第2课时 坐标系中的位似图形
第3章 3.6 第2课时 坐标系中的位似图形
11.如图,在 12×12 的正方形网格中,△TAB 的顶点坐标分别为 T(1,1)、 A(2,3)、B(4,2). (1)以点 T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1 在位似中心右侧将△TAB 放大为△TA′B′,放大后点 A、B 的对应点分别为 A′、B′,画出△TA′B′并写 出点 A′、B′的坐标; (2)在(1)中,若 C(a,b)为线段 AB 上任一点,写出变化 后点 C 的对应点 C′的坐标. 解:(1)如图,A′(4,7),B′(10,4); (2)C′(3a-2,3b-2).
7.(烟台中考)如图,在平面直角坐标系中,正方形 ABCD 与正方形 BEFG
是以原点 O 为位似中心的位似图形,且相似比为13,点 A、B、E 在 x 轴上,
若正方形 BEFG 的边长为 6,则 C 点坐标为( A )
A.(3,2)
B.(3,1)
C.(2,2)
D.(4,2)
8.如图,在平面直角坐标系中,矩形 OABC 的顶点坐标分别为 O(0,0)、A(2,0)、 B(2,1)、C(0,1),以原点 O 为位似中心,将矩形 OABC 放大为原图形的 2 倍, 记所得矩形为 OA1B1C1,B 的对应点为 B1,且 B1 在 OB 的延长线上,则 B1 的坐标为 (4,2) . 9.如图,正方形 ABCD 和正方形 OEFG 中,点 A 和点 F 的坐标分别为(3,2)、 (-1,-1),则两个正方形的位似中心的坐标是 (1,0)或(-5,-2) .
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/92021/9/92021/9/92021/9/99/9/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月9日星期四2021/9/92021/9/92021/9/9 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/92021/9/92021/9/99/9/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/92021/9/9September 9, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/92021/9/92021/9/92021/9/9
4.8 第2课时 平面直角坐标系中的位似变换教案1
第2课时 平面直角坐标系中的位似变换1.理解位似图形的坐标变化规律;(难点)2.能熟练在坐标系中根据坐标的变化规律作出位似图形.(重点)一、情景导入观察如图所示的坐标系中的几个图形,它们之间有什么联系?二、合作探究 探究点:平面直角坐标系中的位似变换 【类型一】 求在坐标系中进行位似变化对应点的坐标在平面直角坐标系中,已知点A(6,4),B (4,-2),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A.(3,2)B.(12,8)C.(12,8)或(-12,-8)D.(3,2)或(-3,-2)解析:根据题意画出相应的图形,找出点A 的对应点A ′的坐标即可.如图,△A ′B ′O 与△A ″B ″O 即为所作的位似图形,可求得点A 的对应点的坐标为(3,2)或(-3,-2).故选D. 方法总结:位似图形与位似中心有两种情况:(1)位似图形在位似中心两侧;(2)位似图形在位似中心同侧.若题中未指明位置关系,应该分两种情况讨论,防止漏解.【类型二】 在平面直角坐标系中画位似图形如图,在平面直角坐标系中,A (1,2),B (2,4),C (4,5),D (3,1)围成四边形ABCD ,作出一个四边形ABCD 的位似图形,使得新图形与原图形对应线段的比为2:1,位似中心是坐标原点.解析:以坐标原点O 为位似中心的两个位似图形,一种可能是位似图形在位似中心同侧,此时各顶点的坐标比为2;另一种可能是位似图形在位似中心的两侧,此时各顶点的坐标比为-2,此题作出一个即可.解:如图,利用位似变换中对应点的坐标的变化规律,分别取A′(2,4),B′(4,8),C′(8,10),D′(6,2),顺次连接A′B′,B′C′,C′D′,D′A′.则四边形A′B′C′D′就是四边形ABCD的一个位似图形.方法总结:画以原点为位似中心的位似图形的方法:将一个多边形各点的横坐标与纵坐标都乘±k(或除以±k),可得新多边形各顶点的坐标,描出这些点并顺次连接这些点即可.三、板书设计平面直角坐标系中的位似变换:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.位似变换是特殊的相似变换.以学生的自主探究为主线,培养学生的探索精神和合作意识.注重数形思想的渗透,通过坐标变换,在平面坐标系中,让学生画图、观察、归纳、交流,得出结论.在学习和探讨的过程中,体验特殊到一般的认知规律.通过交流合作,体验到成功的喜悦,树立学好数学的自信心.。
在平面直角坐标系中画位似图形课件
一般地,在平面直角坐标系中,如果以原点 为位似中心,新图形与原图形的相似比为k,那么 与原图形上的点(x,y)对应的位似图形上的点
的坐标为(kx,ky)或(-kx,-ky).
如何在平面直角坐标系中,以原点为 位似中心,画一个图形的位似图形?
例 如图,△ABO三个顶点的坐标分别为A(-2,4),
是 (kx , k. y)
3.当以原点为位似中心的两位似图形位于原 点异侧时,观察对应点的坐标有什么变化?
-2
C″(-10,0)
1 3
(-2,0) A″(-8,-8)
(-2,-1)
规律:在平面直角坐标系中,如果以原点为位似中 心,新图形与原图形的相似比为k,那么当两图形位 于原点异侧时,与原图形上的点(x , y)对应的位似图
区别:平移、轴对称、旋转三种图形变换都是全 等变换,而位似变换是相似(扩大或缩小)变换.
1、在平面直角坐标系中,以原点为位似中心作一个图形 的位似图形,可以作几个?
2、如果所作位似图形与原图形在原点的同侧,那么对应 顶点的坐标有什么变化规律?如果所作位似图形与原图形在 原点的异侧呢?
3、如何在平面直角坐标系中,以原点为位似中心,画一 个图形的位似图形?
1.观察在平面直角坐标系中,以原点为位似中 心作一个图形的位似图形,可以作几个?
平面直角坐标系中的位似
我们知道,在直角坐标系中,可以利用变 化前后两个多边形对应顶点的坐标之间的关系 表示某些平移、轴对称和旋转(中心对称).
y
类似地,位似也可以用两个图形坐标之间 的关系来表示.
位似图形在直角 坐标系中又有什 么规律呢?
O
x
认真阅读课本探究内容(注意圈点勾画), 思考下列问题:
第2课时坐标系中的位似图形
探究
在平面直角坐标系中,有两点A(6,3),B(6,0),以 原点O为位似中心,相似比为1:3,把线段AB缩小.
y A′(2,1), B′(2,0)
A
A'
o
B'
B
x
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,有两点A(6,3),B(6,0),以 原点O为位似中心,相似比为1:3,把线段AB缩小.
A′( -4 ,-6 ), B′( -4 ,-2 ), C′( -12 ,-4 )
y
A
C
B
x
o
B”
A”
知识要点
在平面直角坐标系中,如果位似变换 是以原点为位似中心,相似比为k,那么 位似图形对应点的坐标的比等于k或-k,则 像上的对应点的坐标为(kx,ky)或(- kx,-ky).
例题
在平面直角坐标系中, 四边形ABCD的四个顶点的坐标分
y A′(2,1),B′(2,0) A〞(-2,-1),B(-2,0)
A
A
x
A〞
观察对应点之间的坐标的变化,你有什么发现?
探究
放大后对应点的坐标分别是多少?
在平面直角坐标系中, △ABC三个顶点的坐标分 别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相 似比为2画它的位似图形.
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 ) y
A' 6
还有其他办法吗?
4 A
3
2
B'
C
1
B
o
2
4
6
在平面直角坐标系中画位似图形
(1)相似比为
1 2
;
y
z ( 1,4 )
y ( 5,4 )
S( 2,2 )
W ( 1,1 )
x ( 5,1 )
o
x
• 不经历风雨,怎么见彩虹 • 没有人能随随便便便成功!
复习回顾
如何把三角形ABC放大为原来的2倍?
E
B
O
C
F
D
A
D
B
O
C
F
A
E
对应点连线都交于_位__似___中__心____ 对应线段___平___行__或__在___一__条__直___线__上_________
探索1:
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为 位似中心,相似比为1:3,把线段AB缩小.
y A′(2,1), B′(2,0)
A
A'
x
o
B'
B
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,有两点A(6,3),B(6,0),以原 点O为位似中心,相似比为1:3,把线段AB缩小.
A′(2,1),B′(2,0) y
A〞(-2,-1),B(-2,0)
A
A'
B〞
x
o
B变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原点 为位似中心,相似比为k,那么位似图形对应点 的坐标的比等于k或-k.
探索2:
在平面直角坐标系中, △ABC三个顶点的坐标分别为 A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比 为2画它的位似图形.
放大后对应点的坐标分别是多少?
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
九年级数学下第27章相似27.3位似第2课时平面直角坐标系中的位似变换习题课人教
2.【教材P49例题变式】【中考·邵阳】如图,在平面直角
坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将
△AOB以坐标原点O为位似中心缩小为原图形的
1 2
,得到
△COD,则CD的长度是( A )
A.2 B.1 C.4 D.2 5
3.【教材P50练习T1变式】【2021·重庆】如图,在平面直 角坐标系中,将△OAB以原点O为位似中心放大后得到 △OCD,若B(0,1),D(0,3),则△OAB与△OCD的相 似比是( )
7.【2021·嘉兴】如图,在直角坐标系中,△ABC与△ODE 是位似图形,则它们位似中心的坐标是__(4_,__2_)__. 【点拨】如图所示.
点G(4,2)即为所求的位似中心.
8.【教材P50练习T2变式】如图,在同一象限内画出△ABC 以O为位似中心的位似三角形(△A′B′C′),使△ABC与 △A′B′C′的相似比是1 ∶2,并写出A′,B′,C′的坐标.
A.2 ∶1 B.1 ∶2 C.3 ∶1 D3), ∴OB=1,OD=3. ∵△OAB以原点O为位似中心放大后得到△OCD, ∴△OAB与△OCD的相似比是OB∶OD=1∶3.
【答案】D
4.【2021·东营】如图,在△ABC中,A、B两个顶点在x轴 的上方,点C的坐标是(1,0),以点C为位似中心,在x轴 的下方作△ABC的位似图形△A'B'C,并把△ABC的边长 放大到原来的2倍,设点B的横坐标是a,则点B的对应点 B′的横坐标是( )
12.如图,正方形OEFG和正方形ABCD是位似图形,点 F的坐标为(1,1),点C的坐标为(4,2),求这两个正 方形的位似中心的坐标.
【思路点拨】当位似中心在两个图形同旁时,位似中心是直线 CF与x轴的交点,这时只需求出直线CF对应的函数解析式, 即可求出交点坐标;当位似中心在两个图形之间时,其位似中 心是直线OC,BG的交点,这时只需求出两直线OC,BG对应 的函数解析式,即可求出其交点坐标.
平面直角坐标系中的位似变换
8),O(0, 0),C′ (10, 0); A"(-8,-8),O(0,0), C″ (-10, 0).
归纳
知1-导
在平面直角坐标系中,如果位似变换是以原点 为位似中心,相似比为k,那么位似图形对应点的坐 标的比等于k或-k.即若原图形的某一顶点坐标为(x0, y0),则其位 似 图 形 对 应 顶 点 的 坐 标 为 ( k x 0, k y 0) 或 (-kx0,-ky0).
知1-练
3 如图,线段CD的两个端点的坐标分别为C(1,2), D(2,0),以原点为位似中心,将线段CD放大得 到线段AB,若点B的坐标为(5,0),则点A的坐标 为( B ) A.(2,5) B.(2.5,5) C.(3,5) D.(3,6)
知1-练
4 (中考•东营)如图,在平面直角坐标系中,已知点 A(-3,6),B(-9,-3),以原点O为位似中心, 相似比为 1 , 把△ABO缩小,则点A的对应点A′的
事实上,幻灯机工作的实质是将图片中的图形放大. 本节知识将对上述问题作系统的讲解.
知1-导
知识点 1 平面直角坐标系中的位似变换
问题
如图(1),在直角坐标系中,有两点A(6,3),B(6,
0).以原点O为位似中心,相似 比为 1 ,把线段AB缩小.观察
3 对应点之间坐标的变化,你有
什么发现?
如图(2),△AOC三个顶点的
3
坐标是( D ) A.(-1,2) B.(-9,18) C.(-9,18)或(9,-18) D.(-1,2)或(1,-2)
知1-练
5 【中考·烟台】如图,在平面直角坐标系中,正方 形ABCD与正方形BEFG是以原点O为位似中心的 位似图形,且相似比为 1 , 点A,B,E在x轴上,
位似-在平面直角坐标系中画位似图形课件
探究2 当以原点为位似中心的两位似图形位于 原点异侧时,对应点的坐标有什么变化?
1 3
A″(-10,0)
-2
(-2,0) (-2,-1)
B″(-8,-8)
规律:在平面直角坐标系中,如果以原点为位似
中心,新图形与原图形的相似比为k,那么当两图形 位于原点异侧时,与原图形上的点(x , y)对应的位似 图形上的点的坐标是 (-kx , -k.y)
三角形, 使它与△ABO的
相似比为 3 .y26A 42
B
-4
-2 O
2
x
A′(-3,6)
y 6
还可以得到其他
图形吗?
A 4
2
B′(-3,0) B -2 O
2 B″ x
A″
至此,我们已经学习了平移、轴对称、旋转和 位似等图形的变化方式.你能在下图所示的图案中找 到它们吗?
平移、轴对称、旋转、位似变换的坐标变化规律
1 3
还有满足条 件的线段吗?
①画出线段AB
A′
②连接位似中心O
B″
A(6,3)
③找 1的对应点
O
B′
5 B(6,0)
x
3
A″
2、在直角坐标系中, △AOC 的三个顶点的 坐标分别为A(4,4), O(0,0),C(5,0).以点O 为位似中心,相似比为 2,将△AOC放大.
y
经过位似变 换还可以得到其 他图形吗?
课前展示
1.什么是位似图形?位似图形的 性质有哪些?
2.怎样画位似图形?
把下面四边形缩 小到原来的 1
2
3.图形的变换 平移,旋转,轴对称等。
y
5
A(1,3)
B(0,1)
在平面直角坐标系中画位似图形
探索2:
在平面直角坐标系中; △ABC三个顶点的坐标分别为 A2;3;B2;1;C6;2;以原点O为位似中心;相似比为2画 它的位似图形
放大后对应点的坐标分别是多少
A′ 4 ;6 ; B′ 4 ;2 ; C′ 12 ;4
y
A'
6
4 A
3
2
B'
C
1
B
o
2
4
6
还有其他办法吗
C'
x
12
在平面直角坐标系中; △ABC三个顶点的坐标分别 为A2;3;B2;1;C6;2;以原点O为位似中心;相似比 为2;将△ABC放大
复习回顾
1 什么叫位似图形
如果两个图形不仅相似;而且对应顶点的连线相 交于一点;像这样的两个图形叫做位似图形; 这个点 叫做位似中心; 这时的相似比又称为位似比
2 位似图形的性质
位似图形上的任意一对对应点到位似中心的 距离之比等于位似比
3 利用位似可以把一个图形放大或缩小
复习回顾
如何把三角形ABC放大为原来的2倍
E
B
O
C
F
A
D
D
O F
B C
A
E
对应点连线都交于_位__似___中__心____ 对应线段___平___行__或__在___一__条__直___线__上_________
探索1:
在平面直角坐标系中;有两点A6;3;B6;0;以原点O为位似 中心;相似比为1:3;把线段AB缩小
y A′2;1; B′2;0
放大后对应点的坐标分别是多少
A′ 4 ;6 ; B′ 4 ;2 ; C′ 12 ;4 y
A
C
B
4. 8. 2 坐标系中的位似图形
4.8.2 坐标中的位似关系学习目标:1. 知道位似图形在平面直角坐标系中的应用;2. 会根据相似比,求位似图形的顶点,以及根据位似图形对应点的坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.学习过程:预习导学阅读教材P115~117,自学“做一做”与“例2”,完成下列内容:(一)知识探究在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k ≠0),所对应的图形与原图形________,位似中心是________,它们的相似比为________.(二)自学反馈(1)如图,在平面直角坐标系中,有两点A(6,3)、B(6,0),以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?(2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点坐标的比为________.(3)△ABC 和△A 1B 1C 1关于原点位似且点A(-3,4),它的对应点A 1(6,-8),则△ABC 和△A 1B 1C 1的相似比是________.(4)已知△ABC 三顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O 为位似中心,相似比为2,把△ABC 放大得到其位似图形△A 1B 1C 1,则△A 1B 1C 1各顶点的坐标分别为A 1______________,B 1______________,C 1______________.合作探究活动1 小组讨论例1.如图,在平面直角坐标系中,△OAB 三个顶点的坐标分别是O (0,0),A (3,0),B (2,3).(1)将点O,A,B 的横坐标、纵坐标都乘2,得到三个点,以这三个点为顶点的三角形与△OAB 位似吗?如果位似,指出位似中心和相似比.(2)如果将点O,A,B 的横坐标、纵坐标都乘-2呢?例2.如图,在平面直角坐标系中,四边形ABCD 的顶点坐标分别是A (4, 2),B (8,6),C (6,10),D (-2,6).(1)将点A,B,C,D 的横坐标、纵坐标都乘以12,得到四个点,以这四个点为顶点的四边形与四边形ABCD 位似吗?如果位似,指出位似中心和相似比.(2)如果将点A, B, C, D 的横坐标、纵坐标都乘12呢?例3.在平面直角坐标系中,四边形OABC 的顶点坐标分别是O (0,0),A (6,0),B (3,6),C (-3,3).以原点为位似中心,画一个四边形,使它与四边形OABC 位似,且相似比是2:3.活动2 跟踪训练1.某个图形上各点的横、纵坐标都变成原来的12,连接各点所得的图形与原图形相比( ) A .完全没有变化 B .扩大成原来的2倍C .面积缩小为原来的14D .关于纵轴成轴对称 2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.在平面直角坐标系中,将坐标为(0,0)、(2,4)、(2,0)、(4,4)、(6,0)的点用线段顺次连接起来形成一个图案.(1)将这五个点的纵坐标不变,横坐标变为原来的13,求上述点的坐标,将所得的五个点用线段顺次连接起来,所得图案与原图案相比有什么变化?(2)横坐标不变,纵坐标分别减去3呢?(3)横坐标都加上3,纵坐标不变呢?(4)横、纵坐标都乘以-1呢?(5)横、纵坐标分别变成原来的2倍呢?面积如何变化?活动3 课堂小结课后检测1.如图,在平面直角坐标系中,以原点O 为位似中心,用上一课的方法画出五边形OBCDE 的位似图形,使它与五边形OBCDE 的相似比为1:2,比较两个图形对应点的坐标,你能发现那么?。
初中数学 人教版九年级下册27.3 位似 课件
OA OB OC OD 2
3. 顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.
A
B
D
A'
B'
D' C
y A
C. (3,2)
D. (3,1)
C
B
D x
随堂演练
2. 如图,线段CD的两个端点的坐标分别为C(1,2),D(2,0),
以原点为位似中心,将线段CD放大得到线段AB,若点B的坐
标为(5,0),则点A的坐标为( B )
A.(2,5)
B.(2.5,5)
C.(3,5)
D.(3,6)
随堂演练
3. 如图,某学习小组在讨论 “变化的鱼”时,知道大 鱼与小鱼是位似图形,则小鱼上的点 (a,b) 对应大 鱼上的点 (-2a,-2b) .
y 6
B
4 C
2
A″ O
-2
B″ -4
A 6x 4
C″
课堂总结
1.图形变换的种类: (1)全等变换:全等变换不改变图形的大小与形状,全等变换
包括平移、旋转、轴对称. (2)相似变换:相似变换改变图形的大小,不改变图形的形状,
位似是相似的特殊情况. 2. (1)当位似图形在原点同侧时,其对应顶点的坐标的比为 k(k>0),对应点为 (kx,ky);当位似图形在原点两侧时, 其对应顶点的坐标的比为-k,对应点为(﹣kx,﹣ky).
位似第2课时平面直角坐标系中的位似变换教案
第3章图形的相似
3.6 位似
【应用举例】
例1 [教材P99例] 如图3-6-44,在平面直角坐标系中,已知平行四边形OABC的顶点坐标分别为O(0,0),A(3,0),B(4,2),C(1,2).以坐标原点O为位似中心,将OABC放大为原图形的3倍.
图3-6-44
图3-6-45
解:将平行四边形OABC的各顶点的坐标分别乘3,得O(0,0),A′(9,0),B′(12,6),C′(3,6),依次连接点O,A′,B′,C′,则四边形OA′B′C′即为所要求的图形,如图3-6-45所示.
变式一如图3-6-46,在直角坐标系中,四边形OABC 的顶点坐标分别是O(0,0),A(3,0),B(4,4), C(-2,3).画出四边形OABC以O为位似中心的位似图形,使它与四边形OABC的位似比是2∶1.
图3-6-46
变式二如图3-6-47,在平面直角坐标系中,以原点O为位似中心,用上一节课的方法画出五边形OBCDE的位似图形,使它与五边形OBCDE的位似比为1∶2.比较两个图形对应点的坐标,你能发现什么?。
平面直角坐标系中的位似变换
。
(为5)A、'、如B图,' ,A△'、ABB均O' 缩在小图后中变格为点△上A,' B若'O,线其段中ABA上、有B的一对点应P点(m分, n别) ,则
点P在 A'B'上的对应点的坐标为( D )
A、( m , n) 2
C、(m, n) 2
B、 (m, n)
D、 (m , n ) 22
课堂小结
2 4 Ax
C''
B''
当堂练习
(1).在平面直角坐标系中,已知点A(6,4),B(4,-2),以原点O为位
似中心,相似比为 1 ,把△ABO缩小,则点A的对应点A'的坐
2
标是( D )
y
A
A' A''
B''
A.(3,2) C.(12,8)
O
x
B'
B
B.(12,8)或(-12,8) D.(3,2)或(-3,-2)
重点:能熟练在坐标系中根据坐标的变化规律做出位似图形 难点:理解位似图形的坐标变换规律.
问题探究
探究一:
如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为
O(0,0),A(3,0),B(2,2)
(1)将点O,A,B的横坐标、纵坐
标都乘2,得到三个点,画出以这
6y
D 三个点位为顶点的三角形ODE。
的相似是2:3.
y B
画法一:如右图所示,
解:将四边形OABC
各顶点的坐标都乘 2 ; 3
在平面直角坐标系中描点O(0,0),
A'(4,0),B'(2,4)C(-2,-2);
第2课时 位似图形的坐标变化规律
提纲挈领,重点突出.
【教学反思】
①[授课流程反思]
在教授本课时,以复习学过的图形和坐标变换为例,引出本节课的位似坐标变换,效果较好;在探究新知过程中,利用点的坐标变换规律的特征进行作图,培养学生的数形结合思想,学生能够更好地理解内容.
②[讲授效果反思]
本节课中,让学生自己通过观察、动手操作画出变换后的图形,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验.
1.通过对问题的探究,提高学生的观察能力、分析解决问题的能力,加强小组活动的效果,培养学生的作图能力和语言表达能力,拓宽学生的思维,让学生总结解决问题的方法,使学生获得成功的体验,增强学习的信心.
活动
二:
实践
探究
交流
新知
3.探究四种变换之间的区别和联系:
师生活动:师生共同总结位似、平移、轴对称、旋转等图形变换的基本变换规律:
情感态度
通过经历对位似图形的认识、操作、归纳等过程,激发学生探究问题的兴趣,得到解决问题的成功体验,培养学生之间的交流合作意识.
教学
重点
用图形中的点的坐标变化来表示图形的位似变换.
教学
难点
对平面直角坐标系下位似图形的点的坐标变化规律的归纳.
授课
类型
新授课
课时
教具
多媒体
教学活动
教学
步骤
师生活动
设计意图
你有什么发现?
利用解答问题的形式,探寻点的坐标规律,能提高学生的学习兴趣.
活动
二:
实践
探究
交流
新知
1.探究位似图形的坐标变化规律:
时平面直角坐标系中的位似课件
位似与平移、旋转的综合应用
位似与平移的综合应用
在平面直角坐标系中,可以利用位似和平移的组合实现图形的放大或缩小,同 时保持图形的形状和结构不变。
位似与旋转的综合应用
在平面直角坐标系中,可以利用位似和旋转的组合实现图形的旋转变换,同时 保持图形的形状和结构不变。
位似在几何作图中的应用
利用位似进行几何作图
位似性质
位似变换不改变图形的形状和大 小,但会改变图形的尺寸和比例 。
图形相似与位似
图形相似
在平面直角坐标系中,如果两个图形 可以通过相似变换得到,那么这两个 图形就叫做相似图形。
位似与相似关系
位似变换是相似变换的一种特殊形式 ,即当相似比为1时,就得到了位似变 换。
位似与距离关系
点与点之间的距离变化
02 平移、旋转及位似的关系
ቤተ መጻሕፍቲ ባይዱ
平移、旋转及位似的变换关系
平移变换
在平面直角坐标系中,平移变换 是指将图形沿x轴、y轴方向进行 移动,移动后的图形与原图形全
等。
旋转变换
在平面直角坐标系中,旋转变换是 指将图形绕原点旋转一定角度,旋 转后的图形与原图形全等。
位似变换
在平面直角坐标系中,位似变换是 指将图形缩小或放大一定比例,位 似变换后的图形与原图形相似,但 不全等。
综合应用
位似和相似三角形在实际应用中常常结 合使用,例如在解决几何问题时,可以 先利用位似将图形放大或缩小,再利用 相似三角形的性质求解。
VS
实例
例如在平面直角坐标系中,可以利用位似 构造相似三角形来研究函数图像的性质。
05 位似在平面几何问题中的应用
利用位似解决平面几何问题
01
02
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 坐标系中的位似图形
要点感知 一个多边形的顶点坐标分别扩大或缩小相同的倍数,所得的图形与原图形是以
为位似中心的位似图形.在平面直角坐标系中,如果位似是以原点为位似中心,位似比为k ,那么位似图形对应点的坐标的比等于 或 .
预习练习1-1 (2019·孝感)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E ′的坐标是( )
A.(-2,1)
B.(-8,4)
C.(-8,4)或(8,-4)
D.(-2,1)或(2,-1)
1-2 如图,已知O 是坐标原点,△OBC 与△ODE 是以O 点为位似中心的位似图形,且△OBC 与△ODE 的相似比为1∶2,如果△OBC 内部一点M 的坐标为(x ,y),则M 在△ODE 中的对应点M ′的坐标为( )
A.(-x ,-y)
B.(-2x ,-2y)
C.(-2x ,2y)
D.(2x ,-2y)
1-3 △ABC 和△A ′B ′C ′关于原点位似,且点A(-3,4),它的对应点A ′(6,-8),则△ABC 与△A ′B ′C ′的相似比是 .
知识点 以坐标原点为位似中心的位似图形的坐标变化规律
1.(2019·青岛)如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′点A ,B ,A ′,B ′均在图中在格点上.若线段AB 上有一点P(m ,n),则点P 在A ′B ′上的对应点P ′的坐标为( )
A.(2m ,n)
B.(m ,n)
C.(m ,2n )
D.(2m ,2
n )
2.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A(1,0)与点A ′(-2,0)是对应点,点B(2,2),则B ′点的坐标 .
3.如图,在平面直角坐标系中,△ABC 和△A ′B ′C ′是以坐标原点O 为位似中心的位似图形,且点B(3,1),B ′(6,
2).
(1)若点A(52
,3),则A ′的坐标为 ;
(2)若△ABC的面积为m,则△A′B′C′的面积= .
4.如图,△OAB三个顶点的坐标分别为O(0,0),A(1,2),B(3,0).以O为位似中心,画出一个△OA′B′,使得△OA′B′与△OAB的相似比为2∶1,并写出点A′和点B′的坐标.
5.如图,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)分别写出B,C两点的对应点B′,C′的坐标.
6.(2019·毕节)如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是( )
A.(2,4)
B.(-1,-2)
C.(-2,-4)
D.(-2,-1)
7.如图,已知点E(-4,2),点F(-1,-1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为( )
A.(2,-1)或(-2,1)
B.(8,-4)或(-8,4)
C.(2,-1)
D.(8,-4)
8.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点( )
A.(-2a,-2b)
B.(-a,-2b)
C.(-2b,-2a)
D.(-2a,-b)
9.如图,△ABC缩小后得到△A′B′C′,则△ABC与△A′B′C′的位似比为.
10.已知△ABC位于平面直角坐标系内如图.
(1)将△ABC各顶点的坐标分别乘以-2,作为点A1,B1,C1的坐标,画出△A1B1C1;
(2)试说明△A 1B 1C 1与△ABC 有什么关系?
11.已知△ABC 的三个顶点坐标如下表:
(1)将下表补充完整,并在直角坐标系中,画出△A ′B ′C ′;
(2)观察△ABC 与△A ′B ′C ′,写出有关这两个三角形关系的一个正确结论.
挑战自我
12.已知,△DEF 是△ABC 的位似三角形(点D ,E ,F 分别对应点A ,B ,C),原点O 为位似中心,△DEF 与△ABC 的位似比为k.
(1)若位似比k=12
,请你在平面直角坐标系的第四象限中画出△DEF ; (2)若位似比k=m ,△ABC 的周长为C ,则△DEF 的周长= ;
(3)若位似比k=n ,△ABC 的面积为S ,则△DEF 的面积= .
参考答案
课前预习
要点感知 坐标原点 k -k
预习练习1-1 D 1-2 B 1-3 1∶2
当堂训练
1.D
2.(-4,-4)
3.(1)(5,6)(2)4m
4.图略:A′(2,4),B′(6,0).
5.(1)图略.
(2)B′的坐标是(-6,2),C′的坐标是(-4,-2).
课后作业
6.C
7.B
8.A 9 .3∶1
10.(1)图略.
(2)△A1B1C1与△ABC以原点O为位似中心的位似图形,位似比为2.
11.(1) 8 6 10 2 ;
(2)△A′B′C′是△ABC放大2倍的位似图形.也可写出有关两三角形形状、大小、位置等关系,如△ABC∽△A′B′C′、周长比、相似比、位似比等.
12.(1)图略.
(2)∵位似比k=m,△ABC的周长为C,∴△DEF的周长=mC.
(3)∵位似比k=n,△ABC的面积为S,∴△DEF的面积=n2S.。