动3、菱形第二个判定方法的应用例3 如图,如图,□abcd的对角线ac、bd相交于点o,且ab=5,ao=4,bo=3,求证:□abcd是菱形。
菱形的判定教案
菱形的判定教案菱形的判定教案在数学教学中,菱形是一个常见的几何形状。
学生们在学习几何的过程中,需要学会如何判定一个图形是否是菱形。
本文将为大家介绍一个关于菱形的判定教案,帮助学生们更好地理解和掌握这一知识点。
一、引入在开始教学之前,教师可以通过引入一些有趣的问题来激发学生的兴趣。
例如,教师可以问学生:你们知道什么是菱形吗?有没有看到过菱形?请举例说明。
通过这样的引入,可以让学生们主动参与到教学中来。
二、概念解释在引入之后,教师需要对菱形的概念进行解释。
菱形是一个四边形,它的四条边都相等,并且对角线相交于垂直平分线。
这个概念解释可以通过示意图来进行说明,让学生们更加直观地理解。
三、菱形的性质接下来,教师可以向学生们介绍菱形的一些基本性质。
例如,菱形的对角线相等,菱形的对角线互相垂直,菱形的对角线平分菱形的两个内角等等。
通过这些性质的介绍,学生们可以更好地理解菱形的特点。
四、菱形的判定方法在学习了菱形的性质之后,学生们需要学会如何判定一个图形是否是菱形。
教师可以通过几个具体的例子来进行说明。
1. 判定方法一:四边相等法首先,教师可以告诉学生,如果一个四边形的四条边都相等,那么这个四边形就是菱形。
教师可以给学生一些图形,让他们自己判断是否是菱形,并给出理由。
2. 判定方法二:对角线垂直法其次,教师可以告诉学生,如果一个四边形的对角线相互垂直,那么这个四边形就是菱形。
同样地,教师可以给学生一些图形,让他们自己判断是否是菱形,并给出理由。
3. 判定方法三:对角线平分内角法最后,教师可以告诉学生,如果一个四边形的对角线平分这个四边形的两个内角,那么这个四边形就是菱形。
同样地,教师可以给学生一些图形,让他们自己判断是否是菱形,并给出理由。
通过以上的判定方法,学生们可以逐渐掌握如何判断一个图形是否是菱形的技巧。
五、练习与巩固在学习了菱形的判定方法之后,教师可以设计一些练习题来巩固学生们的知识。
例如,教师可以给学生一些图形,让他们判断是否是菱形,并给出理由。
《菱形判定》优秀教学设计
《菱形判定》优秀教学设计作为一位不辞辛劳的人民教师,就难以避免地要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
那么你有了解过教学设计吗?下面是店铺精心整理的《菱形判定》优秀教学设计,欢迎大家分享。
《菱形判定》优秀教学设计1一、教学目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.二、重点、难点1.教学重点:菱形的两个判定方法.2.教学难点:判定方法的证明方法及运用.三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.四、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、例习题分析例1 (教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵ 四边形ABCD是平行四边形,∴ AE∥FC.∴ ∠1=∠2.又∠AOE=∠COF,AO=CO,∴ △AOE≌△COF.∴ EO=FO.∴ 四边形AFCE是平行四边形.又EF⊥AC,∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.六、随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形的判定学案
一:复习:菱形有哪些特殊性质?
4. 边:__________________________;______________________________
5. 角:__________________________;______________________________
6. 对角线:_____________________________;___________________________________
二、学习新知
目标一:会用菱形的定义判定一个四边形是否是菱形,并会用该种方法进行有关的证明.
1. (菱形的判定方法一)菱形的定义:
有 的 叫做菱形.
2.用符号语言可以表示为:
∵四边形ABCD 是 四边形 ∵ ___ =____, ∴□ ABCD 是菱形
3.如图在△ABC 中,AD 平分∠BAC 交BC 于D 点,过D 作DE ∥AC 交AB 于E 点, 过D 作DF ∥AB 交AC 于F 点.
求证:(1)四边形AEDF 是平行四边形 (2)∠2﹦∠3 (3)四边形AEDF 是菱形
32
1F
E
D C B A
目标二:探究并掌握菱形的判定方法
1.( 画图)自学57页
2.你发现四边形ABCD 四边的关系是:
3.(猜想)四边相等的四边形ABCD 是一个_____形.
4.(证明)组内证明:“四边相等的四边形是菱形”
已知:如上图,在四边形_______中,____=____=____=____
求证:四边形ABCD 是_____.
证明:
5.(总结)由上写出菱形的判定方法:_______ . 利用上图用符号语言表示为:在四边形ABCD 中,
∵ ____=____=____=____ ∴四边形ABCD 是 形
目标三:探究并掌握菱形的判定方法三
阅读57页“思考”,利用自制的学具探究菱形的判定方法并完成下面各题 1.由“在一长一短的木条中点处固定一个小钉”可知: = , = ∴四边形ABCD 是 四边形 2.转动十字,当∠_____= °时即___ ⊥ ___时,四边形变成了菱形. 3. (猜想)对角线互相____ 的平行四边形是菱形.
4.请利用下图证明你的猜想:
已知:如图,在□ABCD 中,AC 和BD 是对角线,并且AC ⊥BD 于点O ,求证:□ABCD 是菱形.
O
D C B
A
5.总结写出菱形判定方法:
利用上图用符号语言可以表示为:∵四边形ABCD 是平行四边形,∵AC ___BD ,∴□ABCD 是菱形
目标四:利用菱形判定方法进行计算和证明
D
1.自学57页例4完成下题“在□ABCD 中,对角线AC 和BD 相交于点O ,并且AB =9,OB =6,OA
.求证:(1)AC ⊥BD (2)□ABCD 是菱形吗?说说你的理由. (3)求四边形ABCD 的面积.
O
D C B
A
2.判断题,对的画“√”错的画“×”
(1).对角线互相垂直的四边形是菱形( )
(2).一条对角线垂直另一条对角线的四边形是菱形( )
(3)..对角线互相垂直且平分的四边形是菱形( )
(4).对角线相等的四边形是菱形( )
三、小结:菱形的常用判定方法
四:拓展延伸
1.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗?
求证:(1)四边形ABCD 是平行四边形
(2) 过A 作AE ⊥BC 于E 点, 过A 作AF ⊥CD 于F .用等积法说明BC =CD .
(3) 求证:四边形ABCD 是菱形. A B C
D
E F
2.已知:如图,顺次连接矩形ABCD 各边中点,得到四边形EFGH ,求证:四边形EFGH 是菱形。
A
B C D E F
G
H
3. 如图,AC ⊥BC ,AE 平分∠CAB ,CD ⊥AB ,EF ⊥AB ,连接FG ,求证:CEFG 为菱形.。