第三章3.1综合法

合集下载

数学:辽宁省丹东七中第三章《3.1平行四边形(一)》教案(北师大版九年级上)

数学:辽宁省丹东七中第三章《3.1平行四边形(一)》教案(北师大版九年级上)

第三章证明(三)总课时: 8 课时执笔人:牟杰使用人:备课时间:第三周上课时间:第五周第1课时 3.1平行四边形(一)1、教学目标:(1)掌握平行四边形的概念、性质及条件,了解它们之间的关系。

(2)能够用综合法证明平行四边形性质定理及等腰梯形相关结论。

2、过程与方法:经历探索、猜想、证明的过程,进一步发展推理论证能力和渗透数学思想方法。

3、情感态度与价值观:进一步让学生体会探索证明过程,感悟归纳类比、转化的数学思想。

教学重点:平行四边形的性质和等腰梯形的性质教学难点:探索证明过程,感悟归纳类比、转化的数学思想。

教学过程一、课前复习:(学生完成5分钟)问题提出:1.平行四边形有哪些性质?2.平行四边形有哪些判定条件?3.如何运用公理和已有的定理证明它们?二、导入新课:(学生探究得出证明过程10分钟)定理:平行四边形的对边相等已知:四边形ABCD是平行四边形求证:AB=CD,BC=DA拓展:由上面的证明过程,你还能得到什么结论?定理:平行四边形对角相等。

三、新课教学(学生分析出辅助线的引法并证明10分钟)例证明:等腰梯形在同一底上的两个角相等。

已知:在梯形ABCD中,AD∥BC,AB=DC求证:∠B=∠C, ∠A=∠D拓展:这个命题的逆命题成立吗?如果成立,请你证明它。

学生证明。

定理 : 同一底上的两个角相等的梯形是等腰梯形。

四、知识巩固(学生独立完成10分钟)P84随堂练习 1、2六、课堂小结:(师生共同总结5分钟)1、平行四边形的主要性质有:对边相等、对角相等,对边平行,对角线互相平分。

2、等腰梯形的性质和判定七、课外作业:A组:P84 1-4B组:P84 1-3C组:P84 1-2板书设计:教学反思:创造性地使用教材,相信学生并为学生提供充分展示自己的机会。

关注证明思路的获得以及证明过程中所蕴含的思想方法。

第三章评标办法(综合评估法)

第三章评标办法(综合评估法)

第三章评标办法(综合评估法)
评标办法前附表
备注:
1. 招标公告没有提出类似工程业绩要求的,资格评审时如果采用合格制,不得设置类似工程业绩要求;如果采用有限数量制,可以设置类似工程业绩要求。

2. 招标公告提出类似工程业绩要求的,资格评审时必须设置类似工程业绩要求,考核
期同“投标人须知前附表”3.1.2条,类似工程同招标公告。

3. 资格评审采用有限数量制时,评审标准中“企业诚信”中的“获奖情况”一栏,招标人可以参考企业信誉一览表内容(不应少于三类)自行确定评审项目类别及评分标准,也可完全自行设定评审类别及评分标准。

招标人自行设定评审类级及评分标准的,必须在此明确奖项有效期为:获奖证书颁发之日起二年内。

4. 人员资格岗位、职称、业绩、奖项等评分须附招标文件开始发售之时起至投标截止时间内投标人在广西建筑业企业诚信信息库内打印的相关材料并加盖投标人单位公章。

需要住房城乡建设主管部门进行入库审核的相关证明材料未通过广西建筑业企业诚信信息库审核的,在评审时不予承认。

北师版高中数学教材目录

北师版高中数学教材目录

北师大版高中教材目录第一章 集合§1 集合的含义与表示 §2 集合的基本关系 §3 集合的基本运算 3.1 交集与并集3.2 全集与补集第二章 函数§1 生活中的变量关系 §2 对函数的进一步认识 2.1 函数概念2.2 函数的表示法 2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像 4.2 二次函数的性质§5 简单的幂函数第三章 指数函数和对数函数 §1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充 2.2 指数运算的性质§3 指数函数3.1 指数函数的概念3.2 指数函数x y 2= 和xy ⎪⎭⎫ ⎝⎛=21 的图像和 性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算 4.2 换底公式§5 对数函数5.1 对数函数的概念 5.2 对数函数x y 2log =的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章 函数应用 §1 函数与方程1.1 利用函数性质判断方程解的存在 1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画 2.2 用函数模型解决实际问题 2.3 函数建模案例第一章 立体几何初步 §1 简单几何体1.1 简单旋转体 1.2 简单多面体§2 直观图 §3 三视图3.1 简单组合体的三视图 3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识 4.2 空间图形的公理§5 平行关系5.1 平行关系的判定 5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定 6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积§8 面积公式和体积公式的简单应用第二章 解析几何初步 §1 直线与直线的方程1.1 直线的倾斜角和斜率 1.2 直线的方程 1.3 两条直线的位置关系 1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程 2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差 4.2 标准差§5 用样本估计总体5.1 估计总体的分别5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2 变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3模拟方法——概率的应用第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义 4.2 单位圆与周期性4.3 单位圆与诱导公式§5 余弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3 正弦函数的性质§6 余弦函数的图像与性质6.1 余弦函数的图像6.2 余弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像和性质7.3 正切函数的诱导公式§8 函数)sin(ϕ+ω=xAy的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表述4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数 2.3 两角和与差的正切函数§3 二倍角的三角函数第一章数列§1 数列1.1 数列的概念1.2 数列的函数特性§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大小值§4 简单线性规划4.1 二元一次不等式组与平面区域 4.2 简单线性规划4.3 简单线性规划的应用第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1 空间向量的标准正交分解与坐标表示 3.2 空间向量基本定理3.3 空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1 直线间的夹角5.2 平面间的夹角5.3 直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点第一章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 综合法与分析法2.1 综合法2.2 分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.3 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第四章定积分§1 定积分的概念1.1 定积分背景——面积和路程问题 1.2 定积分§2 微积分基本定理§3 定积分的简单应用3.1 平面图形的面积3.2 简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法第一章计数原理§1 分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2 分类乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理5.1 二项式定理5.2 二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布6.1 连续型随机变量6.2 正态分布第三章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 独立性检验2.2 独立性检验的基本思想2.3 独立性检验的应用第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用 2.2 最大值、最小值问题第一章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 条件概率与独立事件2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 数学证明§3 综合法与分析法3.1 综合法3.2 分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法。

第三章评标办法综合评估法

第三章评标办法综合评估法

第三章评标办法(综合评估法) 第三章评标办法(综合评估法)一、综合评估法概述综合评估法是一种常用的评标办法,适用于各类采购项目。

该评标办法综合考虑了招标文件中所列评标指标的各项内容,对各投标人的技术能力、商务条件、价格等因素进行综合评估,以确定中标人。

二、综合评估法的步骤1.评标委员会组建:招标人应组建评标委员会,由专业人士组成,确保评标过程的公正、公平、透明。

2.评标指标确定:根据招标文件的要求和采购项目的特点,确定评标指标。

评标指标应包括技术能力、商务条件、价格等方面的内容。

3.投标文件评审:评标委员会对投标文件进行评审,评审内容包括技术方案、商务条件、价格等方面。

评审过程中,评标委员会应按照招标文件的要求进行评审,对每一项评标指标进行评分。

4.综合评估:评标委员会根据各项评分结果,进行综合评估,确定各投标人的综合评分。

综合评估可以采用加权平均法或其他方法进行。

5.中标人确定:根据综合评分结果,确定中标人。

中标人应是综合评分最高的投标人。

三、综合评估法的优点1.全面考量:综合评估法综合考虑了技术能力、商务条件、价格等因素,能够全面评估各投标人的综合实力。

2.公平公正:评标委员会的组建和评审过程都能确保评标的公平、公正。

评标委员会由专业人士组成,能够客观地评估各项指标。

3.灵活性:综合评估法可以根据不同的采购项目进行调整和优化,满足不同项目的评标需求。

四、综合评估法的局限性1.主观性:评标委员会的主观判断会对评标结果产生一定影响,可能存在个别评委主观偏向的情况。

2.评标指标的确定:评标指标的确定需要充分考虑采购项目的实际情况,并确保评标指标的科学性和可操作性。

3.加权平均法的不确定性:加权平均法对各项评分进行加权处理,权重确定的不准确可能会导致评分结果的偏差。

五、改进综合评估法的措施1.提高评标委员会的专业水平和素质,确保评标委员会的公正、公平。

2.完善评标指标的确定方法,确保评标指标的科学性和可操作性。

高中数学第三章3.1数系的扩充教学案苏教版选修73

高中数学第三章3.1数系的扩充教学案苏教版选修73

学习资料专题3.1 数系的扩充[对应学生用书P52]一、合情推理和演绎推理1.归纳和类比是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理.从推理形式上看,归纳是由部分到整体,个别到一般的推理,类比是由特殊到特殊的推理,演绎推理是由一般到特殊的推理.2.从推理所得结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确.从二者在认识事物的过程中所发挥作用的角度考虑,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得.合情推理可以为演绎推理提供方向和思路.二、直接证明和间接证明1.直接证明包括综合法和分析法:(1)综合法是“由因导果”.它是从已知条件出发,顺着推证,用综合法证明命题的逻辑关系是:A⇒B1⇒B2⇒…⇒B n⇒B(A为已经证明过的命题,B为要证的命题).它的常见书面表达是“∵,∴”或“⇒”.(2)分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,包括学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐B n⇐A.它的常见书面表达是“要证……只需……”或“⇐”.2.间接证明主要是反证法:反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法,反证法是间接证明的一种方法.反证法主要适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.三、数学归纳法数学归纳法是推理逻辑,它的第一步称为归纳奠基,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为归纳递推,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当n =k +1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的.⎣⎢⎡⎦⎥⎤对应阶段质量检测二 见8开试卷 一、填空题(本大题共14个小题,每小题5分,共70分,把答案填在题中横线上) 1.(新课标全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市.答案:A2.周长一定的平面图形中圆的面积最大,将这个结论类比到空间,可以得到的结论是________.解析:平面图形中的图类比空间几何体中的球,周长类比表面积,面积类比体积. 故可以得到的结论是:表面积一定的空间几何体中,球的体积最大. 答案:表面积一定的空间几何体中,球的体积最大3.下列说法正确的是________.(写出全部正确命题的序号)①演绎推理是由一般到特殊的推理 ②演绎推理得到的结论一定是正确的 ③演绎推理的一般模式是“三段论”形式 ④演绎推理得到的结论的正误与大、小前提和推理形式有关解析:如果演绎推理的大前提和小前提都正确,则结论一定正确.大前提和小前提中,只要有一项不正确,则结论一定也不正确.故②错误.答案:①③④4.“因为AC ,BD 是菱形ABCD 的对角线,所以AC ,BD 互相垂直且平分.”以上推理的大前提是________.答案:菱形对角线互相垂直且平分5.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=⎝ ⎛⎭⎪⎫S 1S 2·h 1h 2=14×12=18.答案:1∶86.(陕西高考)观察分析下表中的数据:解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F +V -E =2.答案:F +V -E =27.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的一个性质为________.解析:正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心,故可猜想:正四面体的内切球切于四个侧面各正三角形的中心.答案:正四面体的内切球切于四个侧面各正三角形的中心8.已知x ,y ∈R +,当x 2+y 2=________时,有x 1-y 2+y 1-x 2=1. 解析:要使x 1-y 2+y 1-x 2=1, 只需x 2(1-y 2)=1+y 2(1-x 2)-2y 1-x 2, 即2y 1-x 2=1-x 2+y 2. 只需使(1-x 2-y )2=0, 即1-x 2=y ,∴x 2+y 2=1. 答案:19.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=1,右边=21-1=1,等式成立; ②假设当n =k (k ∈N *)时,等式成立,即1+2+22+…+2k -1=2k-1;③则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,则当n =k +1时等式成立.由此可知,对任何n ∈N *,等式都成立.上述证明步骤中错误的是________.解析:因为③没有用到归纳假设的结果,错误. 答案:③10.如图,在平面直角坐标系xOy 中,圆x 2+y 2=r 2(r >0)内切于正方形ABCD ,任取圆上一点P ,若OP =m OA +n OB (m ,n ∈R ),则14是m 2,n 2的等差中项;现有一椭圆x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,任取椭圆上一点P ,若OP =m OA +n OB (m ,n ∈R ),则m 2,n 2的等差中项为________.解析:如图,设P (x ,y ),由x 2a 2+y 2b2=1知A (a ,b ),B (-a ,b ),由OP =m OA +n OB 可得⎩⎪⎨⎪⎧x =m -n a ,y =m +n b ,代入x 2a 2+y 2b2=1可得(m -n )2+(m +n )2=1,即m 2+n 2=12,所以m 2+n 22=14,即m 2,n 2的等差中项为14.答案:1411.(安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14.法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n ,故a 7=2×⎝ ⎛⎭⎪⎫226=14.答案:1412.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n +1,则a 的值为________.解析:由x +1x ≥2,x +4x 2=x +22x 2≥3,x +27x 3=x +33x 3≥4,…,可推广为x +nnxn ≥n +1,故a =n n.答案:n n13.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n 个图形中共有________个顶点.解析:设第n 个图形中有a n 个顶点, 则a 1=3+3×3,a 2=4+4×4,…,a n -2=n +n ·n ,a n =(n +2)2+n +2=n 2+5n +6.答案:n 2+5n +614.(湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n n +2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n , 六边形数 N (n,6)=2n 2-n ,……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.解析:N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列;数列{b k }是以12为首项,-12为公差的等差数列;所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.答案:1 000二、解答题(本大题共6个小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.证明:∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4⎝ ⎛⎭⎪⎫当a =12,b =12时等号成立,又1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4.⎝ ⎛⎭⎪⎫当a =12,b =12时等号成立∴1a +1b +1ab≥8.16.(本小题满分14分)已知数列{a n }满足a 1=1,a n +a n +1=⎝ ⎛⎭⎪⎫15n (n ∈N *),若T n =a 1+a 2·5+a 3·52+…+a n ·5n -1,b n =6T n -5na n ,类比课本中推导等比数列前n 项和公式的方法,求数列{b n }的通项公式.解:因为T n =a 1+a 2·5+a 3·52+…+a n ·5n -1,①所以5T n =a 1·5+a 2·52+a 3·53+…+a n -1·5n -1+a n ·5n,②由①+②得:6T n =a 1+(a 1+a 2)·5+(a 2+a 3)·52+…+(a n -1+a n )·5n -1+a n ·5n=1+15×5+⎝ ⎛⎭⎪⎫152×52+…+⎝ ⎛⎭⎪⎫15n -1×5n -1+a n ·5n=n +a n ·5n, 所以6T n -5n a n =n ,所以数列{b n }的通项公式为b n =n .17.(本小题满分14分)观察①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两式的结构规律,你能否提出一个猜想?并证明你的猜想. 解:观察40°-10°=30°,36°-6°=30°, 由此猜想:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34.证明:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=sin 2α+cos 2(30°+α)+sin α(cos 30°cos α-sin 30°sin α) =sin 2α+cos 2(30°+α)+32sin αcos α-12sin 2α =12sin 2α+cos 2(30°+α)+34sin 2α =1-cos 2α4+1+cos 60°+2α2+34sin 2α =1-cos 2α4+12+14cos 2α-34sin 2α+34sin 2α =34. 18.(本小题满分16分)已知实数a 、b 、c 满足0<a ,b ,c <2,求证:(2-a )b ,(2-b )c ,(2-c )a 不可能同时大于1.证明:假设(2-a )b >1,(2-b )c >1,(2-c )a >1, 则三式相乘:(2-a )b (2-b )c (2-c )a >1① 而(2-a )a ≤⎝⎛⎭⎪⎫2-a +a 22=1,同理,(2-b )b ≤1,(2-c )c ≤1, 即(2-a )b (2-b )c (2-c )a ≤1, 显然与①矛盾, 所以原结论成立.19.(本小题满分16分)数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1,a 2,a 3,a 4,并由此猜想通项a n 的表达式;(2)用数学归纳法证明(1)中的猜想.解:(1)由S n =2n -a n ,得,a 1=2-a 1,即a 1=1.S 2=a 1+a 2=4-a 2,解得a 2=32. S 3=a 1+a 2+a 3=6-a 3,解得a 3=74. S 4=a 1+a 2+a 3+a 4=8-a 4,解得a 4=158.由此猜想a n =2n-12n -1(n ∈N *).(2)①当n =1时,a 1=1,结论成立.②假设当n =k (k ∈N *)时,结论成立,即a k =2k-12k -1,那么当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, 则a k +1=2+a k 2=2+2k-12k -12=2k +1-12k=2k +1-12k +-1, 这就是说当n =k +1时,结论也成立. 根据①和②,可知猜想对任何n ∈N *都成立, 即a n =2n-12n -1(n ∈N *).20.(本小题满分16分)已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n+1),(1)证明:a n ≥2n -1(n ∈N *).(2)试比较11+a 1+11+a 2+…+11+a n 与1的大小,并说明理由.解:(1)证明:∵f ′(x )=x 2-1, ∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立; ②假设当n =k (k ≥1,k ∈N *)时命题成立, 即a k ≥2k-1;那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立.(2)∵a n ≥2n -1,∴1+a n ≥2n,∴11+a n ≤12n .∴11+a 1+11+a 2+…+11+a n ≤12+122+…+12n =1-12n <1.。

初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)

初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)

初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率一、单选题1.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.2.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A. B. C. D.3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、综合题5.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.6.九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:15 20 10已知前面两个小组的人数之比是.解答下列问题:(1)________.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)7.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)________,________;(2)扇形统计图中“科学类”所对应扇形圆心角度数为________ ;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.8.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.9.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)答案解析部分一、单选题1. A解:用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场馆的有3种情况,∴两人恰好选择同一场馆的概率=故答案为:A【分析】由题意可知,此事件是抽取放回,列出树状图,根据树状图求出所有等可能的结果数及两人恰好选择同一场馆的可能数,然后利用概率公式求解。

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)第一章:综合法的介绍1.1 教学目标:了解综合法的定义和应用范围。

掌握综合法的步骤和技巧。

1.2 教学内容:综合法的定义和意义。

综合法的应用领域,如科学研究、工程设计等。

综合法的步骤,包括问题定义、信息收集、方案设计等。

综合法的技巧,如图表制作、数据分析等。

1.3 教学方法:讲授法:介绍综合法的定义、应用领域和步骤。

案例分析法:分析实际案例中的应用实例。

小组讨论法:分组讨论综合法的技巧和难点。

1.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第二章:分析法的介绍2.1 教学目标:了解分析法的定义和应用范围。

掌握分析法的步骤和技巧。

2.2 教学内容:分析法的定义和意义。

分析法的应用领域,如企业管理、市场研究等。

分析法的步骤,包括问题定义、数据收集、因素分析等。

分析法的技巧,如数据可视化、假设验证等。

2.3 教学方法:讲授法:介绍分析法的定义、应用领域和步骤。

案例分析法:分析实际案例中的应用实例。

小组讨论法:分组讨论分析法的技巧和难点。

2.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第三章:综合法和分析法在科学研究中的应用3.1 教学目标:了解综合法和分析法在科学研究中的具体应用。

掌握相应的应用技巧和注意事项。

3.2 教学内容:综合法和分析法在科学研究中的常见应用场景。

具体的应用技巧,如数据整合、信息提炼等。

应用过程中的注意事项,如数据准确性、逻辑严密性等。

3.3 教学方法:讲授法:讲解综合法和分析法在科学研究中的应用。

案例分析法:分析具体案例中的应用实例。

小组讨论法:分组讨论应用过程中的技巧和难点。

3.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第四章:综合法和分析法在工程设计中的应用4.1 教学目标:了解综合法和分析法在工程设计中的具体应用。

21人教版高中a版数学同步必修2 第三章3.1~3.3综合拔高练(可编辑word)

21人教版高中a版数学同步必修2  第三章3.1~3.3综合拔高练(可编辑word)

3.1~3.3综合拔高练三年模拟练一、选择题1.(2020江西南昌二中高二期末,★★☆)直线x+(a2+1)y-1=0的倾斜角的取值范围是( )A.[135°,180°]B.[45°,135°]C.(0,45°]D.[135°,180°)2.(2020西安电子科技大学附属中学高一期末,★★☆)若A(3,-2)、B(-9,4)、C(x,0)三点共线,则x的值为( )A.1B.-1C.0D.73.(2020湖南雅礼中学高一期末,★★☆)已知直线l:kx-y+2-k=0过定点M,点P(x,y)在直线m:2x+y-1=0上,则|MP|的最小值是( )A.√10B.3√55C.√6D.3√54.(★★☆)已知直线l1:x+2y+t2=0和直线l2:2x+4y+2t-3=0,则当l1与l2间的距离最短时,t的值为( )A.1B.12C.13D.25.(★★☆)直线l过点A(3,4),且与点B(-3,2)的距离最远,则l的方程为( )A.3x-y-13=0B.3x-y+13=0C.3x+y-13=0D.3x+y+13=0二、填空题6.(2018山东淄博桓台二中高一期末,★★☆)过点P(2,3)且在两坐标轴上的截距相等的直线方程为.7.(★★☆)一条光线沿直线2x-y+2=0入射到直线x+y-5=0后反射,则反射光线所在直线的方程为.三、解答题8.(2018吉林吉化一中高一期末,★★☆)已知△ABC的边AC,AB上的高所在直线的方程分别为2x-3y+1=0,x+y=0,顶点A(1,2),求BC边所在直线的方程.9.(2018广西桂林高一期末,★★☆)已知直线l经过点P(-2,1),且与直线x+y=0垂直.(1)求直线l的方程;(2)若直线m与l平行,且点P到直线m的距离为√2,求直线m的方程.10.(2019江苏扬州中学高一月考,★★☆)设直线l1:mx-2my-6=0与l2:(3-m)x+my+m2-3m=0,且l1∥l2.(1)求l1,l2之间的距离;(2)求l1关于l2对称的直线方程.11.(2019黑龙江哈尔滨三中高二月考,★★☆)已知菱形ABCD的一边所在的直线方程为x-y+4=0,一条对角线的两个端点分别为A(-2,2)和C(4,4).(1)求对角线AC和BD所在直线的方程;(2)求菱形另三边所在直线的方程.答案全解全析三年模拟练一、选择题1.D 易知直线的斜率存在,且为-1a 2+1,由于a 2+1≥1,所以-1a 2+1∈[-1,0),对应的倾斜角的取值范围是[135°,180°).故选D.2.B 由三点共线,可得k AB =k AC ,即4-(-2)-9-3=0-(-2)x -3,解得x=-1,故选B.3.B 解法一:直线l 的方程为kx-y+2-k=0,即k(x-1)-y+2=0,过定点M(1,2),当MP⊥m 时,|MP|有最小值,此时|MP|=√22+12=3√55. 解法二:易知直线l 过定点M(1,2),∵点P(x,y)在直线2x+y-1=0上,∴y=1-2x,∴|MP|=√(x -1)2+(1-2x -2)2 =√5x 2+2x +2=√5(x +15)2+95, 故当x=-15时,|MP|取得最小值3√55,故选B. 4.B ∵直线l 2:2x+4y+2t-3=0即为直线x+2y+2t -32=0,∴直线l 1∥直线l 2. ∴l 1与l 2间的距离d=|t 2-2t -32|√12+22=(t -12)2+54√5≥√54,当且仅当t=12时取等号.∴当l 1与l 2间的距离最短时,t 的值为12.5.C 由已知可知l 是过点A 且与AB 垂直的直线,因为k AB =2-4-3-3=13,所以k l =-3.由直线的点斜式方程得y-4=-3(x-3),即3x+y-13=0.二、填空题6.答案 x+y-5=0或3x-2y=0解析 若截距不为0,则可设直线方程为x a +y a =1,把P(2,3)代入得2a +3a =1,解得a=5,故直线方程为x+y-5=0;若截距为0,则可设直线方程为y=kx,k≠0,把P(2,3)代入得3=2k,即k=32,故直线方程为3x-2y=0. 综上,所求直线方程为x+y-5=0或3x-2y=0.7.答案 x-2y+7=0解析 由{2x -y +2=0,x +y -5=0解得{x =1,y =4,记为点A(1,4).在直线2x-y+2=0上任取一点P(0,2),设点P 关于直线x+y-5=0对称的点为P'(a,b),则{a 2+b+22-5=0,b -2a -0×(-1)=-1,解得{a =3,b =5,所以P'(3,5),于是反射光线所在直线就是直线AP',其方程为y-4=4-51-3(x-1),整理得x-2y+7=0.三、解答题 8.解析 因为AC 边上的高所在直线的方程为2x-3y+1=0,所以直线AC 的斜率为-32. 所以直线AC 的方程为y-2=-32(x-1),即3x+2y-7=0.同理,直线AB 的方程为x-y+1=0.由{3x +2y -7=0,x +y =0得顶点C 的坐标为(7,-7).由{x -y +1=0,2x -3y +1=0得顶点B 的坐标为(-2,-1). 所以直线BC 的斜率为-1-(-7)-2-7=-23. 所以直线BC 的方程为y+1=-23(x+2),即2x+3y+7=0.9.解析 (1)由题意知直线l 的斜率为1,故直线l 的方程为y-1=x+2,即x-y+3=0.(2)由直线m 与直线l 平行,可设直线m 的方程为x-y+c=0(c≠3), 由点到直线的距离公式得√12+(-1)=√2,即|c-3|=2,解得c=1或c=5.故直线m 的方程为x-y+1=0或x-y+5=0.10.解析 (1)由直线l 1的方程可以得到m≠0,由l 1∥l 2,得m 3-m =-2mm ≠-6m 2-3m ,∴m=6,∴l 1:x-2y-1=0,l 2:x-2y-6=0, ∴l 1,l 2之间的距离d=√12+(-2)=√5.(2)因为l 1∥l 2,所以不妨设l 1关于l 2对称的直线方程为l 3:x-2y+λ=0,λ≠-1且λ≠-6,易知l 2到l 1的距离等于l 2到l 3的距离,任取l 2上一点(6,0),则d=√12+(-2)=√5,故λ=-11或λ=-1(舍).∴l 3的直线方程为x-2y-11=0 .11.解析 (1)因为A(-2,2)和C(4,4),所以设AC 的方程为y=kx+b,则{2=-2k +b ,4=4k +b ,解得{k =13,b =83.所以直线AC 的方程为y=13x+83,即x-3y+8=0. 设线段AC 的中点为M,则M(1,3),因为四边形ABCD 为菱形,所以对角线BD 与AC 垂直且平分,易知与线段AC 垂直平分的直线的斜率k=-3,所以BD 所在直线的方程为y=-3(x-1)+3 ,即3x+y-6=0.(2) 因为A(-2,2)在直线x-y+4=0上,不妨设x-y+4=0是AB 所在直线的方程,则直线DC 与直线AB 平行且过点C,所以DC 所在直线的方程为x-y=0.联立直线AB 与直线BD 的方程,得{y =x +4,y =-3x +6,解得{x =12,y =92.所以B (12,92). 所以BC 所在直线的方程为x+7y-32=0.因为BC∥AD,两条直线斜率相等,且直线AD 经过A,所以设AD 所在直线的方程为x+7y+b=0,b≠-32,代入A 点坐标,解得b=-12.所以AD 所在直线的方程为x+7y-12=0.综上,另外三条直线的方程分别为x-y=0,x+7y-32=0,x+7y-12=0.。

高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式3.1.3二倍角的正弦余弦正切公式学案

高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式3.1.3二倍角的正弦余弦正切公式学案

3.1.3 二倍角的正弦、余弦、正切公式学习目标 1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式. 2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一 二倍角公式的推导思考1 二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?答案 sin2α=sin(α+α)=sin αcos α+cos αsin α =2sin αcos α;cos2α=cos(α+α)=cos αcos α-sin αsin α =cos 2α-sin 2α; tan2α=tan(α+α)=2tan α1-tan 2α(α≠π2+k π,2α≠π2+k π,k ∈Z ). 思考2 根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos2α?答案 cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1; 或cos2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二 二倍角公式的变形 1.公式的逆用2sin αcos α=sin2α,sin αcos α=12sin2α,cos 2α-sin 2α=cos_2α,2tan α1-tan 2α=tan2α. 2.二倍角公式的重要变形——升幂公式和降幂公式 升幂公式1+cos2α=2cos 2α,1-cos2α=2sin 2α, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.降幂公式cos 2α=1+cos2α2,sin 2α=1-cos2α2.1.sin α=2sin α2cos α2.( √ )2.cos4α=cos 22α-sin 22α.( √ ) 3.对任意角α,tan2α=2tan α1-tan 2α.( × ) 提示 公式中所含各角应使三角函数有意义.如α=π4及α=π2,上式均无意义.类型一 给角求值 例1 (1)计算:cos2π12-sin 2π12; 考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值 解 原式=cos π6=32.(2)计算:1-tan 275°tan75°;考点 应用二倍角公式化简求值 题点 利用正切的二倍角公式化简求值解 1-tan 275°tan75°=2·1-tan 275°2tan75°=2·1tan150°=-2 3.(3)计算:cos20°cos40°cos80°. 考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值解 原式=12sin 20°·2sin 20°cos 20°cos 40°cos 80°=12sin 20°·sin 40°·cos 40°cos 80°=122sin 20°sin 80°cos 80° =123sin 20°·sin 160°=sin 20°23sin 20°=18. 反思与感悟 对于给角求值问题,一般有两类(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1 (1)cos π7cos 3π7cos 5π7的值为( )A.14B .-14C.18D .-18考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值 答案 D解析 cos π7cos 3π7cos 5π7=cos π7·⎝ ⎛⎭⎪⎫-cos 4π7·⎝ ⎛⎭⎪⎫-cos 2π7=2sin π7cos π7cos 2π7cos4π72sinπ7=sin 2π7cos 2π7cos 4π72sin π7=sin 4π7cos4π74sinπ7=sin8π78sinπ7=-18.(2)12-cos 2π8=________; 考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值答案 -24解析 原式=12⎝ ⎛⎭⎪⎫1-2cos 2π8=-12cos π4=-24.类型二 给值求值例2 (1)若sin α-cos α=13,则sin2α=________.考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案 89解析 (sin α-cos α)2=sin 2α+cos 2α-2sin αcos α=1-sin2α=⎝ ⎛⎭⎪⎫132,即sin2α=1-⎝ ⎛⎭⎪⎫132=89.(2)若tan α=34,则cos 2α+2sin2α等于( )A.6425B.4825C .1D.1625考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案 A解析 cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α. 把tan α=34代入,得cos 2α+2sin 2α=1+4×341+⎝ ⎛⎭⎪⎫342=42516=6425.故选A.引申探究在本例(1)中,若改为sin α+cos α=13,求sin2α.解 由题意,得(sin α+cos α)2=19,∴1+2sin αcos α=19,即1+sin 2α=19,∴sin 2α=-89.反思与感悟 (1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论. (2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2 (1)(2017·石家庄高一检测)若sin(π-α)=13,且π2≤α≤π,则sin2α的值为( ) A .-429B .-229C.229D.429考点 二倍角的正弦、余弦、正切公式 题点 利有二倍角公式求二倍角的正弦值 答案 A解析 因为sin(π-α)=13,所以sin α=13,又因为π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin2α=2sin αcos α=2×13×⎝ ⎛⎭⎪⎫-223=-429. (2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝ ⎛⎭⎪⎫2α-π6=________.考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案2425解析 因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0, 所以α+π6为锐角,sin ⎝ ⎛⎭⎪⎫α+π6=45, 则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425.又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,所以cos ⎝ ⎛⎭⎪⎫2α-π6=2425. 类型三 利用二倍角公式化简证明 例3 (1)化简:1+sin2θ-cos2θ1+sin2θ+cos2θ.考点 应用二倍角公式化简求值 题点 利用二倍角公式化简三角函数式 解 方法一 原式=-cos 2θ+sin 2θ+cos 2θ+sin 2θ=2sin 2θ+2sin θcos θ2cos 2θ+2sin θcos θ=2sin θθ+cos θ2cos θθ+sin θ=tan θ.方法二 原式=θ+cos θ2-2θ-sin 2θθ+cos θ2+2θ-sin 2θ=θ+cos θθ+cos θ-θ-sin θθ+cos θθ+cos θ+θ-sin θ=2sin θ2cos θ=tan θ.(2)求证:4sin αcos α1+cos2α·cos 2αcos 2α-sin 2α=tan2α. 考点 三角恒等式的证明 题点 三角恒等式的证明证明 左边=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α=右边. 反思与感悟 三角函数式化简、证明的常用技巧 (1)特殊角的三角函数与特殊值的互化.(2)对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分. (3)对于二次根式,注意二倍角公式的逆用. (4)利用角与角之间的隐含关系,如互余、互补等.(5)利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等. 跟踪训练3 α为第三象限角,则1+cos2αcos α-1-cos2αsin α=________.考点 应用二倍角公式化简求值 题点 利用二倍角公式化简三角函数式 答案 0解析∵α为第三象限角,∴cosα<0,sinα<0,∴1+cos2αcosα-1-cos2αsinα=2cos2αcosα-2sin2αsinα=-2cosαcosα--2sinαsinα=0.1.(2017·山东)已知cos x =34,则cos2x 等于( )A .-14B.14C .-18D.18考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角的余弦值 答案 D解析 cos2x =2cos 2x -1=2×⎝ ⎛⎭⎪⎫342-1=18.故选D.2.sin15°sin75°的值是( ) A.12B.32C.14D.34考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角的正弦值 答案 C解析 sin15°sin75°=sin15°cos15°=12sin30°=14.3.sin4π12-cos 4π12等于( ) A .-12B .-32C.12D.32考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值 答案 B 解析 原式=⎝⎛⎭⎪⎫sin 2π12+cos 2π12·⎝ ⎛⎭⎪⎫sin 2π12-cos 2π12 =-⎝⎛⎭⎪⎫cos2π12-sin 2π12=-cos π6=-32. 4.3tanπ81-tan2π8=________.考点 应用二倍角公式化简求值题点 利用正切的二倍角公式化简求值 答案 32解析 原式=32×2tanπ81-tan2π8=32tan ⎝ ⎛⎭⎪⎫2×π8=32tan π4=32. 5.证明:sin α+11+sin α+cos α=12tan α2+12.考点 三角恒等式的证明 题点 三角恒等式的证明证明 ∵左边=2tanα21+tan2α2+11+2tan α21+tan 2 α2+1-tan2α21+tan2α2=tan2α2+2tan α2+11+tan 2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n 是α2n +1的二倍(n ∈N *).2.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.常用形式:①1+cos2α=2cos 2α;②cos 2α=1+cos2α2;③1-cos2α=2sin 2α;④sin 2α=1-cos2α2.一、选择题1.已知α是第三象限角,cos α=-513,则sin2α等于( )A .-1213B.1213C .-120169D.120169考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角的正弦值 答案 D解析 由α是第三象限角,且cos α=-513,得sin α=-1213,所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-1213×⎝ ⎛⎭⎪⎫-513=120169,故选D.2.(2017·全国Ⅲ)已知sin α-cos α=43,则sin2α等于( )A .-79B .-29C.29D.79考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值 答案 A解析 ∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin2α=169,∴sin2α=-79.故选A.3.已知α为锐角,且满足cos2α=sin α,则α等于( ) A .30°或60° B .45° C .60°D .30°考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值答案 D解析 因为cos2α=1-2sin 2α,故由题意,知2sin 2α+sin α-1=0,即(sin α+1)(2sin α-1)=0.因为α为锐角,所以sin α=12, 所以α=30°.故选D.4.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan2x 等于( ) A.724B .-724C.247D .-247考点 二倍角的正弦、余弦、正切公式题点 利用二倍角公式求二倍角的正切值答案 D解析 由cos x =45,x ∈⎝ ⎛⎭⎪⎫-π2,0,得sin x =-35, 所以tan x =-34, 所以tan2x =2tan x 1-tan 2x =2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247,故选D. 5.2-sin 22+cos4的值是( )A .sin2B .-cos2 C.3cos2D .-3cos2考点 应用二倍角公式化简求值题点 利用余弦的二倍角公式化简求值答案 D解析 原式=1+cos 22+2cos 22-1=3cos 22=-3cos2. 6.函数f (x )=cos2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A .4B .5C .6D .7考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 B解析 f (x )=1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,所以当sin x =1时,f (x )的最大值为5.7.已知α为第二象限角,sin α+cos α=33,则cos2α等于( ) A .-53B .-59C.59D.53 考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 A解析 由题意得(sin α+cos α)2=13, ∴1+sin 2α=13,sin 2α=-23. ∵α为第二象限角,∴cos α-sin α<0.又∵sin α+cos α>0,∴cos α<0,sin α>0,且|cos α|<|sin α|,∴cos 2α=cos 2α-sin 2α<0,∴cos 2α=-1-sin 22α =-1-⎝ ⎛⎭⎪⎫-232=-1-49=-53,故选A. 二、填空题8.sin6°sin42°sin66°sin78°=________. 考点 应用二倍角公式化简求值题点 利用正弦的二倍角公式化简求值答案 116解析 原式=sin6°cos48°cos24°cos12° =sin6°cos6°cos12°cos24°cos48°cos6° =sin96°16cos6°=cos6°16cos6°=116. 9.已知θ∈(0,π),且sin ⎝⎛⎭⎪⎫θ-π4=210,则tan2θ=________. 考点 二倍角的正弦、余弦、正切公式题点 利用二倍角公式求二倍角的正切值答案 -247解析 由sin ⎝ ⎛⎭⎪⎫θ-π4=210, 得22(sin θ-cos θ)=210,即sin θ-cos θ=15.解方程组⎩⎪⎨⎪⎧sin θ-cos θ=15,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45,cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35,cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247.10.若1+tan α1-tan α=2018,则1cos2α+tan2α=________.考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 2018解析 1cos2α+tan2α=1cos2α+sin2αcos2α=1+sin2αcos2α=α+sin α2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2018.11.已知tan θ2=3,则1-cos θ+sin θ1+cos θ+sin θ=________.考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 3解析 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2 =2sin θ2⎝ ⎛⎭⎪⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎪⎫cos θ2+sin θ2=tan θ2=3. 三、解答题12.(2017·山东青岛城阳一中期中考试)已知3sin β=sin(2α+β),且α≠k π2,α+β≠π2+k π(k ∈Z ),求证:tan(α+β)=2tan α. 考点 三角恒等式的证明题点 三角恒等式的证明证明 因为sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α; sin(2α+β)=sin[(α+β)+α]=sin(α+β)cos α+cos(α+β)·sin α,所以3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, 即sin(α+β)cos α=2cos(α+β)sin α.又α≠k π2,α+β≠π2+k π(k ∈Z ), 所以cos α≠0,cos(α+β)≠0.于是等式两边同除以cos(α+β)·cos α,得tan(α+β)=2tan α.13.化简:+sin α+cos α⎝⎛⎭⎪⎫sin α2-cos α22+2cos α(180°<α<360°).考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值解 原式=⎝ ⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos 2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2⎝ ⎛⎭⎪⎫sin 2α2-cos 2α2⎪⎪⎪⎪⎪⎪cos α2=-cos α2cos α⎪⎪⎪⎪⎪⎪cos α2. 因为180°<α<360°,所以90°<α2<180°, 所以cos α2<0,所以原式=cos α. 四、探究与拓展14.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________. 考点 应用二倍角公式化简求值题点 利用正弦的二倍角公式化简求值答案 459解析 设A 是等腰△ABC 的顶角,则cos B =23, sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫232=53. 所以sin A =sin(180°-2B )=sin2B=2sin B cos B =2×53×23=459. 15.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3+sin 2x -cos 2x +23sin x cos x . (1)化简f (x );(2)若f (α)=17,2α是第一象限角,求sin2α. 考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值解 (1)f (x )=12cos2x -32sin2x -cos2x +3sin2x =32sin2x -12cos2x =sin ⎝⎛⎭⎪⎫2x -π6. (2)f (α)=sin ⎝⎛⎭⎪⎫2α-π6=17,2α是第一象限角, 即2k π<2α<π2+2k π(k ∈Z ),∴2k π-π6<2α-π6<π3+2k π(k ∈Z ), ∴cos ⎝⎛⎭⎪⎫2α-π6=437, ∴sin2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α-π6+π6 =sin ⎝ ⎛⎭⎪⎫2α-π6·cos π6+cos ⎝⎛⎭⎪⎫2α-π6·sin π6 =17×32+437×12=5314.。

评标办法综合评分法

评标办法综合评分法

第三章评标办法(综合评分法)评标办法前附表表A表B1. 评标方法本次评标采用综合评分法。

评标委员会对满足招标文件实质性要求的投标文件,按照本章第2。

2款规定的评分标准进行打分,并按得分由高到低顺序推荐中标候选人,或根据招标人授权直接确定中标人,但投标报价低于其成本的除外。

综合得分相等时,评标委员会应按照评标办法前附表规定的优先次序推荐中标候选人或确定中标人。

2. 评审标准2。

1 初步评审标准2.1.1 形式评审标准:见评标办法前附表。

2。

1。

2 资格评审标准:见评标办法前附表。

2.1.3 响应性评审标准:见评标办法前附表。

2.2 分值构成与评分标准2。

2。

1 分值构成(1)施工组织设计:见评标办法前附表;(2)主要人员:见评标办法前附表;(3)投标报价:见评标办法前附表;(4)其他评分因素:见评标办法前附表。

2.2。

2 评标基准价计算评标基准价计算方法:见评标办法前附表。

2。

2.3 投标报价的偏差率计算投标报价的偏差率计算公式:见评标办法前附表。

2.2.4 评分标准(1)施工组织设计评分标准:见评标办法前附表;(2)主要人员评分标准:见评标办法前附表;(3)投标报价评分标准:见评标办法前附表;(4)其他因素评分标准:见评标办法前附表。

3. 评标程序3.1第一个信封初步评审3.1.1 评标委员会可以要求投标人提交第二章“投标人须知”第3.5。

1项至第3.5。

6项规定的有关证明和证件的原件,以便核验。

评标委员会依据本章第2。

1款规定的标准对投标文件第一个信封(商务及技术文件)进行初步评审。

有一项不符合评审标准的,评标委员会应否决其投标。

3。

2第一个信封详细评审3。

2.1 评标委员会按本章第2.2款规定的量化因素和分值进行打分,并计算出各投标人的商务和技术得分。

(1)按本章第2.2。

4(1)目规定的评审因素和分值对施工组织设计部分计算出得分A;(2)按本章第2.2。

4(2)目规定的评审因素和分值对主要人员部分计算出得分B;(3)按本章第2.2.4(4)目规定的评审因素和分值对其他部分计算出得分D。

第三章评标办法(综合评估法)

第三章评标办法(综合评估法)

第三章评标办法(综合评估法)评标办法前附表1. 评标方法本次评标采用综合评估法。

评标委员会对满足招标文件实质要求的投标文件选择全部入围,根据本章第2.2款规定的评分标准进行打分,并按得分由高到低顺序推荐中标候选人,或根据招标人授权直接确定中标人,但投标报价低于其成本的除外。

评分相等时,以投标报价低的优先;投标报价也相等的,由招标人抽签确定第一中标候选人。

2. 评审标准2.1 初步评审标准2.1.1 形式评审标准:见评标办法前附表。

2.1.2 资格评审标准:见评标办法前附表。

2.1.3 响应性评审标准:见评标办法前附表。

2.2 分值构成与评分标准2.2.1 分值构成:见评标办法前附表。

2.2.2评标基准价计算方法:见评标办法前附表。

2.2.3评分因素与权重分值:见评标办法前附表。

3. 评标程序3.1 评标准备3.1.1评标由招标人依法组建的评标委员会负责.评标委员会负责人由评标委员会成员推举产生。

评标委员会成员应遵守有关法律、法规、规章,遵守评标纪律和其他有关评标规定。

3.1.2招标人(或招标代理人)应向评标委员会提供下列资料供评标使用:(1)经备案的招标文件、包括补遗文件、答疑会纪要、工程量清单等;(2)供评标使用的主要施工图纸、地质勘查报告等工程技术资料;(3)工程概况和评标重点的书面介绍、包括工程规模、结构形式、工程特点、技术要求、施工重点和难点、施工采用的新方法新工艺和新材料、招标文件与示范文本有较大变动的条款及评标办法等。

3.1.3评标委员会应当认真研究招标文件,为满足评标和项目经理答辩的需要。

对招标文件中存在的问题的处理应由评标委员会成员讨论决定。

评标委员会可以要求招标人对招标文件的内容作出澄清、说明,但澄清、说明不得改变招标文件的实质性内容。

3.2初步评审3.2.1 评标委员会依据本章第2.1项规定的标准对投标文件进行初步评审。

有一项不符合评审标准的,作无效投标文件处理。

(适用于未进行资格预审的)3.2.1评标委员会依据本章第2.1.1项、第2.1.3项规定的评审标准对投标文件进行初步评审。

政府采购招标评标办法 综合评分法

政府采购招标评标办法 综合评分法

第三章政府采购招标评标办法(综合评分法):评标办法前附表的投标文件,按照本章规定的评分标准进行打分,并按得分由高到低顺序推荐中标候选人,但投标报价低于其成本的除外。

综合评分相等时,以投标报价低的优先;投标报价也相等的,由招标人自行确定。

评审标准2.2.1 初步评审标准 2.2 分值构成与评分标准 2.2.1 分值构成分值构成:见评标办法前附表。

2.2.2 评标基准价计算评标基准价计算方法:见评标办法前附表。

评分标准2.2.3评分标准:见评标办法前附表。

3. 评标程序 3.1 初步评审评标委员会依据本章评标办法前附表规定的评审标准对投标文件进行初步评3.1.1 审。

有一项不符合评审标准的,作废标处理。

投标人有以下情形之一的,其投标作废标处理:3.1.2(1)串通投标或弄虚作假或有其他违法行为的;)不按评标委员会要求澄清、说明或补正的;2(.(3)不响应招标文件实质性要求的。

3.1.3 投标报价有算术错误的,评标委员会按以下原则对投标报价进行修正,修正的价格经投标人书面确认后具有约束力。

投标人不接受修正价格的,其投标作废标处理。

(1)投标文件中的大写金额与小写金额不一致的,以大写金额为准;(2)总价金额与依据单价计算出的结果不一致的,以单价金额为准修正总价,但单价金额小数点有明显错误的除外。

3.2 详细评审3.2.1 评标委员会按本章规定的量化因素和分值进行打分,并计算出综合评分。

3.2.2 评分分值计算保留小数点后两位,小数点后第三位“四舍五入”。

3.2.3 每个投标人的最终得分为:所有评委打分的算术平均值作为该投标人的最终得分,计分四舍五入取至小数点后两位。

3.2.4 评标委员会发现投标人的报价明显低于其他投标报价,或者低于投标报价基准值(计算方法同评标基准值)的20%,使得其投标报价可能低于其个别成本的,应当要求该投标人作出书面说明并提供相应的证明材料。

投标人不能合理说明或者不能提供相应证明材料的,由评标委员会认定该投标人以低于成本报价竞标,其投标作废标处理。

我的高中数学目录 (2)

我的高中数学目录 (2)

北师大版高中数学必修一·第一章集合·1、集合的基本关系◎好◎一般◎较差◎完全不会·2、集合的含义与表示◎好◎一般◎较差◎完全不会·3、集合的基本运算◎好◎一般◎较差◎完全不会·第二章函数·1、生活中的变量关系◎好◎一般◎较差◎完全不会·2、对函数的进一步认识◎好◎一般◎较差◎完全不会·3、函数的单调性◎好◎一般◎较差◎完全不会·4、二次函数性质的再研究◎好◎一般◎较差◎完全不会·5、简单的幂函数◎好◎一般◎较差◎完全不会·第三章指数函数和对数函数·1、正整数指数函数◎好◎一般◎较差◎完全不会·2、指数概念◎好◎一般◎较差◎完全不会·3、指数函数◎好◎一般◎较差◎完全不会·4、对数◎好◎一般◎较差◎完全不会·5、对数函数◎好◎一般◎较差◎完全不会·6、指数函数、幂函数、对数函数◎好◎一般◎较差◎完全不会·第四章函数应用·1、函数与方程◎好◎一般◎较差◎完全不会·2、实际问题的函数建模◎好◎一般◎较差◎完全不会北师大版高中数学必修二·第一章立体几何初步·1、简单几何体◎好◎一般◎较差◎完全不会·2、三视图◎好◎一般◎较差◎完全不会·3、直观图◎好◎一般◎较差◎完全不会·4、空间图形的基本关系与公理◎好◎一般◎较差◎完全不会·5、平行关系◎好◎一般◎较差◎完全不会·6、垂直关系◎好◎一般◎较差◎完全不会·7、简单几何体的面积和体积◎好◎一般◎较差◎完全不会·8、面积公式和体积公式的简单应用◎好◎一般◎较差◎完全不会·第二章解析几何初步·1、直线与直线的方程◎好◎一般◎较差◎完全不会·2、圆与圆的方程◎好◎一般◎较差◎完全不会·3、空间直角坐标系◎好◎一般◎较差◎完全不会北师大版高中数学必修三·第一章统计·1、统计活动:随机选取数字◎好◎一般◎较差◎完全不会·2、从普查到抽样◎好◎一般◎较差◎完全不会·3、抽样方法◎好◎一般◎较差◎完全不会·4、统计图表◎好◎一般◎较差◎完全不会·5、数据的数字特征◎好◎一般◎较差◎完全不会·6、用样本估计总体◎好◎一般◎较差◎完全不会·7、统计活动:结婚年龄的变化◎好◎一般◎较差◎完全不会·8、相关性◎好◎一般◎较差◎完全不会·9、最小二乘法◎好◎一般◎较差◎完全不会·第二章算法初步·1、算法的基本思想◎好◎一般◎较差◎完全不会·2、算法的基本结构及设计◎好◎一般◎较差◎完全不会·3、排序问题◎好◎一般◎较差◎完全不会·4、几种基本语句◎好◎一般◎较差◎完全不会·第三章概率·1、随机事件的概率◎好◎一般◎较差◎完全不会·2、古典概型◎好◎一般◎较差◎完全不会·3、模拟方法――概率的应用◎好◎一般◎较差◎完全不会北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数◎好◎一般◎较差◎完全不会·2、角的概念的推广◎好◎一般◎较差◎完全不会·3、弧度制◎好◎一般◎较差◎完全不会·4、正弦函数◎好◎一般◎较差◎完全不会·5、余弦函数◎好◎一般◎较差◎完全不会·6、正切函数◎好◎一般◎较差◎完全不会·7、函数的图像◎好◎一般◎较差◎完全不会·8、同角三角函数的基本关系◎好◎一般◎较差◎完全不会·第二章平面向量·1、从位移、速度、力到向量◎好◎一般◎较差◎完全不会·2、从位移的合成到向量的加法◎好◎一般◎较差◎完全不会·3、从速度的倍数到数乘向量◎好◎一般◎较差◎完全不会·4、平面向量的坐标◎好◎一般◎较差◎完全不会·5、从力做的功到向量的数量积◎好◎一般◎较差◎完全不会·6、平面向量数量积的坐标表示◎好◎一般◎较差◎完全不会·7、向量应用举例◎好◎一般◎较差◎完全不会·第三章三角恒等变形·1、两角和与差的三角函数◎好◎一般◎较差◎完全不会·2、二倍角的正弦、余弦和正切◎好◎一般◎较差◎完全不会·3、半角的三角函数◎好◎一般◎较差◎完全不会·4、三角函数的和差化积◎好◎一般◎较差◎完全不会·5、三角函数的简单应用◎好◎一般◎较差◎完全不会北师大版高中数学必修五·第一章数列·1、数列的概念◎好◎一般◎较差◎完全不会·2、数列的函数特性◎好◎一般◎较差◎完全不会·3、等差数列◎好◎一般◎较差◎完全不会·4、等差数列的前n项和◎好◎一般◎较差◎完全不会·5、等比数列◎好◎一般◎较差◎完全不会·6、等比数列的前n项和◎好◎一般◎较差◎完全不会·7、数列在日常经济生活中的应用◎好◎一般◎较差◎完全不会·第二章解三角形·1、正弦定理与余弦定理正弦定理◎好◎一般◎较差◎完全不会·2、正弦定理◎好◎一般◎较差◎完全不会·3、余弦定理◎好◎一般◎较差◎完全不会·4、三角形中的几何计◎好◎一般◎较差◎完全不会·5、解三角形的实际应用举例◎好◎一般◎较差◎完全不会·第三章不等式·1、不等关系◎好◎一般◎较差◎完全不会·1.1、不等式关系◎好◎一般◎较差◎完全不会·1.2、比较大小◎好◎一般◎较差◎完全不会2,一元二次不等式◎好◎一般◎较差◎完全不会·2.1、一元二次不等式的解法◎好◎一般◎较差◎完全不会·2.2、一元二次不等式的应用◎好◎一般◎较差◎完全不会·3、基本不等式◎好◎一般◎较差◎完全不会3.1 基本不等式◎好◎一般◎较差◎完全不会·3.2、基本不等式与最大(小)值◎好◎一般◎较差◎完全不会4 线性规划·4.1、二元一次不等式与平面区◎好◎一般◎较差◎完全不会·4.2、简单线性规划◎好◎一般◎较差◎完全不会·4.3、简单线性规划的应用◎好◎一般◎较差◎完全不会选修1-1第一章常用逻辑用语1命题◎好◎一般◎较差◎完全不会2充分条件与必要条件◎好◎一般◎较差◎完全不会2.1充分条件◎好◎一般◎较差◎完全不会2.2必要条件◎好◎一般◎较差◎完全不会2.3充要条件◎好◎一般◎较差◎完全不会3全称量词与存在量词3.1全称量词与全称命题◎好◎一般◎较差◎完全不会3.2存在量词与特称命题◎好◎一般◎较差◎完全不会3.3全称命题与特称命题的否定◎好◎一般◎较差◎完全不会4逻辑联结词“且’’‘‘或…‘非4.1逻辑联结词“且◎好◎一般◎较差◎完全不会4.2逻辑联结词“或◎好◎一般◎较差◎完全不会4.3逻辑联结词‘‘非◎好◎一般◎较差◎完全不会第二章圆锥曲线与方程1椭圆◎好◎一般◎较差◎完全不会1.1椭圆及其标准方程◎好◎一般◎较差◎完全不会1.2椭圆的简单性质◎好◎一般◎较差◎完全不会2抛物线2.1抛物线及其标准方程◎好◎一般◎较差◎完全不会2.2抛物线的简单性质◎好◎一般◎较差◎完全不会3 曲线3.1双曲线及其标准方程◎好◎一般◎较差◎完全不会3.2双曲线的简单性质◎好◎一般◎较差◎完全不会第三章变化率与导数1变化的快慢与变化率◎好◎一般◎较差◎完全不会2导数的概念及其几何意义2.1导数的概念◎好◎一般◎较差◎完全不会2.2导数的几何意义◎好◎一般◎较差◎完全不会3计算导数◎好◎一般◎较差◎完全不会4导数的四则运算法则4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会第四章导数应用4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会选修1-2第一章统计案例1 回归分析◎好◎一般◎较差◎完全不会1.1 回归分析◎好◎一般◎较差◎完全不会1.2相关系数◎好◎一般◎较差◎完全不会1.3可线性化的回归分析◎好◎一般◎较差◎完全不会2独立性检验2.1条件概率与独立事件◎好◎一般◎较差◎完全不会2.2 独立性检验◎好◎一般◎较差◎完全不会2.3独立性检验的基本思想◎好◎一般◎较差◎完全不会2.4独立性检验的应用◎好◎一般◎较差◎完全不会第二章框图1 流程图◎好◎一般◎较差◎完全不会2结构图◎好◎一般◎较差◎完全不会第三章推理与证明1 归纳与类比◎好◎一般◎较差◎完全不会1.1归纳推理◎好◎一般◎较差◎完全不会1.2类比推理◎好◎一般◎较差◎完全不会2 数学证明◎好◎一般◎较差◎完全不会3 综合法与分析法3.1综合法◎好◎一般◎较差◎完全不会3.2分析法◎好◎一般◎较差◎完全不会4反证法◎好◎一般◎较差◎完全不会第四章数系的扩充与复数的引入1 数系的扩充与复数的引入◎好◎一般◎较差◎完全不会1.1数的概念的扩充◎好◎一般◎较差◎完全不会1.2复数的有关概念◎好◎一般◎较差◎完全不会2复数的四则运算2.1复数的加法与减法◎好◎一般◎较差◎完全不会2.2复数的乘法与除法◎好◎一般◎较差◎完全不会选修2-1第一章常用逻辑用语1 命题◎好◎一般◎较差◎完全不会2 充分条件与必要条件◎好◎一般◎较差◎完全不会3 全称量词与存在量词◎好◎一般◎较差◎完全不会4 逻辑联结词“且”“或”“非”◎好◎一般◎较差◎完全不会第二章空间向量与立体几何1 从平面向量到空间向量◎好◎一般◎较差◎完全不会2 空间向量的运算◎好◎一般◎较差◎完全不会3 向量的坐标表示和空间向量◎好◎一般◎较差◎完全不会4 用向量讨论垂直与平行◎好◎一般◎较差◎完全不会5 夹角的计算◎好◎一般◎较差◎完全不会6 距离的计算◎好◎一般◎较差◎完全不会第三章圆锥曲线与方程1 椭圆1.1 椭圆及其标准方程◎好◎一般◎较差◎完全不会1.2 椭圆的简单性质◎好◎一般◎较差◎完全不会2 抛物线2.1 抛物线及其标准方程◎好◎一般◎较差◎完全不会2.2 抛物线的简单性质◎好◎一般◎较差◎完全不会3 双曲线3.1 双曲线及其标准方程◎好◎一般◎较差◎完全不会3.2 双曲线的简单性质◎好◎一般◎较差◎完全不会4 曲线与方程4.1 曲线与方程◎好◎一般◎较差◎完全不会4.2 圆锥曲线的共同特征◎好◎一般◎较差◎完全不会4.3 直线与圆锥曲线的交点◎好◎一般◎较差◎完全不会选修2-2第一章推理与证明1 归纳与类比◎好◎一般◎较差◎完全不会2 综合法与分析法◎好◎一般◎较差◎完全不会3 反证法◎好◎一般◎较差◎完全不会4 数学归纳法◎好◎一般◎较差◎完全不会第二章变化率与导数1 变化的快慢与变化率◎好◎一般◎较差◎完全不会2 导数的概念及其几何意义◎好◎一般◎较差◎完全不会2.1导数的概念◎好◎一般◎较差◎完全不会2.2导数的几何意义◎好◎一般◎较差◎完全不会3 计算导数◎好◎一般◎较差◎完全不会4 导数的四则运算法则4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会5 简单复合函数的求导法则◎好◎一般◎较差◎完全不会第三章导数应用1 函数的单调性与极值◎好◎一般◎较差◎完全不会1.1导数与函数的单调性◎好◎一般◎较差◎完全不会2 导数在实际问题中的应用◎好◎一般◎较差◎完全不会2.1实际问题中导数的意义◎好◎一般◎较差◎完全不会2.2最大、最小值问题◎好◎一般◎较差◎完全不会第四章定积分1 定积分的概念◎好◎一般◎较差◎完全不会1.1定积分背景-面积和路程问题◎好◎一般◎较差◎完全不会1.2定积分◎好◎一般◎较差◎完全不会2 微积分基本定理◎好◎一般◎较差◎完全不会3 定积分的简单应用◎好◎一般◎较差◎完全不会3.1平面图形的面积◎好◎一般◎较差◎完全不会3.2简单几何体的体积◎好◎一般◎较差◎完全不会第五章数系的扩充与复数的引入1 数系的扩充与复数的引入◎好◎一般◎较差◎完全不会1.1数的概念的扩展◎好◎一般◎较差◎完全不会1.2复数的有关概念◎好◎一般◎较差◎完全不会2 复数的四则运算◎好◎一般◎较差◎完全不会2.1复数的加法与减法◎好◎一般◎较差◎完全不会2.2复数的乘法与除法◎好◎一般◎较差◎完全不会选修2-3第一章计数原理1.分类加法计数原理◎好◎一般◎较差◎完全不会1.1 分类加法计数原理◎好◎一般◎较差◎完全不会1.2 分步乘法计数原理◎好◎一般◎较差◎完全不会2.排列2.1 排列的原理◎好◎一般◎较差◎完全不会2.2 排列数公式◎好◎一般◎较差◎完全不会3.组合3.1 组合及组合数公式◎好◎一般◎较差◎完全不会3.2 组合数的两个性质◎好◎一般◎较差◎完全不会4.简单计数问题◎好◎一般◎较差◎完全不会5.二项式定理5.1 二项式定理◎好◎一般◎较差◎完全不会5.2 二项式系数的性质◎好◎一般◎较差◎完全不会第二章概率1.离散型随机变量及其分布列◎好◎一般◎较差◎完全不会2.超几何分布◎好◎一般◎较差◎完全不会3.条件概率与独立事件◎好◎一般◎较差◎完全不会4.二项分布◎好◎一般◎较差◎完全不会5.离散型随机变量均值与方差5.1 离散型随机变量均值与方差◎好◎一般◎较差◎完全不会5.2 离散型随机变量均值与方差◎好◎一般◎较差◎完全不会6.正态分布6.1 连续型随机变量◎好◎一般◎较差◎完全不会第三章统计案例1.回归分析◎好◎一般◎较差◎完全不会1.1 回归分析◎好◎一般◎较差◎完全不会1.2 相关系数◎好◎一般◎较差◎完全不会1.3 可线性化的回归分析◎好◎一般◎较差◎完全不会2.独立性检验2.1 独立性检验◎好◎一般◎较差◎完全不会2.2 独立性检验的基本思想◎好◎一般◎较差◎完全不会2.3 独立性检验的应用◎好◎一般◎较差◎完全不会选修4-1第一章直线、多边形、圆1.全等与相似◎好◎一般◎较差◎完全不会2.圆与直线◎好◎一般◎较差◎完全不会3.圆与四边形◎好◎一般◎较差◎完全不会第二章圆锥曲线1.截面欣赏◎好◎一般◎较差◎完全不会2.直线与球平面与球的位置◎好◎一般◎较差◎完全不会3.柱面与平面的截面◎好◎一般◎较差◎完全不会4.平面截圆锥面◎好◎一般◎较差◎完全不会5.圆锥曲线的几何性质◎好◎一般◎较差◎完全不会选修4-4第一章坐标系1 平面直角坐标系◎好◎一般◎较差◎完全不会2 极坐标系◎好◎一般◎较差◎完全不会3 柱坐标系和球坐标系◎好◎一般◎较差◎完全不会第二章参数方程1 参数方程的概念◎好◎一般◎较差◎完全不会2 圆锥曲线的参数方程◎好◎一般◎较差◎完全不会3 参数方程化成普通方程◎好◎一般◎较差◎完全不会4 平摆线和渐开线◎好◎一般◎较差◎完全不会选修4-5第一章不等关系与基本不等式l不等式的性质◎好◎一般◎较差◎完全不会2含有绝对值的不等式◎好◎一般◎较差◎完全不会3平均值不等式◎好◎一般◎较差◎完全不会4不等式的证明◎好◎一般◎较差◎完全不会5不等式的应用◎好◎一般◎较差◎完全不会第二章几个重妻的不等式1柯西不等式◎好◎一般◎较差◎完全不会2排序不等式◎好◎一般◎较差◎完全不会3数学归纳法◎好◎一般◎较差◎完全不会。

第三章评标方法及标准(综合评分法)

第三章评标方法及标准(综合评分法)
2.投标人或产品制造商具有“高新技术产品”每提供一项计1分,最高计3分。(提供证明材料及网站有效截图并加盖投标人及产品制造商公章,原件备查),否则不计分。
售后服务
7
1、投标人或产品制造商荣获GB/T27922-2011《商品售后服务评价体系》“四星级”及以上的计2分,“三星级”的计1分,其余不计分。(原件备查),否则不计分。
1、投标人提供投标产品制造商2019年以来家具质量监督检验部门出具的原材料样品检验报告:塑粉、线盒、螺丝、实木多层胶合板、ABS封边条、弹簧、三聚氰胺饰面刨花板、冷轧钢板、钢管、人造石。全部提供计8分,缺一项扣1分。
2、投标人提供投标产品制造商2019年以来家具质量监督检验部门出具的成品检验报告:包含:钢木餐桌、网椅、覆面办公桌、覆面文件柜、皮革沙发、等候椅、鞋柜,橱柜(或洗手柜或清洁柜)、茶水柜,全部提供计8分,缺一项扣1分。
产品质量、体系认证
10
1、投标人或产品制造商获得人类工效学产品认证的计2分,(提供证书复印件并加盖投标人及产品制造商公章,原件备查),否则不计分。
2、投标人或产品制造商获得知识产权管理体系认证证书的计2分,(提供证书复印件并加盖投标人及产品制造商公章,原件备查),否则不计分。
3、投标人或产品制造商获得“家具中有害物质限量认证证书”认证产品类需含:椅凳类、柜类、桌类,全部提供的计2分,(提供证书复印件并加盖投标人及产品制造商公章,原件备查),否则不计分。
2、供应商享受支持中小企业发展政策优惠的,可以与同时享受节能产品、环境标志产品、两型产品等产品优惠中的一项累加。
3、同一项目中部分产品属于优先采购政策的,评审时只对该部分产品的报价实行加分。
第款
提供相同品牌产品,评审得分相同时,确定中标人推荐资格规定

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)

综合法和分析法课时安排:每章25分钟,共125分钟教学目标:1. 让学生理解综合法和分析法的概念及应用。

2. 培养学生运用综合法和分析法解决问题的能力。

3. 提高学生逻辑思维和判断能力。

教学方法:1. 讲授法:讲解综合法和分析法的原理及运用。

2. 案例分析法:分析实际案例,让学生深入理解综合法和分析法。

3. 小组讨论法:分组讨论,培养学生的合作意识和团队精神。

教学内容:第一章:综合法概述1.1 综合法的定义1.2 综合法的应用领域1.3 综合法的优势和局限性第二章:分析法概述2.1 分析法的定义2.2 分析法的应用领域2.3 分析法的优势和局限性第三章:综合法与分析法的区别与联系3.1 综合法与分析法的区别3.2 综合法与分析法的联系3.3 综合法与分析法在实际应用中的选择第四章:综合法在解决问题中的应用4.1 综合法解决问题的步骤4.2 综合法在案例中的应用4.3 综合法解决问题的注意事项第五章:分析法在解决问题中的应用5.1 分析法解决问题的步骤5.2 分析法在案例中的应用5.3 分析法解决问题的注意事项教学评估:1. 课后作业:布置相关案例分析作业,巩固所学内容。

2. 小组讨论:评估学生在小组讨论中的表现,检验学生对综合法和分析法的理解程度。

3. 课堂问答:通过提问,了解学生对教学内容的掌握情况。

教学资源:1. PPT课件:展示综合法和分析法的原理、案例及应用。

2. 案例材料:提供实际案例,供学生分析和讨论。

3. 参考书籍:为学生提供更多的学习资料,加深对综合法和分析法的理解。

教学建议:1. 在讲解综合法和分析法时,举例生动、贴近实际,激发学生的兴趣。

2. 组织小组讨论,鼓励学生发表自己的观点,培养学生的合作意识。

3. 注重课后作业的布置和批改,及时了解学生对教学内容的掌握情况。

4. 针对学生的反馈,调整教学方法和节奏,提高教学效果。

第六章:综合法在自然科学中的应用6.1 自然科学中综合法的典型应用案例6.2 综合法在自然科学研究中的作用与意义6.3 综合法在自然科学中的局限性与挑战第七章:分析法在社会科学中的应用7.1 社会科学中分析法的典型应用案例7.2 分析法在社会科学研究中的作用与意义7.3 分析法在社会科学中的局限性与挑战第八章:综合法与分析法在工程领域的应用8.1 工程领域中综合法的应用案例8.2 工程领域中分析法的应用案例8.3 综合法与分析法在工程领域的结合应用第九章:综合法与分析法在医学领域的应用9.1 医学领域中综合法的应用案例9.2 医学领域中分析法的应用案例9.3 综合法与分析法在医学领域的结合应用第十章:综合法与分析法在商业领域的应用10.1 商业领域中综合法的应用案例10.2 商业领域中分析法的应用案例10.3 综合法与分析法在商业领域的结合应用教学评估:1. 课后作业:布置相关案例分析作业,巩固所学内容。

第三章评标办法(综合评分法)

第三章评标办法(综合评分法)

第三章评标办法(综合评分法)评标办法前附表2.1.资格审查标准1. 评标方法本次评标采用综合评分法。

评标委员会对满足招标文件实质性要求的投标文件,按照本章前附表所列的评分标准进行打分,并按得分由高到低顺序推荐中标候选人,或根据招标人授权直接确定中标人。

综合评分相等时,以特许经营期限低的优先;特许经营期限相等的,评标委员会将采用抽签的办法确定中标候选人。

2. 评审标准本次评标的分值构成见评标办法前附表2.1 资格审查标准2.1.1 形式评审标准:见评标办法前附表。

2.1.2 资格评审标准:见评标办法前附表。

2.2 技术标评审标准2.2.1 形式评审标准:见评标办法前附表。

2.2.2响应性评审标准:见评标办法前附表。

2.2.3详细评审标准:见评标办法前附表。

2.3 商务标评审标准2.3.1 形式评审标准:见评标办法前附表。

2.3.2响应性评审标准:见评标办法前附表。

2.3.3详细评审标准: 见评标办法前附表。

3. 评标程序3.1 基本程序评标一般按以下程序进行:(1)技术标评审(2)资格审查(3)商务标评审(4)综合得分汇总3.2 技术标评审3.2.1 评标委员会先对技术标副本进行评审,并根据本章第2.2.3项规定的评分标准进行打分。

3.2.2 所有技术标副本评审完毕后,评标委员会对技术标进行还原(即开启各投标单位的技术标书正本,与评审的副本文件进行对应,还原各投标单位对应的技术标副本文件)。

3.2.3 按本章第2.2.1项、第2.2.2项规定的标准对技术标正本文件进行形式评审和响应性评审。

3.2.4 技术标副本评审结果,在标书还原之后,应不得修改。

3.2.5 若分技术标和商务标两组评委评审的,技术标评审结束后,评标委员会将评审结果密封,交由交易中心保存。

待商务标评审结束后,由交易中心工作人员将技术标评审结果交商务标专家进行汇总得分。

3.3 商务标评审(1)只有通过了资格审查、被判定为合格的投标方可进入商务标评审。

【参考教案】《综合法和分析法》(人教A版)

【参考教案】《综合法和分析法》(人教A版)

《综合法和分析法》(人教A版)第一章:综合法的概念与特点1.1 教学目标1. 了解综合法的定义和基本特点2. 掌握综合法在数学问题中的应用1.2 教学内容1. 综合法的定义与基本原理2. 综合法在数学问题求解中的应用案例1.3 教学过程1. 引入:通过实例让学生感受综合法的应用2. 讲解:详细阐述综合法的定义、特点及应用3. 练习:让学生自主尝试解决一些应用综合法的问题1.4 教学评价1. 判断学生对综合法定义和特点的理解程度2. 评估学生在实际问题中应用综合法的熟练程度第二章:分析法的概念与特点2.1 教学目标1. 了解分析法的定义和基本特点2. 掌握分析法在数学问题中的应用2.2 教学内容1. 分析法的定义与基本原理2. 分析法在数学问题求解中的应用案例1. 引入:通过实例让学生感受分析法的应用2. 讲解:详细阐述分析法的定义、特点及应用3. 练习:让学生自主尝试解决一些应用分析法的问题2.4 教学评价1. 判断学生对分析法定义和特点的理解程度2. 评估学生在实际问题中应用分析法的熟练程度第三章:综合法与分析法的区别与联系3.1 教学目标1. 理解综合法与分析法的区别与联系2. 能够根据问题特点选择合适的方法求解3.2 教学内容1. 综合法与分析法的区别与联系2. 不同类型问题中综合法与分析法的应用选择3.3 教学过程1. 引入:通过实例让学生感受综合法与分析法的不同应用2. 讲解:详细阐述综合法与分析法的区别与联系3. 练习:让学生自主尝试解决一些需要选择合适方法的问题3.4 教学评价1. 判断学生对综合法与分析法区别与联系的理解程度2. 评估学生在实际问题中选择合适方法的熟练程度第四章:综合法与分析法在几何问题中的应用1. 掌握综合法与分析法在几何问题中的应用2. 能够解决一些常见的几何问题4.2 教学内容1. 几何问题中综合法与分析法的应用案例2. 常见几何问题求解方法的探讨4.3 教学过程1. 引入:通过实例让学生感受综合法与分析法在几何问题中的应用2. 讲解:详细阐述综合法与分析法在几何问题中的具体应用3. 练习:让学生自主尝试解决一些几何问题4.4 教学评价1. 判断学生对综合法与分析法在几何问题中应用的理解程度2. 评估学生在实际几何问题中应用综合法与分析法的熟练程度第五章:综合法与分析法在代数问题中的应用5.1 教学目标1. 掌握综合法与分析法在代数问题中的应用2. 能够解决一些常见的代数问题5.2 教学内容1. 代数问题中综合法与分析法的应用案例2. 常见代数问题求解方法的探讨5.3 教学过程1. 引入:通过实例让学生感受综合法与分析法在代数问题中的应用2. 讲解:详细阐述综合法与分析法在代数问题中的具体应用3. 练习:让学生自主尝试解决一些代数问题5.4 教学评价1. 判断学生对综合法与分析法在代数问题中应用的理解程度2. 评估学生在实际代数问题中应用综合法与分析法的熟练程度第六章:综合法与分析法在物理问题中的应用6.1 教学目标1. 掌握综合法与分析法在物理问题中的应用2. 能够解决一些常见的物理问题6.2 教学内容1. 物理问题中综合法与分析法的应用案例2. 常见物理问题求解方法的探讨6.3 教学过程1. 引入:通过实例让学生感受综合法与分析法在物理问题中的应用2. 讲解:详细阐述综合法与分析法在物理问题中的具体应用3. 练习:让学生自主尝试解决一些物理问题6.4 教学评价1. 判断学生对综合法与分析法在物理问题中应用的理解程度2. 评估学生在实际物理问题中应用综合法与分析法的熟练程度第七章:综合法与分析法在化学问题中的应用7.1 教学目标1. 掌握综合法与分析法在化学问题中的应用2. 能够解决一些常见的化学问题7.2 教学内容1. 化学问题中综合法与分析法的应用案例2. 常见化学问题求解方法的探讨7.3 教学过程1. 引入:通过实例让学生感受综合法与分析法在化学问题中的应用2. 讲解:详细阐述综合法与分析法在化学问题中的具体应用3. 练习:让学生自主尝试解决一些化学问题7.4 教学评价1. 判断学生对综合法与分析法在化学问题中应用的理解程度2. 评估学生在实际化学问题中应用综合法与分析法的熟练程度第八章:综合法与分析法在生物问题中的应用8.1 教学目标1. 掌握综合法与分析法在生物问题中的应用2. 能够解决一些常见的生物问题8.2 教学内容1. 生物问题中综合法与分析法的应用案例2. 常见生物问题求解方法的探讨8.3 教学过程1. 引入:通过实例让学生感受综合法与分析法在生物问题中的应用2. 讲解:详细阐述综合法与分析法在生物问题中的具体应用3. 练习:让学生自主尝试解决一些生物问题8.4 教学评价1. 判断学生对综合法与分析法在生物问题中应用的理解程度2. 评估学生在实际生物问题中应用综合法与分析法的熟练程度第九章:综合法与分析法在实际生活中的应用9.1 教学目标1. 掌握综合法与分析法在实际生活中的应用2. 能够解决一些实际生活中的问题9.2 教学内容1. 实际生活中综合法与分析法的应用案例2. 常见实际问题求解方法的探讨9.3 教学过程1. 引入:通过实例让学生感受综合法与分析法在实际生活中的应用2. 讲解:详细阐述综合法与分析法在实际问题中的具体应用3. 练习:让学生自主尝试解决一些实际问题9.4 教学评价1. 判断学生对综合法与分析法在实际生活中应用的理解程度2. 评估学生在实际生活中应用综合法与分析法的熟练程度第十章:总结与拓展10.1 教学目标1. 总结综合法与分析法的应用及其重要性2. 拓展学生对综合法与分析法在不同领域中应用的认识10.2 教学内容1. 回顾本节课所学内容,总结综合法与分析法的应用2. 探讨综合法与分析法在不同领域的拓展应用10.3 教学过程1. 引入:通过实例让学生回顾所学内容,总结综合法与分析法的应用2. 讲解:详细阐述综合法与分析法在不同领域的拓展应用3. 练习:让学生自主尝试解决一些涉及不同领域的实际问题10.4 教学评价1. 判断学生对综合法与分析法应用的总结理解程度2. 评估学生在实际问题中应用综合法与分析法的熟练程度重点解析本文主要介绍了综合法和分析法的概念、特点以及在数学、几何、代数、物理、化学、生物等领域的应用。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)

高中数学课本内容及其重难点北师大版高中数学必修一·第一章集合(考点的难度不是很大,是高考的必考点)· 1、集合的基本关系· 2、集合的含义与表示· 3、集合的基本运算(重点)(2课时)·第二章函数· 1、生活中的变量关系· 2、对函数的进一步认识· 3、函数的单调性(重点)· 4、二次函数性质的再研究(重点)· 5、简单的幂函数(5课时)·第三章指数函数和对数函数· 1、正整数指数函数· 2、指数概念的扩充· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)·第四章函数应用· 1、函数与方程· 2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步· 1、简单几何体· 2、三视图(重点)· 3、直观图(1课时)· 4、空间图形的基本关系与公理(重点)· 5、平行关系(重点)· 6、垂直关系(重点)· 7、简单几何体的面积和体积(重点)· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步· 1、直线与直线的方程· 2、圆与圆的方程· 3、空间直角坐标系(4课时)北师大版高中数学必修三·第一章统计· 1、统计活动:随机选取数字· 2、从普查到抽样· 3、抽样方法· 4、统计图表· 5、数据的数字特征(重点)· 6、用样本估计总体· 7、统计活动:结婚年龄的变化· 8、相关性· 9、最小二乘法(3课时)·第二章算法初步· 1、算法的基本思想· 2、算法的基本结构及设计(重点)· 3、排序问题(重点)· 4、几种基本语句(2课时)·第三章概率· 1、随机事件的概率(重点)· 2、古典概型(重点)· 3、模拟方法――概率的应用(重点、难点)(4课时)北师大版高中数学必修四·第一章三角函数· 1、周期现象与周期函数· 2、角的概念的推广· 3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)· 7、函数的图像(重点)· 8、同角三角函数的基本关系(重点、难点)(5课时)·第二章平面向量· 1、从位移、速度、力到向量· 2、从位移的合成到向量的加法(重点)· 3、从速度的倍数到数乘向量(重点)· 4、平面向量的坐标(重点)· 5、从力做的功到向量的数量积(重点)· 6、平面向量数量积的坐标表示(重点)· 7、向量应用举例(难点)(5课时)·第三章三角恒等变形(重点)· 1、两角和与差的三角函数· 2、二倍角的正弦、余弦和正切· 3、半角的三角函数· 4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列· 1、数列的概念· 2、数列的函数特性· 3、等差数列(重点)· 4、等差数列的前n项和(重点)· 5、等比数列(重点)· 6、等比数列的前n项和(重点)· 7、数列在日常经济生活中的应用(6课时)·第二章解三角形(重点)· 1、正弦定理与余弦定理正弦定理· 2、正弦定理· 3、余弦定理· 4、三角形中的几何计算(难点)· 5、解三角形的实际应用举例(6课时)·第三章不等式· 1、不等关系· 1.1、不等式关系· 1.2、比较大小(重点)2,一元二次不等式(重点)· 2.1、一元二次不等式的解法(重点)· 2。

高中数学第三章函数概念与性质3.1函数的概念及其表示3教案第一册

高中数学第三章函数概念与性质3.1函数的概念及其表示3教案第一册

3。

1。

2 函数的表示法本节课选自《普通高中课程标准数学教科书—必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。

课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.教学重点:函数的三种表示方法,分段函数的概念;2.教学难点:根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图象。

多媒体解:这个函数的定义域是数集{1,2,3,4,5}.用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}。

用列表法可将y=f(x)表示为笔记本数x12345钱数y5115225用图象法可将y=f(x)表示为【答案】不是所有的函数都能用解析法表示.例如,某天24整点的整点数与这一刻的气温的关系。

例2.画出函数y=|x| 的图象。

解: 由绝对值的概念,我们有⎩⎨⎧<-≥==0,0,||x x x x x y 。

所以,函数y=|x | 的图象如图所示。

我们把这样的函数称为分段函数。

例3.给定函数.)1()(,1)(2R x x x g x x f ∈+=+=,(1)在同一直角坐标系中画出函数)(),(x g x f的图象;(2),R x ∈∀ 用M (x )表示)(),(x g x f 中的较大者,记为)}(),(max{)(x g x f x M =, 试分别用图象法和解析法表示函数M(x)。

解:(1) 在同一直角坐标系中画出函数)(),(x g x f 的图象,如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律方法总结 随堂即时巩固 课后活页训练
上 页
下 页
基础知识梳理
三基能力强化
课堂互动讲练
题型二
第 三 章 推 理 与 证 明 例2 如图
用综合法证明几何问题
上 页
所示, 为 所在平面外的一点, ⊥ 所示,S为△ABC所在平面外的一点,SA⊥平面 所在平面外的一点 ABC,平面 ,平面SAB⊥平面 ⊥平面SBC,求证:AB⊥BC. ,求证: ⊥ 【思路点拨】 有面面垂直的关系,证明线线垂 思路点拨】 有面面垂直的关系, 可考虑从面面垂直的性质入手, 直,可考虑从面面垂直的性质入手,通过面面垂 线面垂直、线线垂直的相互转化来实现. 直、线面垂直、线线垂直的相互转化来实现.
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
第 三 章 推 理 与 证 明
证明: 证明:∵a>0,b>0,c>0,且 abc=1, , , , = , 1 1 1 ∴ + + =bc+ca+ab. + + a b c 又 bc+ca≥2 bc· ca=2 abc2=2 c, + ≥ = , 同理 bc+ab≥2 b,ca+ab≥2 a. + ≥ , + ≥ ∵a、b、c 不全相等, 、 、 不全相等, 上述三个不等式中的“ 号不能同时成立. ∴上述三个不等式中的“=”号不能同时成立. ∴2(bc+ca+ab)>2( c+ a+ b), + + + + , 即 bc+ca+ab> a+ b+ c, + + + + , 1 1 1 故 + + > a+ b+ c. + + a b c
第 三 章 推 理 与 证 明 1.综合法的定义 . 从命题的______出发 利用_____、 公理 、 出发, 从命题的 条件 出发,利用 定义 、______、 定理 及_________,通过 演绎推理 ,一步一步 _____及 运算法则 ,通过__________, 地接近要证明的结论 直到完成命题的证明, 结论, 地接近要证明的结论,直到完成命题的证明,这 样的思维方法称为_______. 样的思维方法称为 综合法 . 2.综合法的推证过程 .
上 页
当且仅当a= = 时取等号 所以不等式成立. 时取等号, 当且仅当 =b=c时取等号,所以不等式成立. 方法小结】 【方法小结】 综合法证明不等式所依赖的主要 是不等式的基本性质和已知的重要不等式, 是不等式的基本性质和已知的重要不等式,其中 常用的有如下几个: 常用的有如下几个:
下 页
规律方法总结
答案:D 答案:
规律方法总结 随堂即时巩固 课后活页训练
上 页
下 页
基础知识梳理
三基能力强化
课堂互动讲练
2.综合法是( .综合法是 第 三 章 推 理 与 证 明
)
A.执果索因的逆推法 . B.由因导果的顺推法 . C.因果分别互推的两头凑法 . D.逆命题的证明方法 . 答案: 答案:B
上 页
下 页
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
第 三 章 推 理 与 证 明
3. . 条件甲: “a>1”是条件乙: a> a”的( 是条件乙: 条件甲: 是条件乙 “ ” A.既不充分也不必要条件 . B.充要条件 . C.充分不必要条件 . D.必要不充分条件 .
)
上 页
规律方法总结 随堂即时巩固 课后活页训练
上 页
下 页
基础知识梳理
三基能力强化
课堂互动讲练
一切奇数都不能被2整除 大前提) 解:(1)一切奇数都不能被 整除.(大前提 一切奇数都不能被 整除. 大前提 75不能被 整除.(小前提 不能被2整除 小前提 不能被 整除. 小前提) 第 三 章 推 理 与 证 明 75是奇数.(结论 是奇数. 结论 是奇数 结论) (2)三角形的内角和为 °.(大前提 三角形的内角和为180° 大前提 大前提) 三角形的内角和为 Rt△ABC是三角形.(小前提 △ 是三角形. 小前提) 是三角形 小前提 Rt△ABC的内角和为 °.(结论 △ 的内角和为180° 结论 结论) 的内角和为 (3)平行四边形对角线互相平分.(大前提 平行四边形对角线互相平分. 大前提 平行四边形对角线互相平分 大前提) 菱形是平行四边形. 小前提 小前提) 菱形是平行四边形.(小前提 菱形对角线互相平分. 结论 结论) 菱形对角线互相平分.(结论
上 页
下 页
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
第 三 章 推 理 与 证 明
变式训练
2.在三棱椎 P-ABC 中,AC=BC=2, . - = = , ∠ACB=90°,AP=BP=AB,PC⊥AC. = , = = , ⊥ 求证: ⊥ 求证:PC⊥AB.
上 页
规律方法总结 随堂即时巩固 课后活页训练
上 页
下 页
基础知识梳理
三基能力强化
课堂互动讲练
变式训练
第 三 章 推 理 与 证 明
1.设 a、b、c 为不全相等的正数,且 abc=1, . 、 、 为不全相等的正数, = , 1 1 1 求证: 求证:a+b+ c> a+ b+ c. + +
上 页
下 页
下 页
答案: 答案:B
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
第 三 章 推 理 与 证 明
4.设p=x3,q=x2-x+1,x>1,则p与q . = = + , , 与 的大小关系是________. 的大小关系是 . 答案: 答案:p>q a b 5.已知 a>b>0,且 c>d>0,则 . , , d 与 c的大 小关系是________. 小关系是 . 1 1 a b 解析: 解析:∵c>d>0,∴d> c>0.又 a>b>0,∴d> c>0, , 又 , , a b ∴ d> c. a b 答案: d> c 答案:
A(命题的条件或已有的定义、公理、定理等) (命题的条件或已有的定义、公理、定理等) 结论B 结论C 命题的结论D ⇒ 结论 ⇒ 结论 ⇒…⇒ 命题的结论
上 页
下 页
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
三基能力强化
第 三 章 推 理 与 证 明
1.若 a>0,b>0,则下列不等式中不成立的 . , , ) 是( A.a2+b2≥2ab . B.a+b≥2 ab . + ≥ 2 2 1 C.a +b ≥ (a+b)2 . + 2 1 1 1 (a≠b) D. + < ≠ a b a-b -
基础知识梳理
三基能力强化
课堂互动讲练
第 三 章 推 理 与 证 明
§3
综合法与分析法
3.1 综合法 .
上 页
下 页
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
第 三 章
学 习 目 标
1.理 理 2 能 练
上 页




页 练
基础知识梳理
三基能力强化
课堂互动讲练
基础知识梳理
规律方法总结 随堂即时巩固 课后活页训练
上 页
下 页
基础知识梳理
三基能力强化
课堂互动讲练
课堂互动讲练
第 三 章 推 理 与 证 明
题型一
用综合法证明不等式问题
上 页
例1 若a、b、c∈R+,且a+b+c=1, 、 、 ∈ + + = , 求证: 求证:(a -1)(b -1)(c -1)≥8. 【思路点拨】 这是一个条件不等式的证明 思路点拨】 问题,要注意不等式的结构特点和条件 + 问题,要注意不等式的结构特点和条件a+b 的合理应用, +c=1的合理应用,可用综合法证明. = 的合理应用 可用综合法证明.
上 页
下 页
规律方法总结
ห้องสมุดไป่ตู้
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
第 S1, n=1, = , 三 的关系为 an= 章 ≥ Sn-Sn- 1, n≥2. 推 理 与 证 明
上 页
下 页
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
题型三
第 三 章 推 理 与 证 明 例3
用综合法证明数学中的其他问题
设数列{a 的前 设数列 n}的前 n 项和为 Sn,且(3-m)Sn+ - 2man=m+3(其中 m 为常数,n∈N+),且 m≠-3. + 其中 为常数, ∈ , ≠ (1)求证: {an}为等比数列; 求证: 为等比数列; 求证 为等比数列 (2)若数列 n}的公比 q=f(m), 若数列{a 的公比 = 数列{b 满足 若数列 , 数列 n}满足 b1=a1, 3 1 bn= f(bn-1)(n∈N+, ≥2), n≥ , 求证: 为等差数列 { 为等差数列. ∈ 求证: }为等差数列. 2 bn
下 页
规律方法总结
随堂即时巩固
课后活页训练
基础知识梳理
三基能力强化
课堂互动讲练
第 三 章 推 理 与 证 明
1 1 1 证明】 【证明】 (a-1)(b-1)(c -1) a+b+c a+b+c a+b+c + + + + + + =( a -1)( b -1)( c -1) b+c a+c a+b + + + = a · b · c )(a+ )( )(a+ ) (b+c)( +c)( +b) 2 bc·2 ac·2 ab + )( = ≥ =8, , abc abc
相关文档
最新文档