第8章 相量法
【第8章】 相量法
复数在复平面上可 以用向量表示。
0
a1
2. 复数的四种表示形式
⑴ 表达式 ① 代数形式 A= a1+ ja2 +j a2 A
② 极坐标形式
③ 三角函数式 ④ 指数形式
0 模 幅角 A a cos j + j a sin j
A aj
a φ
a1 +1
A ae jj
(由欧拉公式e jφ = cos φ + jsin φ得到) ⑵ 四种表达式关系
I e jy i I y I m m m i
复振幅与正弦量的一一对应关系: 复振幅的模是正弦量的最大值 复振幅的幅角为正弦量的初相位
jy i I Ie Iy i 复有效值
复有效值与正弦量的一一对应关系: 复有效值的模是正弦量的有效值 复有效值的幅角为正弦量的初相位
同样可以建立正弦电压与相量的对应关系:
φ =0,同相; i i1
0 i2
φ = (180o) ,反相; i i1 i2
wt
0 i i1
wt
φ = /2,正交;
i2
wt 因为规定了: |φ| (180°)。 0 所以,我们说i1 领先 i2 /2, 而不说i2落后i1 3 /2
注:我们此处比较的是两个电流的相位差,那么,我们是 否可以比较一个电压和一个电流的相位差?在今后的分析 中可以利用电压和电流的相位差来判断电路的性质。
线圈从中性面开始转过了ωt 时,导线切割磁 力线的速度是ωr SIN ωt
可见:交流电是电流的大小和方向都随时间做周期 性变化的电流。
交流电有许多优点: •交流电可以用变压器升高或降低电压, •交流电可以驱动结构简单,运行可靠的交流 感应电动机,交流电是廉价的动力或能量来源。
第八章 相量法
ψ
0
ωt
Im , ω , ψ ——正弦量的三要素 正弦量的三要素 正弦量的
i(t)=Imcos(ω t+ψ) 二,正弦量的三要素 1, 幅值 (振幅, 最大值 m , 振幅, 振幅 最大值)I
i
ωT=2π π
ψ
0
ωt
2, 角频率ω : 反映正弦量变化的快慢. ω =d(ω t+ψ )/dt , 反映正弦量变化的快慢. 单位时间内变化的角度 单位: rad/s,弧度 秒 单位: ,弧度/秒 周期T 完成一个循环变化所需时间, 周期 : 完成一个循环变化所需时间,单位 s. . 频率f 每秒钟完成循环的次数,单位: 赫兹) 频率 : 每秒钟完成循环的次数,单位:Hz(赫兹 . 赫兹
T i 2 ( t ) Rdt R W交 = ∫0
周期电压如图所示.求其有效值U. 例 周期电压如图所示.求其有效值 . u(t)/V 2 1 0 1 2 3 4 5 6 t/s
根据有效值的定义, 解 根据有效值的定义,有
1 U= T =
∫
T 0
u 2 ( t )dt
2 3 1 1 2 2 1 dt + ∫ 2 dt + ∫ 0 2 dt = 1.29 V ∫0 1 2 3
π
UL
I
相量图
或
U I= ωL
I
3,相量形式: ,相量形式: jω L
+
UL
U L = jωLI = jX L I
XL=ω L,称为感抗,单位为 (欧姆 欧姆) ,称为感抗,单位为 欧姆
-ቤተ መጻሕፍቲ ባይዱ
相量模型 4,感抗的物理意义 ,
U (1) 表示限制电流的能力; I = 表示限制电流的能力; ωL (2) 感抗和频率成正比 ω =0 直流(XL=0) , ω→∞开路; 感抗和频率成正比, 直流( →∞开路 开路; XL
电路原理 第八章_相量法
复数 复数
—
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法(续)
—
已知正弦量 220√ 2 cos ( ω t-35° ) 有效值相量 最大值相量 220/ -35° — 220√ 2 /-35°
已知 相量 10/45° and 正弦量的角频率ω 相应的正弦量 — 10 √ 2 cos( ωt + 45° )
0 ωt1
ωt2
ωt
φ
图8-5 用旋转矢量表示的正弦量
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法 F = ⎪F⎪e j(ω t + ϕ )
ejθ = cosθ + jsinθ
设:有一复数
欧拉公式
F = ⎪F⎪ej(ωt + ϕ ) = ⎪F⎪cos(ωt + ϕ) + j⎪F⎪sin(ωt +ϕ) Re [F] = ⎪F⎪cos(ωt + ϕ ) Im [F] = ⎪F⎪sin(ωt + ϕ )
返回
第8章
三、旋转因子
/ϕ 旋转因子: e jϕ = 1 — A = ⎪A⎪ejα Aejϕ = ⎪A⎪ejαejϕ = ⎪A⎪ej(α+ϕ ) ejπ/2 = j1 e-jπ/2 = − j1
+j
Aejϕ
ϕ α
0
A
+1
e-jπ = − 1
孙惠英 shy@
上页
下页
返回
第8章
ϕ 12 = ϕ 1- ϕ 2 —— u1 超前于 u2 的相角 ϕ 21 = ϕ 2- ϕ 1 —— u2 超前于 u1 的相角
(完整版)第八章相量图和相量法求解电路
(完整版)第⼋章相量图和相量法求解电路第⼋章相量图和相量法求解电路⼀、教学基本要求1、掌握阻抗的串、并联及相量图的画法。
2、了解正弦电流电路的瞬时功率、有功功率、⽆功功率、功率因数、复功率的概念及表达形式。
3、熟练掌握正弦电流电路的稳态分析法。
4、了解正弦电流电路的串、并联谐振的概念,参数选定及应⽤情况。
5、掌握最⼤功率传输的概念,及在不同情况下的最⼤传输条件。
⼆、教学重点与难点1. 教学重点: (1).正弦量和相量之间的关系;(2). 正弦量的相量差和有效值的概念(3). R、L、C各元件的电压、电流关系的相量形式(4). 电路定律的相量形式及元件的电压电流关系的相量形式。
2.教学难点:1. 正弦量与相量之间的联系和区别;2. 元件电压相量和电流相量的关系。
三、本章与其它章节的联系:本章是学习第 9-12 章的基础,必须熟练掌握相量法的解析运算。
§8.1 复数相量法是建⽴在⽤复数来表⽰正弦量的基础上的,因此,必须掌握复数的四种表⽰形式及运算规则。
1. 复数的四种表⽰形式代数形式A = a +j b复数的实部和虚部分别表⽰为: Re[A]=a Im[A]=b 。
图 8.1 为复数在复平⾯的表⽰。
图 8.1根据图 8.1 得复数的三⾓形式:两种表⽰法的关系:或根据欧拉公式可将复数的三⾓形式转换为指数表⽰形式:指数形式有时改写为极坐标形式:注意:要熟练掌握复数的四种表⽰形式及相互转换关系,这对复数的运算⾮常重要。
2. 复数的运算(1) 加减运算——采⽤代数形式⽐较⽅便。
若则即复数的加、减运算满⾜实部和实部相加减,虚部和虚部相加减。
复数的加、减运算也可以在复平⾯上按平⾏四边形法⽤向量的相加和相减求得,如图8.2所⽰。
图 8.2(2) 乘除运算——采⽤指数形式或极坐标形式⽐较⽅便。
若则即复数的乘法运算满⾜模相乘,辐⾓相加。
除法运算满⾜模相除,辐⾓相减,如图8.3⽰。
图 8.3 图 8.4(3) 旋转因⼦:由复数的乘除运算得任意复数A 乘或除复数,相当于A 逆时针或顺时针旋转⼀个⾓度θ,⽽模不变,如图 8.4 所⽰。
电路(第五版).-邱关源原著-电路教案--第8章相量法
电路(第五版).-邱关源原著-电路教案--第8章相量法第8章 相量法● 本章重点1、正弦量的两种表示形式;2、相量的概念;3、KVL 、KCL 及元件VCR 的相量形式。
● 本章难点1、 正确理解正弦量的两种表示形式的对应关系;2、 三种元件伏安关系的相量形式的正确理解。
● 教学方法本章是相量法的基础,对复数和正弦量两部分内容主要以自学为主,本章主要讲授相量法的概念、电路定律的相量形式以及元件V AR 的相量形式。
讲述中对重点内容不仅要讲把基本概念讲解透彻,而且要讲明正弦量的相量与正弦时间函数之间的对应关系;元件V AR 的相量形式与时域形式之间的对应关系,使学生加深对内容的理解并牢固掌握。
本章对元件的功率和能量这部分内容作了简单讲解,以便为下一章的学习打下基础。
本章共用4课时。
● 授课内容8.1复数1. 复数的三种表示bj a A += 直角坐标=θ∠r 极坐标 =θj re 指数形式θθθsin cos 22r b r a ab arctgb a r ==⇒=+=⇒直极极直θθsin cos jr r A += 三角表示形式欧拉公式:θθθsin cos j e j +=2. 复数的运算已知:11111θ∠=+=r jb a A ,22222θ∠=+=r jb a A求:212121,,A AA A A A ⋅±i()()212121b b j a a A A ±+±=±212121212121θθθθ+∠=+∠=⋅r r A A r r A A 8.2正弦量一、正弦量:随时间t 按照正弦规律变化的物理量,都称为正弦量,它们在某时刻的值称为该时刻的瞬时值,则正弦电压和电流分别用小写字母i 、u 表示。
周期量:时变电压和电流的波形周期性的重复出现。
周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。
电路分析课件第八章相量法
KVL:任意时刻,任一回路,U=0
三、受控源的相量形式
i1
I1
R
正弦电流
i 1 电路时:
R
1I1
本章小结:
所谓相量法,就是电压、电流用相量表示, RLC元件用阻抗、感抗、容抗表示,画出电路的相 量模型,利用KCL、KVL和欧姆定律的相量形式写 出未知电压、电流相量的代数方程加以求解,因此, 应用相量法应熟练掌握:
∴ i =46.2 2cos(314t–27º)A j I1
+1 I
相量图
I2
注意:
在分析正弦交流电路时字母的写法:
i — 瞬时值 I — 有效值 Im — 最大值 I — 有效值相量 Im— 最大值相量
三、不同频率的正弦量不能用相量法运算。
相量只含有正弦量的有效值(最大值)和初相 位的信息,不包含频率的信息,即:在运用相量 法分析正弦量时,默认为同频率。
将 I (或 U)定义为电流i (或电压u) 的相量,它含有 正弦量的振幅和相位的信息。
注意:
有一个正弦量便可以得到一个相量; 有一个相量也可以写出对应的正弦
量。两者是一一对应的关系,决不
是相等的关系。
u=220 2 cos(314t+45º)V
U=220 45ºV u U
I=50 –30ºA 一一对应 i =50 2 cos(ωt–30º)A i I
U 相量形式电路图
相量关系既反映了u、i 的有效 值关系又反映了相位的关系。
I U 相量图
2、电感
iL
u
若:i = 2 Icos(ωt+ψi )
则:u=L
di dt
=–
2 IωLsin(ωt+ψi )
第08章 相量法
2 , e
j
复
数
Im
ɺ + jI
π
2 =+j
ɺ I
π
2
= cos
j−
π
2
+ j sin
0
Re
ɺ − jI
α =−
π
2
π
2
, e
= cos(− ) + j sin(− ) = − j 2 2
π
π
ɺ −I
2>、反向因子-1 、反向因子
α = ±π , e j ±π = cos(±π ) + j sin(±π ) = −1
def
T
0
有效值也称均方根值 有效值也称均方根值(root-meen-square,简 也称均方根值 , 记为 rms。) 。
8. 1 正弦量的基本概念
电流有效值的物理意义: 电流有效值的物理意义: 周期性电流 i 流过电阻 R,在一周期 内吸收的 ,在一周期T 电能,等于一直流电流I 流过R 在时间T 电能,等于一直流电流 流过 , 在时间 内吸收的电 的有效值。 能,则称电流 I 为周期性电流 i 的有效值。 i(t) 如图: 如图: T 2
m
8. 2
一、复数A表示形式 复数 表示形式
复
数
Im b A
在平面上, 在平面上,由O指向A的有向 指向 线段(向量), ),表示复数 线段(向量),表示复数A。 1、直角坐标表示 、 代数形式: 代数形式:
O Im b
a A |A|
Re
A=a+jb
Re[A]=a Im[A]=b
1 j = =−j j j⋅ j
8. 1 正弦量的基本概念
电路分析相量法
量的相量乘以 jω ,即表示di/dt 的相量为
j I I( i 90o )
该相量的模为ωI ,辐角则超前原相量π/2 。
对 i 的高阶导数 dni/dtn ,其相量为 ( j )。n I
3)正弦量的积分
设 i 2I cos( t i ),则
idt Re[ 2Ie j t ] dt Re[ (
F1F2 | F1 | 1 | F2 | 2 | F1 || F2 | (1 2 )
可见复数的乘法运算使用指数形式或极坐标形式较为简便。
3)除法运算
a)代数形式
F1 F2
a1 a2
jb1 jb2
(a1 (a2
jb1 )(a2 jb2 )(a2
jb2 ) jb2 )
(a1a2
b1b2 ) j(a2b1 a22 b22
设 F1 a1 jb1 , F2 a2 jb2 ,则
F1 F2 (a1 jb1 ) (a2 jb2 ) (a1 a2 ) j(b1 b2 )
平行四边形法则:
+j F1 +F2 F1
F2 o
+1
+j F1
F2 o
F1-F2 +1
2)乘法运算 a)代数形式
F1F2 (a1 jb1 )(a2 jb2 ) (a1a2 b1b2 ) j(a1b2 a2b1 )
di d Re[ 2Ie j t ] Re[ d ( 2Ie j t )] Re[ 2( j I)e j t ]
dt dt
dt
Re[ 2 Ie ] j( ti 90o ) 2 I cos( t i 90o )
上式表明:
复指数函数实部的导数等于复指数函数导数的实部;
电路原理课件 第8章 相量法
三. 相位差 :
两个同频率正弦量相位角之差。
i(t) 0
Im um
设 u(t)=Umcos(w t+ u)
2
i(t)=Imcos(w t+ i)
0
wt
则 相位差j : j = (w t+ u)- (w t+ i)
u- i
同频率正弦量的相位差等于它们的初相之差。 不同频率的两个正弦量之间的相位差不再是一个常数,而是 随时间变动。
j u与i正交; j u与i反相;
2
§8 - 3相量法的基础
1. 正弦量的相量表示
复函数 F F ej(wt)
没有物理意义
F cos(wt ) j F sin(wt Ψ )
若对F取实部:
Re[F] F cos(ωt Ψ ) 是一个正弦量,有物理意义。
对于任意一个正弦时间函数都可以找到唯一的与其对应的 复指数函数:
F e j
4、极坐标形式:
F F ej
=|F|
二 复数运算
(1)加减运算——代数形式
+j F2
若 F1=a1+jb1
F2=a2+jb2 O
则 F1±F2= (a1±a2) +j (b1±b2)
F= F1 +F1
F1 +1
+j
O - F2
F2 F1
F= F1 - F2 +1
(2) 乘除运算——指数形式或极坐标形式
⑶∫i2dt。
解: ⑴设 i i1 i2 2I cos(wt i ), 其相量为 I=I/Ψi
I I1 I2 10/600A+22/-1500A=(5+j8.66)A+(-19.05-j11)A
第八章相量法
i
i
i
如 i 26 2 cos(t 60) A 26e j 60 A 2660 A I 对应的有效值相量为:
Im 26 2e j 60 A 26 260 A 其最大值相量为:
U 同理若有: 220e j 30V 则有; u 220 2 cos(t 30)V 2.相量图 相量是一个复数,它在复平面上的图形称为相量图。 若用旋转相量表示为,2Ie j e jt 其中复常数 2Ie j 2I i 称为旋转相量的复振幅, e jt 是一个随时间变化而以角速度不断逆时针旋转 的因子,两者的乘积即表示复振幅在复平面上不断 逆时针旋转,故称之为旋转相量,这就是复指数 函数的几何意义。
dt 2
③正弦量的积分
i 2I cos(t i ) 则 idt Re [ 2 Ie jt ]dt Re [ 2 Ie jt dt ] 如
jt I I Re [ 2 ( )e ] 2 cos(t i ) j 2
即正弦量的积分为同频率正弦量,其相量等于原 j 相量 I 除以 . I I 表示为: ( i ) idt
F F1 F2 F1 F2 [cos( 1 2 ) j sin(1 2 )]
F1 a1 jb1 (a1 jb1 )(a2 jb2 ) a1a2 b1b2 a2 b1 a1b2 j 2 2 2 2 F2 a2 jb2 (a2 jb2 )(a2 jb2 ) a2 b2 a2 b2
1
i1 I1m cos(t i 1 ) A 和 i2 I 2 m cos(t i 2 ) A 则 i1 与 i 2 如 的相位差 12 (t i1 ) (t i 2 ) i1 i 2 (初相之差)
电路课件 电路08 相量法32页PPT
工程中以频率区分,如音频、高频、甚高频电路。
φi是在t=0时刻相位,称初相位(角),简称初相:
(ωt+φi)|t=0 =φi 单位用弧度或度,主值范围内取值,|φi|≤180°
初相与计时零点有关。任一正弦量初相允许任意指定, 但一个电路许多相关正弦量,只能相对共同计时零点 确定各自相位。
正弦量三要素是正弦量间进行比较和区分的依据。
图8-4正弦电流i,在参考方向下,数学表达式定义:
i=Imcos(ωt+φi)
(8-1)
3个常数Im、ω和φi称正弦量三要素。
Im称正弦量振幅,是正弦量在整个振荡过程中达到最
大值,即cos(ωt+φi)=1时,有 imax=Im
也是正弦量极大值。
cos(ωt+φi)=-1时,
有最小值(也是极小值):
复数相加和相减运算可按平行四边形法在复平面 上用向量相加和相减求得,图8-2。
19.04.2020
第八章 相量法
8-1 复 数
4
两个复数相乘
复数相乘用指数形式方便: F1F2 =|F1|ejθ1|F2|ejθ2 =|F1||F2|ej(θ1+θ2)
所以: |F1F2|=|F1||F2|
arg(F1F2)=arg(F1)+arg(F2) 两个复数相乘的代数形式:
F 13 j4 5 5.1 3 0 .5 1.1 8 0 8 .5 1.9 7 1 F 2 1 1 0 31 5 1 0 35
19.04.2020
第八章 相量法
8-1 复 数
9
8-2 正弦量
电路中按正弦规律变化的电压或电流,统称正弦量。
正弦量数学描述,可用sine函数,也可用cose函数。 本书用cose函数。
第8章 相量法
T
0
i (t ) Rdt I RT
2 2
1 T 2 I 0 i (t )dt T
(1)式中代入
(1)式
i(t ) I m cos( t i ) 得
Im I 2
i(t ) I m cos( t i )
2.角频率(周期T、频率f):表示变化快慢 Angular frequency(period, frequency) 定义:相角(t+i)随时间变化的速度(rad/s)
The Phasor
相量法即用复数为工具来表示正弦量。 正弦量 相量(复数)
变换的思想
相量是一个包含正弦量“幅值”和“相 位”信息的复数。
一、复习复数:
1.复数的表示形式 (1)代数形式 b 0
+j
F
r
θ
a +1
F a jb
(2)三角形式 (3)指数形式 (4)极坐标形式
F r
a b
u(t ) 2U cos( t u )
X Y 53.1
xy 3 X Y
4
2.复数的代数运算 相加(减):使用代数形式
(a jb) (a1 a2 ) j (b1 b2 )
相乘(除):使用指数形式
F F1F2 r1r2e
j (1 2 )
F1 r1 j (12 ) F e F2 r2
二.正弦信号的相量表示
根据欧拉公式:
e
jx
cos x j sin x
j (t )
对于同频 正弦量而 言相同
u 2U cos ( t ) Re[ 2Ue
时域 一 一 对 应
] Re[ 2Ue j e jt ]
第8章 相量法
设 i(t)=ImCos(ω t+Ψ )
1 T 2 I= I m Cos 2 ( ωt + Ψ )dt T ∫0
Q
∫
T
0
Cos ( ωt + Ψ )dt = ∫
2
T
0
1 + cos 2(ωt + Ψ ) 1 dt = T 2 2
Im 1 2 T Im ⋅ = = 0.707 I m ∴ I= T 2 2 Im = 2I
(j = − 1 为虚数单位 )
A a Re
Im b O
θ
A A=|A|ejθ =|A| θ a Re
直角坐标表示 极坐标表示
a =| A | cosθ b =| A | sinθ
或
二、 复数运算 (1)加减运算 加减运算——直角坐标 加减运算 直角坐标 A1=a1+jb1, A2=a2+jb2 若 则 A1±A2=(a1±a2)+j(b1±b2) Im Im A2 A1 O Re -A2 O A2 A1 Re 加减法可用图解法。 加减法可用图解法。
对于任意一个正弦时间函数都可以找到唯一的与其对应 的复指数函数: 的复指数函数:
i = 2 ICos(ωt + Ψ ) ↔
A(t ) = Re[ 2 Ie
jψ
j(ωt +Ψ )
]
A(t)还可以写成 A(t ) = Re[ 2 Ie e ] = Re[ 2 I e jωt ] 还可以写成 复常数 A(t)包含了三要素:Im、 Ψ 、ω ,复常数包含了Ι m , Ψ 。 包含了三要素: 包含了三要素
o
1. 已知复数 已知复数A=4+j5,B=6-j2。试求 , 。试求A+B、 、 A-B、A×B、A÷B。 、 、 。 A + B = (4 + 6) + j(5 − 2) = 10 + j3 ≈ 10.4/ 16.7° A − B = (4 − 6) + j[5 − (−2)] = −2 + j7 ≈ 7.28/ 106° A = 4 + j5 = 6.4/ 51.3° B = 6 − j 2 = 6.32/− 18.4° A × B = 6.4 × 6.32/ 51.3° + (−18.4°) = 40.4/ 32.9°
第八章相量法
=I =I i有效值相量
m=Im i幅值相量
2.向量图:相量是一个复数,它在复平面上的图形成为相量图。
3.复指数函数 I = I 的几何意义
在复指数函数 I (Re[ I ]=Re[ I ])中,复常数 I = I i——称为旋转矢量的复振幅; ——称为旋转因子,两者相乘,表示复振幅在复平面上不断逆时针旋转的旋转矢量。正弦量的瞬时值等于对应的旋转矢量在实轴上的投影。可见相量和正弦量建立了一一对应的关系
3.正弦量的积分
设i= Icos( t+ i),则对电流微分有:
上式表明:正弦量的积分是同频的正弦量,其相量等于原相量 除以 ,若为n阶导数则除以( )n。
例题8-2已知两个正弦电流为i1=10 cos(314t+ /3)i2=22 cos(314t+5 /6),求:和、微分、积分
解: 1=10 /3 2=22 5 /6
2.复பைடு நூலகம்的乘除:化成极坐标形式,模与模相乘除,幅角相加。
§8-1 正弦量
一、正弦量
1.随时间按正弦规律变化电流和电压,统称正弦量。正弦电流在图示参考方向下,其数学表达式为:
i=Imcos( t+ i)
若方向相反i=-Imcos( t+ i)则初相于参考方向有关。改变参考方向,初相改变1800。
2.正弦量的三要素(频率、幅值、初相位)
(3) i—初相。正弦量在t=0时的相位,称为初相位。 i〈180o
初相与计时零点的有关
3.性质:乘以常数、求和、积分、微分等运算,应为同频率的正弦量。
二、正弦量的有效值
在工程上,将电流电压在一个周期内产生的平均效应换算成与之相等得直流量,这一直流量称为周期量的有效值;用I、U表示。
第08章相量法
? 则: i=100cos(t+50º)A
100 2
(3-24)
§8.3 相量法的基础
无物理意义
一、正弦量为何可以用相量表示?
某复函数: A(t ) 2Iej(t)
为正弦量 有物理意义
(3-16)
+j
b
r
A
+1
a
欧拉公式
cos+jsin =ej
A=a+jb …………………………代数式
=r(cos+j sin) …………三角函数式
=rej …… …………………………指数式
=r∠ …………………………极坐标形式
(3-17)
设a、b为正实数
A=a+jb =r∠
0<< 90º
2.KVL相量式
——任一瞬间任一回路上: u(t)=0
若该回路上的电压均为同频率正 弦量,则用相量表示时仍满足KVL,即:
KVL相量形式 U 0
I
如右图,设uR,uL,uC均为同频率正弦量:
U R U L U C U 0
+R
U U R U L U C
相量——表示正弦电压、电流的复数
(3-15)
一、复数的基本形式
设复平面上某复数A :
+j
b
r
A
+1
a
r a2 b2
arctan b
a a=rcos
b= rsin
其中:r—复数的模; —辐角; a—实部; b —虚部
A=a+jb =rcos+jrsin =r(cos+j sin)
第8章 相量法
j > 0, u 领先( 超前 )i ,或 i 落后( 滞后 ) u
u, i u i
u
0
t j i
j < 0, i 领先(超前) u,或u 落后(滞后) i
特殊相位关系: u, i 0
t
u i
u, i i
u
0
t
j = 0, 同相:
u, i u i 0
j = ( 180o ) ,反相:
1. 正弦量的三要素: 以电流为例 i
R
i(t ) Im cos( t i )
正弦量的三要素
(1) Im— 幅值 ( 振幅、 最大值)
( t + i ): 称为i(t)相位角或相位
d — 角频率,单位:弧度/秒(rad/s) (2) ( t i ) dt 与正弦量的周期T和频率f 的关系:
j = 90°,称为正交
t u 领先 i 90°或 i 落后 u 90°
规定: | j | (180°)
3. 正弦量的有效值 (effective value)
i)周期量的有效值:是一个在效应(如热效应)上与周期 量在一个周期内的平均效应相等的直流量。 设周期电流i 通过电阻R,电阻一周期内吸收的能量为:
2. 正弦量的相量 复函数
F (t ) 2Ie j(t ) 2Icos( t ) j 2Isin( t )
则
i 2 I cos( t ) Re [F (t )] Re[ 2Ie j ( t ) ] Re[ 2( Ie j )e j t ]
'
0
F +1
由于
e
第八章 相量法
第八章相量法第一节正弦交流电路的基本概念一、讨论正弦函数的意义:1、电力工程中所用的电压、电流几乎均为正弦时间函数。
2、正弦函数是周期函数的特例,任何非正弦周期函数都可以利用傅立叶级数分解为一系列不同频率正弦函数的代数和。
3、正弦交流电路的分析和计算具有重要的理论价值和实际意义。
二、正弦量的三要素:正弦时间函数的一般表达式为:u=U m Sin(ωt+φu),电流i= I m Sin(ωt+φi),其中U m (I m)、ω、φu(φi)称为正弦量的三要素。
U m(I m):正弦量的最大值,称为振幅。
它是从量的大小和变化幅度上描绘正弦量的一个要素。
ω:角频率:正弦量随时间变化的核心部分是(ωt+φu),反映了正弦量随时间变化的进程,称为正弦量的相位角。
ω是相位角随时间变化的速率,它是反映正弦量变化快、慢的一个要素。
ω与周期T、频率f的关系为:ω=2π/T=2πf。
φ:初相角,即ω=0时正弦量的相位角。
它决定了t=0时,瞬时值的大小。
综上:正弦量的特征表现在正弦量的大小、变化的快慢、初始值三个方面,它们分别由振幅、角频率、初相角来决定。
三、两个同频率的正量之间的相位关系:当同频率的正弦激励作用于电路时,电路中各部分的电压、电流都是与电源同频率的正弦量。
比如两个同频率的正弦交流电压:u1=U1m Sin(314t+φ1) u2=U2m Sin(314t+φ2)两个正弦量ω相同,但初相角不同,因而任何瞬间相位角不同。
相位角的差:φ=(314t+φ1)- (314t+φ2)= φ1-φ2 即初相角的差。
若φ1-φ2>0 称为u1超前于u2或u2滞后于u1。
若φ1-φ2<0 称为u1滞后于u2或u2超前于u1。
若φ1-φ2=0 称为u1与u2同相。
从图8-1-1可以看出它们之间的超前、滞后关系。
注意:(1)只有同频率正弦量之间超前、滞后才有意义。
(2)相位差通常用≤π的角度表示。
【实例8-1】i 1= I 1m Sin(ωt+120°) i 2= I 2m Sin(ωt-120°)则φ=φ1-φ2=120°- ( -120°)=240°所以i 1超前于i 2 240°,但常称为i 1滞后于i 2 120°。
chap8相量法(修改)
cos
T 0
2
( wt y ) dt
T
0
cos 2(wt y ) 1 1 dt t 2 2
T 0
1 T 2
Im 1 2 T I Im 0.707 I m T 2 2 Im 2I
注意:只适用正弦量
i(t ) I m cos(wt y ) 2I cos(wt y )
时域列写微分方程
相量形式代数方程
相量模型:电压、电流用相量;元件用复数阻抗或导纳。
四. 相量图 1. 同频率的正弦量才能表示在同一个向量图中; 2. 以w 角速度反时针方向旋转;
3. 选定一个参考相量(设初相位为零)
+ UL -
选 ÙR为参考相量
IR
IC
jw L
IL
+
U
IC
u Ri di uL dt 1 u idt C
I 0 U 0
U RI
二. 电路元件的相量关系
U jwLI 1 I U jw C
三. 电路的相量模型 (phasor model ) iR jw L L + uS 时域电路
i L iC i R
di 1 L L iC dt uS dt C 1 R i R iC dt C
IR
iL
iC C
R
US
+ -
IL
1/jw C
IC
R
相量模型
I L IC I R
1 jwLI L IC US jwC 1 I RI R C jwC
1/jw C
UC R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章相量法重点:1. 正弦量和相量之间的关系;2. 正弦量的相量差和有效值的概念;3. R、L、C各元件的电压、电流关系的相量形式4. 电路定律的相量形式及元件的电压电流关系的相量形式。
难点:1. 正弦量与相量之间的联系和区别;2. 元件电压相量和电流相量的关系。
本章与其它章节的联系:本章是学习第9-12 章的基础,必须熟练掌握相量法的解析运算。
预习知识:1.三角函数;2.复数运算。
§8.1 复数相量法是建立在用复数来表示正弦量的基础上的,因此,必须掌握复数的四种表示形式及运算规则。
1. 复数的四种表示形式代数形式A = a +j b复数的实部和虚部分别表示为: Re[A]=a Im[A]=b 。
图 8.1 为复数在复平面的表示。
根据图 8.1 得复数的三角形式:两种表示法的关系:或图 8.1根据欧拉公式可将复数的三角形式转换为指数表示形式:指数形式有时改写为极坐标形式:注意:要熟练掌握复数的四种表示形式及相互转换关系,这对复数的运算非常重要。
2. 复数的运算(1) 加减运算——采用代数形式比较方便。
若则即复数的加、减运算满足实部和实部相加减,虚部和虚部相加减。
复数的加、减运算也可以在复平面上按平行四边形法用向量的相加和相减求得,如图8.2所示。
(2) 乘除运算——采用指数形式或极坐标形式比较方便。
若图 8.2 则即复数的乘法运算满足模相乘,辐角相加。
除法运算满足模相除,辐角相减,如图8.3示。
图 8.3 图 8.4(3) 旋转因子:由复数的乘除运算得任意复数 A 乘或除复数,相当于 A 逆时针或顺时针旋转一个角度θ,而模不变,如图8.4 所示。
故把称为旋转因子。
当当故+j, –j, -1 都可以看成旋转因子。
3. 复数运算定理定理1式中K 为实常数。
定理2定理3 若则例8—1,计算复数解:本题说明进行复数的加减运算时应先把极坐标形式转为代数形式。
例 8—2,计算复数解:本题说明进行复数的乘除运算时应先把代数形式转为极坐标形式。
§8.2 正弦量1.正弦量电路中按正弦规律变化的电压或电流统称为正弦量,以电流为例,其瞬时值表达式为(本书采用 cosine 函数):波形如图 8.5 所示。
图 8.5注意:激励和响应均为正弦量的电路称为正弦电路或交流电路。
研究正弦电路的意义:(1)正弦电路在电力系统和电子技术领域占有十分重要的地位。
由于:1)正弦函数是周期函数,其加、减、求导、积分运算后仍是同频率的正弦函数; 2)正弦信号容易产生、传送和使用。
(2)正弦信号是一种基本信号,任何复杂的周期信号可以分解为按正弦规律变化的分量。
因此对正弦电路的分析研究具有重要的理论价值和实际意义。
2. 正弦量的三要素(1)I m —幅值(振幅、最大值):反映正弦量变化过程中所能达到的最大幅度。
(2)ω—角频率:为相位变化的速度,反映正弦量变化快慢。
它与周期和频率的关系为:rad/s(3)y —初相角:反映正弦量的计时起点,常用角度表示。
需要注意的是:1)计时起点不同,初相位不同,图 8.6 给出了同一个正弦量在不同计时起点下初相位的取值。
2)一般规定初相位取主值范围,即 |y |≤π 。
3)如果余弦波的正最大值发生在计时起点之后,如图8.7所示,则初相位为负,如果余弦波的正最大值发生在计时起点之前,则初相位为正。
4)对任一正弦量,初相可以任意指定,但同一电路中许多相关的正弦量只能对于同一计时起点来确定各自的相位。
图 8.6图 8.73. 相位差相位差是用来描述电路中两个同频正弦量之间相位关系的量。
设则相位差为:上式表明同频正弦量之间的相位差等于初相之差,通常相位差取主值范围,即:|φ|≤π如果上式中φ>0 ,称 u 超前i,或i 滞u ,表明u 比i 先达到最大值;如图 8.8(a)所示。
如φ<0 ,称i 超前u ,或u 滞后i , 表明i 比u 先达到最大值。
如φ=±p ,称i 与u 反相,如图 8.8(b)所示;如φ=0 ,称i 与u 同相,如图 8.8(c)所示。
图 8.8 (a)(b)(c)需要注意的是:两个正弦量进行相位比较时应满足同频率、同函数、同符号,且在主值范围比较。
4. 正弦电流、电压的有效值周期性电流、电压的瞬时值随时间而变,为了衡量其平均效应,工程上采用有效值来表示。
周期电流、电压有效值的物理意义如图 8.9 所示,通过比较直流电流I 和交流电流i 在相同时间T 内流经同一电阻R 产生的热效应,即令:从中获得周期电流和与之相等的直流电流I 之间的关系:这个直流量I 称为周期量的有效值。
有效值也称方均根值。
图 8.9同样,可定义电压有效值:设正弦电流相应的有效值为:因为所以即正弦电流的有效值与最大值满足关系:同理,可得正弦电压有效值与最大值的关系:若一交流电压有效值为U = 220V ,则其最大值为U m≈311V ;需要注意的是:(1)工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等。
但绝缘水平、耐压值指的是最大值。
因此,在考虑电器设备的耐压水平时应按最大值考虑。
(2)测量中,交流测量仪表指示的电压、电流读数一般为有效值。
(3)区分电压、电流的瞬时值i、u ,最大值I M m、U m和有效值I、U 的符号。
例 8—3已知正弦电流波形如图所示,ω= 103rad/s ,(1)写出正弦i(t) 表达式;(2)求正弦电流最大值发生的时间 t1例 8 — 3 图解:根据图示可知电流的最大值为 100A , t=0 时电流为 50A ,因此有:解得由于最大值发生在计时起点右侧故取所以当时电流取得最大值,即:例 8—4,计算下列两正弦量的相位差。
解:(1)转为主值范围:说明i1滞后i2。
(2)先把i2变为余弦函数:则说明i1超前i2。
(3)因为两个正弦量的角频率,故不能比较相位差。
(4)则说明i1超前i2本题说明两个正弦量进行相位比较时应满足同频率、同函数、同符号,且在主值范围比较。
§8.3 相量法的基础正弦稳态线性电路中,和各支路的电压和电流响应与激励源是同频率的正弦量,因此应用基尔霍夫定理分析正弦电路将遇到正弦量的相减运算和积分、微分运算,在时域进行这些运算十分繁复,通过借用复数表示正弦信号可以使正弦电路分析得到简化。
1. 正弦量的相量表示构造一个复函数对A(t) 取实部得正弦电流:上式表明对于任意一个正弦时间函数都有唯一与其对应的复数函数,即:A(t) 还可以写成称复常数为正弦量i(t)对应的相量,它包含了i(t)的两个要素I ,Y 。
任意一个正弦时间函数都有唯一与其对应的相量,即:注意:相量的模为正弦量的有效值,相量的幅角为正弦量的初相位。
同样可以建立正弦电压与相量的对应关系:例如若已知正弦电流和电压分别为:则对应的相量分别为:若正弦电流的相量频率则对应的正弦电流为:2. 相量图在复平面上用向量表示相量的图称为相量图。
如已知相量则对应的相量图如图 8.10 所示。
辐角为零的相量称为参考相量。
图 8.103.相量法的应用(1) 同频率正弦量的加减则:图 8.11从上式得其相量关系为:故同频正弦量相加减运算可以转变为对应相量的相加减运算,运算过程如图 8.11 所示。
(2)正弦量的微分、积分运算设则即对应的相量为而即对应的相量为以上式子说明正弦量的微分是一个同频正弦量,其相量等于原正弦量i的相量乘以,正弦量的积分也是一个同频正弦量,其相量等于原正弦量i 的相量除以。
例如图8.12所示 RLC 串联电路,由 KVL 得电路方程为根据正弦量与相量的关系得以上微积分方程对应的相量方程为因此引入相量的优点是:图 8.12(1)把时域问题变为复数问题;(2)把微积分方程的运算变为复数方程运算;需要注意的是:1)相量法实质上是一种变换,通过把正弦量转化为相量,而把时域里正弦稳态分析问题转为频域里复数代数方程问题的分析;2)相量法只适用于激励为同频正弦量的非时变线性电路。
3)相量法用来分析正弦稳态电路。
例 8—5,计算两正弦电压之和,已知:解:两正弦电压对应的相量为 :相量之和为:所以本题也可借助相量图计算,如下图所示。
例 8 — 5 相量图例 8—6,试判断下列表达式的正、误,并给出正确结果。
解:(1)错,瞬时式和相量混淆,正确写法为:(2)错,瞬时式不能和相量相等,正确写法为:(3)错,有效值和相量混淆,正确写法为:(4)对(5)错 ,感抗和容抗混淆,正确写法为:(6)错 ,有效值和相量混淆,正确写法为:(7)错,电容和电感的VCR混淆,正确写法为:或§8.4 电路定律的相量形式1. 电阻元件 VCR 的相量形式 设图8.13(a)中流过电阻的电流为则电阻电压为:其相量形式:以上式子说明:图8.13(a )(1)电阻的电压相量和电流相量满足复数形式的欧姆定律:,图8.13(b)为电阻的相量模型图。
(2)电阻电压和电流的有效值也满足欧姆定律:U R = RI (3)电阻的电压和电流同相位,即:ψu = ψi电阻电压和电流的波形图及相量图如图8.14(a)和(b)所示。
图 8.13( b )图 8.14(a)图 8.14(b)电阻的瞬时功率为:即瞬时功率以2ω交变,且始终大于零,如图8.14(a)所示,表明电阻始终吸收功率。
2. 电感元件 VCR 的相量形式图 8.15 (a)图 8.15(b)设图8.15(a)中流过电感的电流为则对应的相量形式分别为:以上式子说明:(1)电感的电压相量和电流相量满足关系:,其中X L=ωL=2πfL ,称为感抗,单位为Ω(欧姆),图8.16(b)为电感的相量模型图。
(2)电感电压和电流的有效值满足关系:,表示电感的电压有效值等于电流有效值与感抗的乘积。
(3)电感电压超前电流相位,即:电感电压和电流的波形图及相量图如图8.16(a)和(b)所示。
注意:(1)感抗表示限制电流的能力;(2)感抗和频率成正比如图8.16(c)所示,当;电感电压和电流的波形图及相量图如图8.16(a)和(b)所示。
图 8.16 (a)图 8.16(b)图 8.16(c)电感的瞬时功率为:即电感的瞬时功率以 2ω交变,有正有负,如图8.16(a)所示。
电感在一个周期内吸收的平均功率为零。
3. 电容元件 VCR 的相量形式设图8.17(a)中电容的电压为:则对应的相量形式分别为:图 8.17(a)图 8.17(b)以上式子说明:(1)电容的电压相量和电流相量满足关系:其中X C =1/ωC ,称为容抗,单位为Ω(欧姆),图8.17(b)为电容的相量模型图。
(2)电容电压和电流的有效值满足关系:,表示电容的电压有效值等于电流有效值与容抗的乘积。
(3)电容电压滞后电流相位,即:电容电压和电流的波形图及相量图如图8.18(a)和(b)所示。