3.1.2 概率的意义A
概率的意义和概率的性质
25..若只事掷件一C1发次生骰,子则,还则有事哪件些C1和事事件件也C一2有定可会能发同生? 反时过发来生可么以?吗?
36..上在述掷事骰件子中实,验哪中些事事件件G发和生事会件使H是得否一K=定{出有现一1个 点会或发5生点?}也发生?
思考5:奥地利遗传学家孟德尔从1856年开始 用豌豆作试验,他把黄色和绿色的豌豆杂交, 第一年收获的豌豆都是黄色的.第二年,他把 第一年收获的黄色豌豆再种下,收获的豌豆既 有黄色的又有绿色的.同样他把圆形和皱皮豌 豆杂交,第一年收获的豌豆都是圆形的.第二 年,他把第一年收获的圆形豌豆再种下,收获 的豌豆却既有圆形豌豆,又有皱皮豌豆.类似 地,他把长茎的豌豆与短茎的豌豆杂交,第一 年长出来的都是长茎的豌豆. 第二年,他把这 种杂交长茎豌豆再种下,得到的却既有长茎豌 豆,又有短茎豌豆.试验的具体数据如下:
豌豆杂交试验的子二代结果
性状
子叶的 颜色 种子的 性状
茎的高度
显性 黄色 6022
圆形 5474
长茎 787
隐性 绿色 2001
皱皮 1850
短茎 277
你能从这些数据中发现什么规律吗?
显性与隐性之比都接近3︰
孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性 与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出 合理解释.
二.剖析概念,夯实基础
(一)事件的关系和运算:
(1)包含关系
一般地,对于事件A与事件B,如果事件A发生,则 事件B一定发生,这时称事件B包含事件A(或称事
件A包含于事件B),记作 B A(或A B)
必修3第三章-概率-知识点总结和强化练习:
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
高中数学-3.1.2-生活中的概率课件-北师大版必修3
【即时练】 某工厂生产的产品合格率是99.99%,这说明 ( ) A.该厂生产的10000件产品中不合格的产品一定有1件 B.该厂生产的10000件产品中合格的产品一定有9999件 C.合格率99.99%很大,该厂生产的10000件产品中没有不合格产 品 D.该厂生产的产品合格的可能性是99.99% 【解析】选D.合格率是99.99%说明该厂生产的产品合格的可 能性是99.99%.
的概率为 8 ,乙2 获胜的概率为
12 3
相等,所以这个游戏规则不公平.
,甲4 、1乙获胜的概率不
12 3
【方法技巧】游戏公平性的标准及判断方法 (1)游戏规则是否公平,要看对游戏的双方来说,获胜的可能性或 概率是否相同.若相同,则规则公平,否则就是不公平的. (2)具体判断时,可以求出按所给规则双方的获胜概率,再进行比 较.
【解析】(1)由已知可知,抽检到次品的概率为5%,故该厂所生 产的座椅中大约有2500×5%=125(套)次品. 答案:125
(2)根据你学习的概率知识解决下列两个问题: ①生活中,我们常常听到这样的议论:“天气预报说昨天降水概 率为90%,结果根本一个雨点都没下,天气预报也太不准确了.” 学习了概率后,你认为这种说法正确吗?请给出解释. ②某厂家声称:我们生产的产品合格率是99%,其表达的意思是 什么?
【解题探究】1.题(1)中如果一个家庭中有两个孩子,你认为男 孩、女孩共有几种情况? 2.题(2)中事件发生的概率为90%,指的是100次试验中有90次 发生,还是指一次试验中该事件发生的可能性为0.9? 【探究提示】1.一个家庭中有两个孩子,可能是两个男孩、两个 女孩、一个男孩一个女孩. 2.事件发生的概率为90%,指的是一次试验中该事件发生的可 能性为0.9.
必修三3.1.2&3概率的意义与基本性质
3.1.2《概率的意义》导学案【学习目标】1、正确理解概率的意义,利用概率知识正确理解现实生活中的实际问题;2、通过对现实生活中问题的探究,感知应用数学知识解决数学问题的方法;3、进一步理解概率统计中随机性与规律性的关系。
【知识清单】1、随机事件在一次试验中能够发生与否是随机的,但随机性中含有,认识了这种随机性中的,就能使我们比较准确地预测随机事件发生的。
2、如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性”可以作为决策的准则,这种判断问题的方法称为。
3、在一次试验中的事件称为小概率事件,的事件称为大概率事件.4、概率的意义就是用概率的大小反映事件A发生的,但在一次试验中仍有两种可能,即事件A可能也可能。
【教材分析】认真阅读课本P113——P118,说明概率的意义在课本的六个实际例子中的体现。
【合作探究】题型一例1.(1)某校共有学生12000人,学校为使学生增强交通安全观念,准备随机抽查12名学生进行交通安全知识测试,其中某学生认为抽查的几率为11000,不可能抽查到他,所以不再准备交通安全知识以便应试,你认为他的做法对吗?并说明理由。
(2)若某次数学测验,全班50人的及格率为90%,若从该班任意抽取10人,其中有5人及格是可能的吗?为什么?题型二例 2. 元旦就要到了,某校将举行联欢活动,每班派一人主持节目,高二(1)班的小明、小华和小丽实力相当,都争着要去,班主任决定用抽签的方法来决定,机灵的小强给小华出主意,要小华先抽,说先抽的机会大,你是怎么认为的?说说看.题型三例3.设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球,随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,问这个球是从哪个箱子中取出的?题型四例4.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多少?中9环的概率约为多少?【巩固练习】1.某医院治疗一种病的治愈率是90%,这个90%指的是()A.100个病人中能治愈90个B.100个病人中能治愈10个C. 100个病人中可能治愈90个D.以上说法都正确2.气象台预报“本市明天降雨概率是70%”,以下理解正确的是( )A.本市明天将有70%的地区降雨B.本市明天将有70%的时间降雨C.明天出行不带雨具肯定淋雨D.明天出行不带雨具淋雨的可能性很大.3.甲乙两人做游戏,下列游戏中不公平的是()A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜.C.从一副不含大、小王的扑克中抽一张,扑克牌是红色则甲胜,是黑色乙胜.D.甲乙两人各写一个字,若是同奇或同偶则甲胜,否则乙胜.4.设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为()A.160B.7840C.7998D.78005.某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分()A.30分 B.0分 C.15分 D.20分6.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是。
概率的意义
10 从而连续10次出现1点的概率为( 1 ) 0.000000016538 ,这在
6
一次试验(即连续10次抛掷一枚骰子)中是几乎不可能发生
的.
Page 14
我们面临两种选择:
(1)这枚骰子质地均匀; 很显然大家选择第二种答案. 如果我们面临的是从多个可选答案中挑选正确答案的决策 问题,那么“使得样本出现的可能性最大”可以作为决策 的准则,这种判断问题的方法称为极大似然法. (2)这枚骰子质地不均匀
Page
15
公元1503年,北宋大将狄青,奉令征讨南方侬智高叛乱,他在 誓师时,当着全体将士的面拿出100枚铜钱说:“我把这100 枚铜钱抛向空中,如果落地后,100枚铜100枚铜钱当众抛出后,
竟然全部都是正面朝上.狄青又命军士取来100枚铁钉,把这 100枚铜钱钉在地上,派兵把守,任人观看.于是宋朝军心大 振,个个奋勇争先,而侬智高部下也风闻此事,军心涣散, 狄青终于顺利地平定了侬智高的叛乱. 请发表你对这件事的看法?
Page
19
降水概率的大小只能说明降水可能性的大小,概率值
越大只能表示在一次试验中发生的可能性越大.在一次试 验中“降水”这个事件是否发生仍然是随机的. 尽管明天下雨的可能性很大,但由于“明天下雨” 是随机事件,因此仍然有可能不下雨.
Page
20
遗传机理中的统计规律 孟德尔把黄色和绿色的豌豆杂交,第一年收获的豌豆 全是黄色的.第二年,当他把第一年收获的黄色豌豆再种下 时, 收获的豌豆既有黄色的又有绿色的.
最有可能是什么颜色的球?
红球.
Page
27
5.甲、乙两人进行比赛,比赛的规则是同时抛掷两枚质地 均匀的硬币,如果出现两次正面向上,那么甲得一分;如 果出现一次正面向上,一次反面向上,那么乙得一分,你 认为这种比赛规则公平吗? 同时抛掷两枚质地均匀的硬币,所有可能出现的结果 “正正”、“正反”、“反正”、“反反”四种,其中两
3.1.2 概率的意义——生活中的概率
如果我们面临的是从多个可选答案中挑选正确答案的 决策问题,那么“使得样本出现的可能性最大” 决策问题,那么“使得样本出现的可能性最大”可以作为决 策的准则,这种判断问题的方法称为极大似然法 极大似然法。 策的准则,这种判断问题的方法称为极大似然法。
概率的实际应用(四 概率的实际应用 四)
遗传机理中的统计概率
课外拓展
从赌博中发展 的概率理论
赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉 赌本究竟如何分配才合理呢 后来梅勒把这个问题告诉 了当时法国著名的数学家帕斯卡 这居然也难住了帕斯卡, 帕斯卡,这居然也难住了帕斯卡 了当时法国著名的数学家帕斯卡 这居然也难住了帕斯卡 因为当时并没有相关知识来解决此类问题,而且两人说的 因为当时并没有相关知识来解决此类问题 而且两人说的 似乎都有道理.帕斯卡又写信告诉了费马.于是在这两位伟 帕斯卡又写信告诉了费马 似乎都有道理 帕斯卡又写信告诉了费马 于是在这两位伟 大的法国数学家之间开始了具有划时代意义的通信,在通 大的法国数学家之间开始了具有划时代意义的通信 在通 信中,他们最终正确地解决了这个问题 他们设想:如果继 他们最终正确地解决了这个问题.他们设想 信中 他们最终正确地解决了这个问题 他们设想 如果继 续赌下去,梅勒 梅勒(甲 和他朋友 和他朋友(乙 最终获胜的机会如何呢 最终获胜的机会如何呢? 续赌下去 梅勒 甲)和他朋友 乙)最终获胜的机会如何呢 他们至多再赌两局即可分出胜负,这两局有 种可能结果: 这两局有4种可能结果 他们至多再赌两局即可分出胜负 这两局有 种可能结果 甲甲,甲乙 乙甲,乙乙 前3种情况都是甲最后取胜 只有最后 甲甲 甲乙,乙甲 乙乙.前 种情况都是甲最后取胜,只有最后 甲乙 乙甲 乙乙 种情况都是甲最后取胜 一种情况才是乙取胜,所以赌注应按 的比例分配,即甲 所以赌注应按3:1的比例分配 一种情况才是乙取胜 所以赌注应按 的比例分配 即甲 个金币,乙 个 得45个金币 乙15个. 个金币
必修三 3.1.2 概率的意义
班级:姓名:小组:评价:课题必修三 3.1.2 概率的意义教学目标1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律课型课时学法指导:1.通过实例理解概率的意义.(重点、难点)2.概率在实际生活中的应用.(重点)【教学过程及内容】[上节回顾][教学过程](含各环节设计、方法指导、课堂练习等)1.知识引入1.随机事件概率的理解随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.2.极大似然法的概念如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么课海拾贝/反思纠错“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.3.概率的意义概率的意义就是用概率的大小反映事件A发生的可能性,但在一次试验中仍有两种可能,即事件A可能发生也可能不发生2.自主探究对概率意义的理解(1)概率是从数量上反映了随机事件发生的可能性大小的一个数学概念,它是对大量重复试验来说存在的一种统计性规律,对单次试验来说,随机事件发生与否是随机的.(2)错误认识的澄清:有人说:“既然抛掷一枚质地均匀的硬币出现正面的概率是0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面向上,一次反面向上”.这种说法显然是错误的.(3)概率是描述随机事件发生的可能性大小的度量.即:概率越大,事件A发生的可能性就越大;概率越小,事件A发生的可能性就越小.(4)随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.(5)求随机事件概率的必要性.知道事件的概率可以为人们做决策提供依据,概率是用来度量事件发生可能性大小的量.小概率事件很少发生,而大概率事件经常发生.例如:如果天气预报报道:“今天降水的概率是10%”.可能绝大多数人出门都不会带雨具,而如果天气预报报道:“今天降水的概率是90%”,那么大多数人出门都会带雨具.特别提示 概率是一种可能性,只是频率在理论上的一种期望值.3.典例讲析某射手击中靶心的概率是0.9,是不是说明他射击10次就一定能击中9次?抛掷10枚硬币,全部正面向上.试就这一现象分析,这些硬币的质地是否均匀.4.变式练习下列说法正确的是( ).A .由生物学知,生男生女的概率大约都是12,则一对夫妇生了两个孩子,一定是一男一女B .10张券中有1张奖券,10个人去摸,谁先摸则谁中奖的可能性大C .昨天没有下雨,则说明昨天的天气预报“降水概率是80%”是错的D .一次摸奖,中奖率是15,则某人连摸5张券,也不一定会中奖[反馈习题]为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库中鱼的尾数.山东三吉钢木家具厂为2010年广州亚运会游泳比赛场馆生产观众座椅.质检人员对该厂所产2 500套座椅进行抽检,共抽检了100套,发现有5套次品,试问该厂所产2 500套座椅中大约有多少套次品?[学生知识结构整理归纳]。
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1
概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。
本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。
二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。
2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。
3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。
三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。
作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。
教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。
四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。
五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。
3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。
你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。
3.1.2概率的意义学案
必修3第三章3.1.2概率的意义学案课前预习案一、教材助读:阅读P113-118的内容,理解概率的意义。
二、预习自测:1.概率的正确理解:概率是描述随机事件发生的的度量,事件A的概率P(A)越大,其发生的可能性就越;概率P(A)越小,事件A发生的可能性就越 .2.概率的实际应用:知道随机事件的概率的大小,有利我们做出正确的 ,还可以解决某些决策或规则的正确性与公平性.3.游戏的公平性:应使参与游戏的各方的机会为等可能的, 即各方的相等,根据这一要求确定游戏规则才是的.4.决策中的概率思想:以使得样本出现的最大为决策的准则.5.天气预报的概率解释:降水的概率是指降水的这个随机事件出现的 ,而不是指某些区域有降水或能不能降水.三、我的疑惑:必修3第三章3.1.2概率的意义学案课内导学案一、学习目标:1.概率的正确理解;2.概率思想的实际应用。
二、新知探究1、概率的正确理解探究1:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?试验:(1)全班同学各取一枚同样的硬币,连续抛掷两次,可能会出现哪几种结果?(2)全班同学重复上面的过程10次,学习小组长统计本组结果交课代表,课代表会同学习小组长统计全班结果,计算三种结果发生的频率?填写下表(3)观察上表,随着试验次数的增多,三种结果发生的频率会有什么变化规律?估计三种结果发生的概率?探究2:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.(两个同学试验)探究3:如果某种彩票的中奖概率为 0.001,那么买1000张这种彩票一定能中奖吗?为什么?2.游戏的公平性探究4:阅读课本P115页“2.游戏的公平性”后的3个自然段的内容,利用什么来解释游戏的公平性的?探究5:课本115页“探究”3、决策中的概率思想探究6:课本P115页上方的“思考”,请同学阅读课本P115中3个自然段的内容,寻找问题的答案?什么是小概率事件?什么是极大似然法?(在课本上画出)4.天气预报的概率解释探究7:课本P116下方的“思考”探究8:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?三、知识应用小组内讨论下述问题,准备展示,将组内不能解决的问题用小纸条交给老师请同学们阅读在遗传学中有下列原理:(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.(2)用符号YY代表纯黄色豌豆的两个特征,符号yy代表纯绿色豌豆的两个特征.(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:Yy.把第一代杂交豌豆再种下时,第二年收获的第二代豌豆特征为: YY,Yy,yy.(4)对于豌豆的颜色来说.Y是显性因子,y是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即YY,Yy都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即yy呈绿色.探究9:将第二代豌豆特征与连续抛掷一枚硬币的试验结果比较,第二代中YY,Yy,yy 出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?四、归纳小结课后固学案1、一对夫妇前三胎生的都是女孩,则第四胎生一个男孩的概率是()A.0 B.0.5 C.0.25 D.12、某气象局预报说,明天本地降雪概率为90%,则下列解释中正确的是()A.明天本地有90%的区域下雪,10%的区域不下雪B.明天下雪的可能性是90%C.明天本地全天有90%的时间下雪,10%的时间不下雪D.明天本地一定下雪3、某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分()A.30分 B.0分 C.15分 D.20分4、某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?。
福建省平潭县高中数学 3.1.2 概率的意义导学案 新人教A版必修3
达标训练 1. 课本 p129 练习 1 2. 课本 p132 练习 1 2 3 3. 已知射手甲射中靶的概率为 0.9,因此我们认为即使射手甲比较优秀,他射击 10 发子弹也不可能全中,其中必有一发不中,试判断这种认识是否正确.
作业 布置 学习 小结 / 教 学 反思
1.习题 3-1 A 3,B 组 2. 教辅资料
1
例 2.抛一枚硬币(质地均匀) ,连续出现 5 次正面向上,有人认为下次出现反面 向 上的概率大于 1/2,这种理解正确吗?
例 3.为了增强学生对世园会的了解和认识,某校决定在全校 3000 名学生中随机抽 取 10 名学生举行一次有关西安世园会的知识问卷,小明认为被选取的可能性为
1 , 不可能抽到他,所以他就不想去查阅、咨询有关世园会的知识,你认为他的 300
2
3
2 .问题 1:抛掷 1 0 次硬币,是否一定是 5 次“正面朝上”和 5 次“5 次反面朝上”?
3. 问题 2:有四个阉,其中两个分别代表两件奖品,四个人按排序依次抓阉来决定 这两件奖品的归属.先抓的人中奖率一定大吗? 学习 过程 与方 法
4.阅读课本 p127-130,你发现了什么问题?
精讲互动 例 1. (1)某厂产品的次品率为 0.02,问“从该厂产品中任意地抽取 100 件,其中 一定有 2 件次品”这一说法对不对?为什么? (2)一次抽奖活动中,中奖的概率为 0.3,解释该概率的含义; (3)某种病治愈的概率是 0.3,那么,现有 10 人得这种病,在治疗中前 7 人没 有治愈,后 3 人一定能治愈吗?
§3.1.2 概率的意义
授课 时间 学习 目标 重点 难点 第 周 星期 第 节 课型 新授课 主备课 人 刘百波
3.1.2概率的意义
4.天气预报的概率解释
天气预报是气象专家依据观察到的气象资料和个人经 验,经过分析推断而得,是主观概率的一种.
降水概率的大小只能说明降水可能性的大小,概率值 越大只能表示在一次试验中发生的可能性越大.在一次试 验中“降水”这个情况是否发生仍然是随机的,也有不发 生的情况.上例尽管明天下雨的可能性很大,但由于“明天 下雨”是随机事件,因此仍然有可能不下雨.
这样的游戏公平吗?
1点 2点 3点 4点 5点 6点 1点 2点 2 3 3 4 4 5 5 6 6 7 7 8
3点
4点 5点 6点
4
5 6 7
5
6 7 8
6
7 8 9
7
8 9 10
8
9 10 11
9
10 11 12
2.游戏的公平性 乒乓球比赛确定发球权的方法公平否?
获胜的概率相等.体育比赛中用抽签 器的方法,决定场地和发球权,双方 猜中的概率都是50%,是公平的.
999 1000 1 ( ) 0.632 1000
这样的游戏公平吗?
小军和小民玩掷色子的游戏,他们约定:两颗色子掷 出去,如果朝上的两个数的和是5,那么小军获胜,如果朝 上的两个数的和是7,那么小民获胜。这样的游戏公平吗?
事件:掷双色子 A:朝上两个数的和是5 B:朝上两个数的和是7
关键是比较A发生的可能性和B发 生的可能性的大小。
孟德尔小传
•
从维也纳大学回到布 鲁恩不久,孟德尔就开 始了长达8年的豌豆实验。 孟德尔首先从许多种子 商那里,弄来了34个品 种的豌豆,从中挑选出 22个品种用于实验。它 们都具有某种可以相互 区分的稳定性状,例如 高茎或矮茎、圆料或皱 科、灰色种皮或白色种 皮等。
豌豆杂交试验
【创新设计】2014-2015学年高中数学 3.1.2 概率的意义课件 新人教A版必修3
)
解析
落地时100个铜板朝上的面都相同,根据极大似然
法可知,这100个铜板两面是一样的可能性较大.
要点三 概率的应用
例3 为了估计水库中鱼的尾数,可以使用以下的方法:先从
水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼做上记 号,不影响其存活,然后放回水库.经过适当的时间,让 其和水库中的其他鱼充分混合,再从水库中捕出一定数量 的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试
③随机事件发生的频率就是这个随机事件发生的概率;
④抛掷骰子 100 次,得点数是 1 的结果 18 次,则出现 1 点 9 的频率是 . 50
其中正确命题有________.
答案 解析 ④ ①错,次品率是大量产品的估计值,并不是针对200件
产品来说的.②③混淆了频率与概率的区别.④正确.
5.公元1053年,大元帅狄青奉旨,率兵征讨侬智高,出征前 狄青拿出100枚“宋元天宝”铜币,向众将士许愿:“如 果钱币扔在地上,有字的一面会全面向上,那么这次出兵 一定可以打败敌人!”在千军万马的注目之下,狄青用力
高中数学· 必修3· 人教A版
3.1.2 概率的意义
[学习目标]
1.通过实例,进一步理解概率的意义. 2.会用概率的意义解释生活中的实例. 3.了解“极大似然法”和遗传机理中的统计规律.
[预习导引] 1.对概率的正确理解 随机事件在一次试验中发生与否是随机的,但随机性中含 规律性 ,认识了这种随机性中的_______ 规律性 ,就能比较准 有_______ 可能性 . 确地预测随机事件发生的_______ 2.游戏的公平性
(1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,
猜中并取得发球权的概率均为___,所以这个规则是 _____ 0.5 公平 的. (2)在设计某种游戏规则时,一定要考虑这种规则对每个人 公平 的这一重要原则. 都是_____
高中数学 第三章概率教案 新人教版必修3
第三章概率一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。
2、正确理解事件A出现的频率的意义。
3、正确理解概率的概率和意义,明确事件A发生的频率f n〔A〕与事件A发生的概率P〔A〕的区别与联系。
4、利用概率知识,正确理解现实生活中的实际问题。
过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。
情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
2、培养辩证唯物主义观点,增强科学意识。
二、课前预习导学请同学们阅读P108—112,完成以下问题1、事件的有关概念〔1〕必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;〔2〕不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;〔3〕确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;〔4〕随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。
〔5〕_________事件与________事件统称为事件,一般用________表示。
2、概率与频率〔1〕频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn〔A〕=nAn为事件A出现的__________,显然频率的取值X围是____________。
〔2〕概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P〔A〕表示,显示概率的取值X围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。
高中概率知识点高考考点易错点归纳
高中概率知识点高考考点易错点归纳高中数学——概率知识要点3.1 随机事件的概率3.1.1 随机事件的概率在条件S下,一定会发生的事件称为相对于条件S的必然事件。
在条件S下,一定不会发生的事件称为相对于条件S的不可能事件。
必然事件和不可能事件统称相对于条件S的确定事件。
在条件S下可能发生也可能不发生的事件称为相对于条件S的随机事件。
在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数nA。
事件A出现的比例称为频率f(A)=nA/nn。
随机事件A的概率是频率的稳定值,反之,频率是概率的近似值。
3.1.2 概率的意义随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
抽签的公平性是游戏的公平性的一个例子。
在从多个可选答案中挑选出正确答案的决策任务中,“使得样本出现的可能性最大”可以作为决策的准则。
极大似然法和小概率事件也与概率思想相关。
天气预报的概率解释是明天本地下雨的机会是70%。
XXX的豌豆试验是试验与发现的例子。
遗传机理中的统计规律也与概率相关。
3.1.3 概率的基本性质对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作B A(或A B)。
不可能事件记作。
若B A且A B,则称事件A与事件B相等,记作A=B。
事件A与事件B的并事件(和事件)是某事件发生当且仅当事件A发生或事件B 发生。
事件A与事件B的交事件(积事件)是某事件发生当且仅当事件A发生且事件B发生。
事件A与事件B互斥是AB为不可能事件,即AB=,即事件A与事件B在任何一次试验中并不会同时发生。
事件A与事件B互为对立事件是AB为不可能事件,AB为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。
概率的几个基本性质包括:1)0≤P(A)≤1;2)必然事件的概率为1,即P(E)=1;3)不可能事件的概率为0,即P(F)=0.3.2 古典概型古典概型是一种具有有限个基本事件且每个基本事件出现的可能性相等的概率模型。
【金版学案】2013-2014学年度高中数学 3.1.2 概率的意义同步辅导与检测课件 新人教A版必修
设事件 A={带有记号的鱼},易知 P(A)≈20n00① 第二次从水库中捕出 500 尾,观察其中带有记号 的鱼有 40 尾,即事件 A 发生的频数 m=40,由概率的 统计定义可知 P(A)≈54000② 由①②两式,得20n00≈54000, 解得 n≈25000,即 n=25000. 所以,估计水库中约有鱼 25000 尾.
(1)试验的基本事件; (2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.
解析:(1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4). (2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).
答案:C
点评:本题易错选为A或B,其原因是错误理解 概率的意义,概率只是说明事件发生的可能性大小, 其发生具有随机性.
概率的简单应用
为了估计水库中鱼的尾数,可以使用以下的方 法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾 鱼作上记号,不影响其存活,然后放回水库,经过适当时 间,让其和水库中其余的鱼充分混合,再从水库中捕出一 定数量的鱼,例如500尾,查看其中有记号的鱼,设有40 尾,试根据上述数据,估计水库内鱼的尾数.
数学高一知识点总结
数学高一知识点总结有质量的知识才是名校的真实力,每一所这样的大学,至少都有十种左右高质知识储备在教授门手中,储备在这些学校与世界的多重联系中,正是这高质量知识的储备。
下面小编给大家分享一些数学高一知识点,希望能够帮助大家,欢迎阅读!数学高一知识点1统计2.1.1简单随机抽样1.总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
2.1.2系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
2020_2021学年高中数学第三章概率3.1.2概率的意义学案含解析新人教A版必修3
高中数学:3.1.2 概率的意义[目标] 1.通过实例,进一步理解概率的意义;2.会用概率的意义解释生活中的实例;3.了解“极大似然法”和遗传机理中的统计规律.[重点] 概率的意义及应用.[难点] 概率意义的理解.知识点一 概率的正确理解[填一填] 随机事件在一次试验中发生与否是随机的,但是随机性中含有规律性.认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.概率只是度量事件发生的可能性的大小,不能确定是否发生.[答一答]1.掷一枚均匀的硬币,正面向上的概率是12,那么在掷一百次试验中,是否一定有50次正面向上?提示:不一定,但正面向上的次数应是50次左右.知识点二 游戏的公平性[填一填]尽管随机事件发生具有随机性,但是当大量重复这一过程时,它又呈现出一定的规律性,因此利用概率知识可以解释和判断一些游戏规则的公平性、合理性.[答一答]2.在生活中,有时要用抽签的方法来决定一件事情,这样做是否公平呢?提示:我们看到在抽签时虽然有先有后,但每个抽签者中签的概率是相等的,也就是说,不会因为抽签的顺序影响其公平性.例如,在n 张相同的票中只有1张奖票,n 个人依次从中各抽1张,那么每个人抽到奖票的概率都是1n,也就是说,抽到奖票的概率与抽票的顺序无关.知识点三决策中的概率思想[填一填]如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法,是决策中的概率思想.[答一答]3.如果掷一枚硬币100次,结果只有两次正面向上,如果只考虑硬币是否均匀,你的判断更倾向于什么?提示:更倾向于硬币不均匀.如果硬币是均匀的,那么出现正面向上或反面向上的次数应相差不大.知识点四天气预报的概率解释[填一填]天气预报的“降水概率”是随机事件的概率,是指明了“降水”这个随机事件发生的可能性的大小.[答一答]4.某地气象局预报说,明天本地降水概率为70%,请你结合概率的意义作出正确的解释.提示:“明天本地降水概率为70%”是指本地降水的可能性是70%,而不是本地70%的区域会降水.当然,降水是一个随机事件,随机事件在一定条件下可能发生,也可能不发生,因此降水概率为70%是指降水的可能性为70%,本地不一定下雨,也不一定不下雨.天气预报是气象专家根据观测到的气象资料和经验,经过分析推断得到的.如果本地不下雨,并不能说天气预报是错误的.知识点五试验与发现及遗传机理中的统计规律[填一填]概率知识在科学发展中起着非常重要的作用,奥地利遗传学家孟德尔利用杂交豌豆所做的试验中,得到了显性与隐性的比例接近31,分析找出了遗传规律,成为近代遗传学的奠基人.可见,利用概率统计知识,对数据加以分析,有时可以得到意想不到的结论.[答一答]5.孟德尔试验得到的显性与隐性的比例是多少?其遗传机理是什么?提示:当这两种豌豆杂交时,下一代是从父母辈中各随机地选取一个特征,于是第一代收获的豌豆的特征是Yy.以此类推,第二代收获的是YY ,Yy ,Yy ,yy ,如图,Y 是显性因子,y 是隐性因子,当显性因子与隐性因子组合时,表现出显性因子的特征,即YY ,Yy 呈黄色;当两个隐性因子组合时才表现隐性因子的特征,即yy 呈绿色.由于下一代的两个特征是从父母辈中各随机选取的,因此在第二代中的YY ,yy 出现的概率都是14,Yy 出现的概率是12,所以黄色豌豆(YY 或Yy)绿色豌豆(yy)≈3 1.类型一 概率的正确理解[例1] 下列说法正确的是( )A .由生物学知道生男生女的概率约为0.5,一对夫妇先后生两个小孩,则一定为一男一女B .一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D .10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1[解析] 一对夫妇生两个小孩可能是(男,男),(男,女),(女,男),(女,女),所以A 不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B 不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C 不正确,D 正确.[答案] D随机事件在一次试验中发生与否是随机的,但随机中含有规律性,而概率恰是其规律性在数量上的反映,概率是客观存在的,它与试验次数,哪一个具体的试验都没有关系,运用概率知识,可以帮助我们澄清日常生活中人们对一些现象的错误认识.[变式训练1] 每道选择题有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是14,我每题都选择第一个选择支,则一定有3题选择结果正确”这句话( B )A .正确B .错误C .不一定D .无法解释解析:解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14.做12道选择题,即进行了12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3题选择结果正确的可能性比较大.同时也有可能都选错,亦或有2题,4题,甚至12个题都选择正确.类型二 游戏的公平性[例2] 有一个转盘游戏,转盘被平均分成10等份(如图),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A .猜“是奇数”或“是偶数”B .猜“是4的整数倍数”或“不是4的整数倍数”C .猜“是大于4的数”或“不是大于4的数”请回答问题:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.[解](1)可以选择B.猜“不是4的整数倍数”或C.猜“是大于4的数”.“不是4的整数倍数”的概率为810=0.8,“是大于4的数”的概率为610=0.6,它们都超过了0.5,故应可以尽可能地获胜.(2)为了保证游戏的公平性,应当选择A方案.方案A.猜“是奇数”或“是偶数”的概率均为0.5,因而该游戏是公平的.(3)可以设计为D.猜“是大于5的数”或“不是大于5的数”,也可以保证游戏的公平性(答案不唯一).利用概率的意义可以制定游戏的规则,在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说游戏是否公平只要看获胜的概率是否相等.如体育比赛中决定发球权的方法应该保证比赛双方先发球的概率相等,这样才公平.再如每个购买彩票的人中奖的概率应是相等的,这样对每个人才是公平的.[变式训练2]元旦就要到了,某校将举行庆祝活动,每班派1人主持节目.高一(2)班的小明、小华和小利实力相当,又都争着要去,班主任决定用抽签的方式决定,机灵的小强给小华出主意,要小华先抽,说先抽的机会大,你是怎样认为的?说说看.解:其实抽签不必分先后,先抽后抽,中签的机会是一样的.我们取三张卡片,上面标上1、2、3,抽到1就表示中签,设抽签的次序为甲、乙、丙,则可以把情况填入下表:从上表可以看出:甲、乙、丙依次抽签,一共有六种情况,第一、二两种情况,甲中签;第三、五两种情况,乙中签;第四、六两种情况,丙中签.甲、乙、丙中签的可能性都是相同的,即甲、乙、丙的机会是一样的,先抽后抽,机会是均等的,不必争先恐后.类型三极大似然法的应用[例3]设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球.今随机地抽取一箱,要从取出的一箱中抽取一球,结果取得白球.问这球从哪一个箱子中取出?[分析]由题目可获取以下主要信息:①已知试验的结果与试验过程大致情况;②由试验结果推断具体的试验过程.解答本题可利用极大似然法.[解]甲箱中有99个白球1个黑球,故随机地取出一球,得白球的可能性是99100.乙箱中有1个白球和99个黑球,从中任取一球,得到白球的可能性是1100.由此看到,这一白球从甲箱中抽出的概率比从乙箱中抽出的概率大得多.由极大似然法,既然在一次抽样中抽到白球,当然可以认为是由概率大的箱子中抽出的.所以我们作出统计推断该白球是从甲箱中抽出的.在一次试验中,概率大的事件比概率小的事件出现的可能性更大,这正是能够利用极大似然法来进行科学决策的理论依据.因此,在分析、解决有关试验问题时,要善于灵活地运用极大似然法这一思想方法来进行科学地决策.[变式训练3]深入研究之后,人们发现英文中各个字母被使用的频率相当稳定,例如,下面就是一份统计表.试举例说明这一研究的重要用途是什么?解:在英语中某些字母出现的频率远远高于另外一些字母,从表中我们可以看出,空格的使用频率最高,鉴于此,这一研究在键盘的设计、信息的编码、密码的破译等方面都是十分有用的.比如,人们在设计键盘时,在方便的地方安排使用频率较高的字母键,空格键不仅所占面积最大,而且放在使用最方便的位置.1.已知某种彩票中奖率为11 000,某人买了1 000份该彩票,则其( D ) A .一定中奖B .恰有一份中奖C .至少有一份中奖D .可能没有中奖解析:彩票中奖是一个随机事件,中奖率是中奖的可能性,并非一定中奖.2.下列说法一定正确的是( D )A .一名篮球运动员,号称“百发百中”,若他罚球三次,不会出现三投都不中的情况B .一个骰子掷一次得到2的概率是16,则掷6次一定会出现一次2 C .若买彩票中奖的概率为万分之一,则买一万张彩票一定会中奖D .随机事件发生的概率与试验次数无关3.某医院治疗某种疾病的治愈率为1‰ .在2008年医院收治的398个病人中,无一治愈,那么2009年该医院收治的第一个病人可能被治愈.(填“可能”或“不可能”)4.利用简单随机抽样的方法抽查了某校200名学生,其中戴眼镜的同学有123人,若在这个学校随机调查一名学生,则他戴眼镜的概率是0.615.解析:根据频率与概率的关系及概率的意义知,这名学生戴眼镜的概率为123200=0.615. 5.李东是高一(18)班的一名学生,该班有学生55人,在将要举行的“五四”晚会上,每班要随机抽一名同学作为嘉宾参与电视台节目录制,李东认为他被抽到的概率为155,你认为有道理吗?解:有道理,因为从55位同学中抽取一名同学作为嘉宾,这是一个随机事件,因此,李东被抽到的概率为155.——本课须掌握的两大问题1.概率是从数量上反映随机事件发生的可能性大小的一个数学概念.对大量重复试验来说存在的一种统计规律性,对单次试验来说,随机事件发生与否是随机的.2.生活中的概率(1)在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说,游戏是否公平只要看每人获胜的概率是否相等即可.(2)正确理解随机事件概率的意义,掌握日常生活中偶然事件发生的规律,用概率的意义来解释一些日常生活中偶然事件即随机事件发生的概率,可以澄清日常生活中的一些错误认识.但是在用概率思想指导实践活动时,要注意概率是根据大量的随机试验得到的一个相应的期望值,它说明一个事件发生的可能性的大小,并不说明一个事件一定发生或一定不发生,因此应当抱着一种平常的心态对待它.(3)如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大,这种判断问题的方法称为极大似然法.。
3.1.2概率的意义
1.概率的正确理解:
问题2:若某种彩票准备发行1000万张,其中有1万张可以
中奖,则买一张这种彩票的中奖概率是多少?买1000张的 话是否一定会中奖?
答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖 也可能不中奖。买彩票中奖的概率为1/1000,是指试验次数相当 大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖
概率的意义:
(1)概率的正确理解 (2)概率与公平性的关系:
利用概率解释游戏规则的公平性,判断实际生活中的 一些现象是否合理。
(3)概率与决策的关系: 在“风险与决策”中经常会用到统计中的极大似然法: 在一次实验中,概率大的事件发生的可能性大。 (4)概率与预报的关系: 在对各种自然现象、灾害的研究过程中经常会用到概 率的思想来进行预测。
(2)把9写成两个数的和,其中一定
有一个数小于5; (3)汽车排放尾气,污染环境;
(4) 明天早晨有雾.
3.有以下说法: (1)频率反映事件发生的频繁程度,概率 反映事件发生的可能性的大小; (2)做n次随机试验,事件A发生m次,则事 件A发生的频率m∕n,就是事件A发 生的概率; (3)百分率是频率,但不是概率; (4)频率是不能脱离具体的n次试验的实 验值,而概率具有确定性,它是不依 赖于试验次数的理论值; (5)频率是概率的近似值,概率是频率的 (1)(4)(5) 稳定值.其中正确的是
1 1 1 P( yy) 2 2 4
黄色豌豆(YY,Yy)︰绿色豌豆(yy) ≈3︰1
能力提升
1.为了估计水库中的鱼的尾数,先 从水库中捕出2000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回 水库.经过适当的时间,让其和水库 中其余的鱼充分混合,再从水库中捕 出500尾鱼,其中有记号的鱼有40尾, 试根据上述数据,估计这个水库里鱼 的尾数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概率的正确理解 P113思考:有人说,既然抛掷一枚硬币出现
正面的概率为0.5,那么连续两次抛掷一枚质地 均匀的硬币,一定是一次正面朝上,一次反面 朝上,你认为这种想法正确吗?
有三种可能:“两次正面朝上”,“两次反面 朝上”,“一次正面朝上,一次反面朝上”
探究
全班同学各取一枚硬币,连续两次抛 掷,观察它落地后的朝向,并纪录结 果.重复上面过程10次.计算三种 结果的频率,你有什么发现?
课堂小结
1、正确理解概率的意义。 2、概率与频率的区别与联系; 3、概率是一门研究现实世界中广泛存在 的随机现象的科学,正确认识生活中有 关概率的实例的关键,是在学习过程中 应有意识形培养概率意识,并用这种意 识来理解现实世界,主动参与对事件发 生的概率的感受和探索。
注意:
1 这个错误产生的原因是,有人把中奖概率 1000
理解为共有1000张彩票,其中有1张是中奖号码,然 后看成不放回抽样,所以购买1000张彩票,当然一定 能中奖。而实际上彩票的总张数远远大于1000。 每张彩票中奖是随机的,1000张彩票有几张中奖 也是随机的,但这种随机性具有规律性。
2、游戏的公平性
(1)试验与发现
孟德尔把黄色和绿色 的豌豆杂交,第一年收 获的豌豆是黄色的。第 二年,当他把第一年收 获的黄色豌豆再种下时, 收获的豌豆既有黄色的 又有绿色的。 类似地,他把圆形和皱 皮豌豆杂交,第一年收 获的都是圆形豌豆,连 一粒皱皮豌豆都没有。 第二年,当他把这种杂 交圆形再种下时,得到 的却既有圆形豌豆,又 有皱皮豌豆。
4、天气预报的概率解释
思考:某地气象局预报说,明天本地降水
概率为70%。你认为下面两个解释中哪一个 能代表气象局的观点?
(1)明天本地有70%的区域下雨,30%的 区域不下雨; (2)明天本地下雨的机会是70%。
降水概率的大小只能说明降水可能性的 大小,概率值越大只能表示在一次试验 中发生的可能性越大。在一次试验中“ 降水”这个事件是否发生仍然是随机的 。 例如,如果天气预报说“明
随机事件的随机性与规律性:
随机事件在一次试验中发生与否是随机 的,但随机性中含有规律性。认识了这种随 机性中的规律性,我们就能比较准确的预测 随机事件发生的可能性。
P114思考
1 如果某种彩票的中奖概率为 1000 ,那 么买1000张这种彩票一定能中奖吗? (假设该彩票有足够多的张数。)
不一定,而有的人认为一定中奖,那 么他的理由
球等体育比赛中,如何确定由哪一方先 发球?你觉得对比赛双方公平吗?
结论:在各类游戏中,如果每人获胜的 概率相等,那么游戏就是公平的.这就 是说,游戏是否公平只要看每人获胜 的概率是否相等.
P115探究
某中学从高一年级12个班中选2班代表学校参加某项活动。 一班必须参加,另从2到12班选一个班。有人提议用以下方 法选:掷两个骰子得到的点数和是几,就选几班,你认为这种 方法公平吗?
(2)遗传机理中的统计规律
阅读课文 P117-118
亲 本
YY
yy
第一代 第二代
Yy
Yy
YY
Yy
Yy
yy
其中Y为显性因子,y为隐性因子
YY yy
第一代
Yy
第二代
YY
Yy
yy
Y 是显形因子 y是隐性因子 显然黄色豌豆(YY,Yy):绿色豌豆(yy)
3:1。
分离律:基因不融合,而是各自分开;如果双 亲都是杂种,后代以3 :1(显性 :隐性)的比 例分离。 结论:由数学分析知道了上述结果的必然性. 进而可以有意识地利用此结论指导实践.
P118自我评价与课堂练习:
1、在乒乓球、排球等比赛中,裁判员还 用哪些方法决定谁先发球?这些方法公 平吗? 1 2、“一个骰子掷一次的概率是 ,这说 6 明一个骰子掷6次会出现一次2”,这种 说法对吗?
P118自我评价与课堂练习:
• 1.将一枚硬币向上抛掷10次,其中正面向上 恰有5次是(B ) • A.必然事件 B.随机事件 • C.不可能事件 D.无法确定 • 2.下列说法正确的是( C ) • A.任一事件的概率总在(0,1)内 • B.不可能事件的概率不一定为0 • C.必然事件的概率一定为1 • D.以上均不对
天降水的概率为90%”呢?
尽管明天下雨的可能性很大,但由于 “明天下雨”是随机事件,因此仍然 有可能不下雨。
5、遗传机理中的统计规律
阅读课文 P117
孟德尔(Gregor Mendel,18221884)孟德尔是现代遗传学之父 ,是这一门重要生物学科的奠基 人。1865年发现遗传定律。
豌豆杂交试验
3、决策中的概率思想 P116思考:如果连续10次掷一枚骰子,结果都
是出现1点,你认为这枚骰子的质地均匀吗?为什 么?
阅读课文P116
极大似然法的思想:如果我们面临的是从多个可选 答案中挑选正确答案的决策任务,“使得样本出现的 可能性最大”可以作为决策的准则.这种判断问题 的方法称为极大似然法,极大似然法是统计工作中 最重要的统计思想方法之一.
发现
“两次均正面朝上”的频率与“两次均反面朝 上”的频率大致相等;“正面朝上、反面朝上各 一次”的频率大于“两次均正面朝上”( “两 次均反面朝上” )的频率。
事实上, “两次均正面朝上”的概率为 0.25, “两次均反面朝上”的概率也为 0.25, “正面朝上、反面朝上各一次”的 概率为0.5 。
P118自我评价与课堂练习:
• 3.某篮球运动员,在同一条件下进行投 篮练习,结果如下表如示。
投篮次数
进球次数 m
40 30
50 40
60 48
100 200 240 300 85 166 192 228
进球频 率
0.75 0.8 0.8 0.85 0.8 0.8 0.76.
• (1)计算表中进球的频率; • (2)这位运动员投篮一次,进球的概率 0.8 约为多少?
第三章 概
率
3.1.2
概率的意义
复习:
1、你能回忆随机事件发生的概率的定义吗?
在大量重复进行同一试验时,事件 A 发生
n 的频率 n
A
总是接近于某个常数,在它附近摆
动,这时就把这个常数叫做事件A 的概率记作 P(A).
2、谁能说一说掷一枚质地均匀的硬币出 现正面的概率为1/2的含义?
掷一枚质地均匀的硬币出现正面的可能性是 0.5,也就是说掷一枚质地均匀的硬币出现正 面的机会是50%。