因动点产生的等腰三角形、平行四边形
动点产生的等腰,等边三角形及平行四边形等
一:因动点产生的直角三角形1、如图,在直角坐标平面内,点0为坐标原点,直线AB经过A(8,0),B(0,6),现有两个动点P,Q.动点P从B沿BA方向以1个单位每秒的速度向A运动,动点Q 从A沿AO 方向2个单位每秒的速度向O运动,当P,Q两点中的任何一点到达终点时,运动停止.(1)求直线AB的解析式.(2)问当运动时间t为多少秒时,以A、P、Q为顶点的三角形为直角三角形.2、如图,在平面直角坐标系中,A(﹣3,0),点C在y轴的正半轴上,BC∥x轴,且BC=5,AB交y轴于点D,.(1)求出C的坐标.(2)过A,C,B三点的抛物线与x轴交于点E,连接BE,若动点M从点A出发沿x轴正方向运动,同时动点N从点E出发,在直线EB上作匀速运动,运动速度为每秒1个单位长度,当运动时间t为多少时,△MON为直角三角形.二:因动点产生的等腰三角形1、已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB 向点B运动.(1)如图1,设点P的运动时间为t(s),那么t=_________(s)时,△PBC是直角三角形;(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s 的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD 和△QCD的面积有什么关系?并说明理由.2、如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P 自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).(1)当t为何值时,△PBQ为等腰三角形?(2)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.3、如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.三:因动点产生的等边三角形1、如图,正方形ABCD的边长是4,M是AD的中点.动点E在线段AB上运动.连接EM 并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)求证:△GEF是等腰三角形;(2)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,并写出自变量x的取值范围;(3)在点E运动过程中△GEF是否可以成为等边三角形?请说明理由.四:因动点产生的平行四边形1、如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°不变.PC=x,MQ=y,求y与x 的函数关系式;(3)在(2)中:①当y最小值时,判断△PQC的形状,并说明理由.②当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数.二、解答题(共7小题)2、如图,在直角坐标平面内,点0为坐标原点,直线AB经过A(8,0),B(0,6),现有两个动点P,Q.动点P从B沿BA方向以1个单位每秒的速度向A运动,动点Q 从A沿AO 方向2个单位每秒的速度向O运动,当P,Q两点中的任何一点到达终点时,运动停止.(1)求直线AB的解析式.(2)问当运动时间t为多少秒时,以A、P、Q为顶点的三角形为直角三角形.考点:相似三角形的判定与性质;待定系数法求一次函数解析式。
(word完整版)2017年中考专题复习动点产生的等腰三角形问题
0319动点产生的等腰三角形问题1.如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A 不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个2.如图,抛物线y=x2与直线y=2x在第一象限内有一交点A.(1)你能求出点A的坐标吗?(2)在x轴上是否存在一点P,使△AOP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.3.如图,直线y=ax+b与双曲线y=有一个交点A(1,2)且与x轴、y轴分别交于B,C两点,已知△AOB的面积为3.(1)求双曲线和直线的解析式;(2)在x轴上是否存在一点P,使△ABP是等腰三角形?如果存在,直接写出满足条件的P点坐标;如果不存在,说明理由.4.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0)求d与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.5.如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D 沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).(1)当t为何值时,△PBQ为等腰三角形?(2)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.6.如图,在梯形ABCD中,AD∥BC,∠C=90°,AB=BC=10,AD=16.动点P、Q分别从点D、B同时出发,动点P沿射线DA的方向以每秒2个单位长的速度运动,动点Q在线段BC上以每秒1个单位长的速度向点C运动,当点Q运动到点C时,点P随之停止运动.设运动的时间为t(秒).(1)直接用含t的代数式表示:PA= ;(2)当t= 秒时,PQ∥AB;(3)设射线PQ与射线AB相交于点E,△AEP能否为等腰三角形?如果能,请求出t的值;如果不能,请说明理由.7.如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.(1)试求△ABC的面积;(2)当边FG与BC重合时,求正方形DEFG的边长;(3)设AD=x,当△BDG是等腰三角形时,求出AD的长.8.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.9.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC 向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?10.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?11.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.12.在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P 为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长.13.如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O﹣C﹣A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l 都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.2017年03月19日马赛的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.(2010•济南)如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个【分析】根据题意,结合图形,分情况讨论:①BP为底边;②BP为等腰三角形一腰长.【解答】解:①BP为等腰三角形一腰长时,符合点E的位置有2个,是BC的垂直平分线与以B 为圆心BA为半径的圆的交点即是点P;②BP为底边时,C为顶点时,符合点E的位置有2个,是以B为圆心BA为半径的圆与以C为圆心BC为半径的圆的交点即是点P;③以PC为底边,B为顶点时,这样的等腰三角形不存在,因为以B为圆心BA为半径的圆与以B 为圆心BC为半径的圆没有交点.故选:C.【点评】本题综合考查等腰三角形的判定,需对知识进行推理论证、运算及探究.二.解答题(共12小题)2.(2016秋•黄州区校级月考)如图,抛物线y=x2与直线y=2x在第一象限内有一交点A.(1)你能求出点A的坐标吗?(2)在x轴上是否存在一点P,使△AOP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)利用解方程组可得到A点坐标;(2)需要分类讨论:AP=AO、OA=OP、AP=OP,根据等腰三角形的性质来求点P的坐标.【解答】解:(1)解方程组得或,所以A点坐标为(2,4);(2)①当AP=AO时,作AB⊥x轴于B点,如图1,当PB=OB时,△AOP是以OP为底的等腰三角形,而A(2,4),所以P点坐标为(4,0).②当OA=OP时,∵A(2,4),∴OA==2,则P(±2,0);③当AP=OP时,如图2,过点P作PQ⊥AO于点Q.设P(t,0).则Q(1,2).故OA•PQ=OP×4,即×2×=t×4,解得t=5,即(5,0).综上所述,符合条件的点P的坐标是(4,0)或(2,0)或(﹣2,0)或(5,0).【点评】本题考查了二次函数综合题,同时在两个函数解析式上,应是这两个函数解析式的公共解.答案较多时,应有规律的去找不同的解是解题关键.3.(2010秋•本溪月考)如图,直线y=ax+b与双曲线y=有一个交点A(1,2)且与x轴、y 轴分别交于B,C两点,已知△AOB的面积为3.(1)求双曲线和直线的解析式;(2)在x轴上是否存在一点P,使△ABP是等腰三角形?如果存在,直接写出满足条件的P点坐标;如果不存在,说明理由.【分析】(1)根据双曲线y=过点A(1,2),利用待定系数法,可得双曲线解析式,根据△AOB 的面积为3,可得B点坐标,根据直线过A、B两点,利用待定系数法,可得直线解析式;(2)根据两边相等的三角形是等腰三角形,分类讨论,AB=AP,AB=BP,AP=BP,可得答案.【解答】解:(1)∵双曲线y=过点A(1,2),∴2=,k=2,双曲线的解析式是y=,∵△AOB的面积为3,底是OB的长,高是A点的纵坐标,×2×OB=3,∴B点坐标是(3,0),∵直线y=ax+b过点A、B,∴2=a+b ①,0=3a+b②,②﹣①得a=﹣1,b=3,∴一次函数的解析式是y=﹣x+3;(2)设P点坐标为(x,0),AB=,当AP=PB时,,x=3(不合题意,舍)或x=﹣1,P点坐标(﹣1,0),当AB=BP时,PB=2,∴P点坐标为(3﹣2,0)或(3+2,0),当AP=BP时,,x=,P点坐标是(,0).故P(﹣1,0),(3﹣2,0),(3+2,0),(,0).【点评】本题考查了反比例函数的综合题,(1)利用待定系数法求解是解题关键;(2)分类讨论是解题关键.4.(2015秋•道外区期末)如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0)求d与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C、D点坐标,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据因式分解法解方程,可得答案.【解答】解:(1)将A、B点坐标代入,得,解得,抛物线的解析式为y=﹣x2+x+3;(2)如图:设AB的解析式为y=kx+b,将B、A的坐标代入,得,解得,AB的解析式为y=﹣x+3,C在直线AB上,C(m,﹣m+3),D(m,﹣m2+m+3).CD的长为﹣m2+m+3﹣(﹣m+3)=﹣m2+2m,即d=﹣m2+2m;(3)AC2=m2+(m)2,CD2=(﹣m2+2m)2,AD2=m2+(﹣m2+m)2,①当AC=AD时,m2+(m)2=m2+(﹣m2+m)2,化简,得(﹣m2+2m)(﹣m2+m)=0,解得m=0(不符合题意,舍),m=4(不符合题意,舍),m=1;②当AC=CD时,m2+(m)2=(﹣m2+2m)2,化简,得(﹣m2+m)(﹣m2+m)=0,解得m=0(不符合题意,舍),m=(不符合题意,舍),m=;③当AD=CD时,m2+(﹣m2+m)2=(﹣m2+2m)2,化简,得﹣m2(m﹣)=0,解得m=.综上所述:m的值为1、或.【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标得出函数解析式;利用等腰三角形的定义得出关于m的方程是解题关键,要分类讨论,以防遗漏.5.如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).(1)当t为何值时,△PBQ为等腰三角形?(2)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.【分析】(1)此题由3种情况,①从假设△BPQ是等腰三角形入手.求证△BMP∽△BCD,利用对应边成比例即可求得t的值.②在Rt△BMP中,利用cos∠DBC=,解得t.③如图,当BQ=PQ时,自点Q向BD引垂线,垂足为N.利用Rt△BNQ∽Rt△BCD其对应边成比例即可求得t.(2)若△PBQ为等边三角形,则BQ=BP=PQ.由②,知当BQ=BP时,.由①,知当BP=PQ时,.而BQ=BP与BP=PQ不能同时成【解答】解:(1)若△BPQ是等腰三角形.①如图,当PB=PQ时,自点P向BC引垂线,垂足为M,则有BM=MQ.方法一:由△BMP∽△BCD,得,∴.∴,解得.方法二:在Rt△BMP中,.∴,解得.②当BQ=BP时,有t=5﹣t,解得.③如图,当BQ=PQ时,自点Q向BD引垂线,垂足为N.由Rt△BNQ∽Rt△BCD,得.∴,解得.(2)不能.若△PBQ为等边三角形,则BQ=BP=PQ.由(2)②,知当BQ=BP时,.由(2)①,知当BP=PQ时,.∴BQ=BP与BP=PQ不能同时成立,∴△PBQ不可能为等边三角形.【点评】此题主要考查学生对相似三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质的理解和掌握,此题涉及到的知识点较多,综合性较强,是一道难题.6.(2013春•邢台期末)如图,在梯形ABCD中,AD∥BC,∠C=90°,AB=BC=10,AD=16.动点P、Q分别从点D、B同时出发,动点P沿射线DA的方向以每秒2个单位长的速度运动,动点Q在线段BC上以每秒1个单位长的速度向点C运动,当点Q运动到点C时,点P随之停止运动.设运动的时间为t(秒).(1)直接用含t的代数式表示:PA= 16﹣2t ;(2)当t= 秒时,PQ∥AB;(3)设射线PQ与射线AB相交于点E,△AEP能否为等腰三角形?如果能,请求出t的值;如果不能,请说明理由.【分析】(1)根据已知求出即可;(2)根据平行四边形的性质和判定得出BQ=AP,求出即可;(3)求出CD和PN,分为三种情况:①PE=AP,②AE=AP,③PE=AE,根据勾股定理和等腰三角形的性质得出方程,求出方程的解即可.【解答】解:(1)∵AD=16,DP=t,∴AP=16﹣2t,故答案为:16﹣2t.(2)当BQ=AP,∵BC∥AD,∴四边形PABQ是平行四边形,∴此时PQ∥AB,即t=16﹣2t,t=,故答案为:.(3)设射线PQ与射线AB相交于点E,△AEP能为等腰三角形,过B作BM⊥AD于M,∴∠BMA=90°,∵∠C=90°,∴∠D=∠BMA,∴CD∥BM,∴四边形CDMB是矩形,∴CD=BM,BC=DM=10,∴AM=16﹣10﹣6,在Rt△BMA中,AB=10,由勾股定理得:BM=8,分为三种情况:①当PE=AP=16﹣2t时,如图1,过P作PN⊥BC于N,则四边形CDPN是矩形,∴PN=CD=8,CN=DP=2t,∵PE=AP,∴∠A=∠E,∵BC∥AD,∴∠EBQ=∠A,∴∠E=∠EBQ,∴EQ=BQ=t,在Rt△PNQ中,由勾股定理得:82+(10﹣2t﹣t)2=(16﹣2t﹣t)2,t=;②如图1,当AE=AP时,∴∠E=∠EPA,∵BC∥AD,∴∠EPA=∠CQP,∵∠EQB=∠CQP,∴∠E=∠EQB,∴EB=QB=t,∵AE=AP,BC=10,∴10+t=16﹣2t,t=2;③如图1,当PE=AE时,∵BC∥AD,∴∠EQB=∠EPA,∠EBQ=∠A,∵AE=PE,∴∠A=∠EPA,∴∠EQB=∠EBQ,∴QE=BE,∵AE=PE,∴BC=PQ=10,在Rt△PNQ中,NQ=10﹣2t﹣t=10﹣3t,pn=8,PQ=BC=10由勾股定理得:82+(10﹣3t)2=102,t=;④当p在DA的延长线上时,若PA=AE,则2t﹣16=10﹣t,解得:t=,而点Q运动到点C所用时间是10秒,<10,符合题意即设射线PQ与射线AB相交于点E,△AEP能为等腰三角形,t的值是秒或2秒或秒或秒.【点评】本题考查了矩形的性质和判定,梯形的性质,等腰三角形的性质和判定,勾股定理等知识点的应用,主要考查学生的推理能力,注意要进行分类讨论啊.7.(2012秋•宝安区期中)如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.(1)试求△ABC的面积;(2)当边FG与BC重合时,求正方形DEFG的边长;(3)设AD=x,当△BDG是等腰三角形时,求出AD的长.【分析】(1)作底边上的高,利用勾股定理求出高就可以求出面积.(2)根据DE∥BC,得到△ADE∽△ABC,再根据相似三角形对应高的比等于相似比即可求出边DE 的长度.(3)根据△ADE∽△ABC得=,求出AD的长.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=5,BC=6,∴BH=BC=3,∴AH===4,∴S=BC•AH=×6×4=12.△ABC(2)令此时正方形的边长为a,∵DE∥BC,∴,∴a=.(3)当AD=x时,由△ADE∽△ABC得=,即=,解得DE=x,当BD=DG时,5﹣x=x,x=,当BD=BG时,=,解得x=,当BG=DG时,=,解得x=,∴当△BDG是等腰三角形时,AD=或或.【点评】本题考查了正方形、等腰三角形的性质,相似比等相关知识.综合性较强,解题时要仔细.8.(2013•金城江区三模)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF 与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.【分析】(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证出∠CEM=∠BAE,从而可证得△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE=,∴BE=6﹣=;∴BE=1或.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质,此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.9.(2016秋•芦溪县期中)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?【分析】(1)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;(2)先用t表示出DP,CQ,CP的长,再分PQ⊥CD与PQ⊥AC两种情况进行讨论;(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.【解答】解:(1)∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,=BC•AC=AB•CD.∴S△ABC∴CD===4。
动点等腰三角形的分类讨论
动点等腰三角形的分类讨论等腰三角形是指两边长度相等的三角形,动点等腰三角形则是指在等腰三角形中,其中一个顶点在动态变化的情况下,讨论不同情况下的动点等腰三角形的特点和分类。
一、动点在底边上的情况:当动点在底边上时,等腰三角形的另外两个顶点分别位于底边的两侧。
此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。
1. 动点在底边的中点上:当动点在底边的中点上时,等腰三角形的另外两个顶点将分别位于底边的两侧,且与底边的两个顶点的连线相等。
这种情况下,等腰三角形的两个等边边长相等,且底角为直角。
2. 动点在底边的延长线上:当动点在底边的延长线上时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。
这种情况下,等腰三角形的两个等边边长相等,且顶角为直角。
3. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。
这种情况下,等腰三角形的两个等边边长相等,且顶角为锐角。
二、动点在底边外的情况:当动点在底边外时,等腰三角形的另外两个顶点将分别位于底边的两侧。
此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。
1. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。
这种情况下,等腰三角形的两个等边边长不相等,且顶角为锐角。
2. 动点在底边的延长线上且与底边相交:当动点在底边的延长线上且与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。
这种情况下,等腰三角形的两个等边边长不相等,且顶角为钝角。
动点等腰三角形可以根据动点在底边上或底边外以及动点位置的具体情况进行分类。
不同情况下,等腰三角形的两个等边边长和顶角的大小都会有所不同。
通过对动点等腰三角形的分类讨论,可以更加全面地了解等腰三角形的特点和性质。
(初三)18因动点产生的等腰三角形问题
经典例题
例1. 在直角坐标系中,O为坐标原点,A(1,1),在坐标轴上确 定一点P,使△AOP为等腰三角形,则符合条件的点P共有( C) A. 4个
找法: (3)PA=PO: 点 P 为 AC 的垂直平分线与坐标轴的交点, 如图,有2个,共8个
B. 6个
C. 8个
D. 1个
经典例题
例2.如图,在平面直角坐标系中,抛物线y=的图象与轴交于 点A(-2,0)、B(4,0),与y轴交于点C(0,4),直线是抛物线的对称轴, 与x轴交于点D,点P是直线上一动点. (1)求此抛物线的表达式; (2)点P在直线上运动时,是否存在等腰△ACP?若存在,请写出所有符合条 件的点P坐标;若不存在,请说明理由. 解:(1)++4 对称轴=1
解法二:利用“三线合一”.
如图:若DA=DE,则需AE=2AF.
经典例题
例1. 在直角坐标系中,O为坐标原点,A(1,1),在坐标轴上确 定一点P,使△AOP为等腰三角形,则符合条件的点P共有( ) A. 4个
找法: (1)OP=OA: 点P为以O为圆心,OA为半径的圆 与坐标轴的交点, 如图,有4个
对称轴=1
Байду номын сангаас
(2) 连接CA、CP1、CP2,过点C作CH⊥P1P2. 设P1(1,a), P2(1,b) 由勾股定理得:=AC= =AC=
经典例题
例2.如图,在平面直角坐标系中,抛物线y=的图象与轴交于 点A(-2,0)、B(4,0),与y轴交于点C(0,4),直线是抛物线的对称轴, 与x轴交于点D,点P是直线上一动点. (1)求此抛物线的表达式; (2)点P在直线上运动时,是否存在等腰△ACP?若存在,请写出所有符合条 件的点P坐标;若不存在,请说明理由. 解:(1)++4 (2)
中考压轴专题,2.因动点产生的等腰三角形问题-教师
因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.满分解答(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3 tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ=,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =.例2 如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1思路点拨1.第(2)题是典型的“牛喝水”问题,点P 在线段BC 上时△P AC 的周长最小. 2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO =,BO =CO ,得PH =BH =2. 图2 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的: 设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得6m =±. 此时点M 的坐标为(1,6)或(1,6-).③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图5例3 如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P 重合在一起.满分解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =. 所以点B 的坐标为(2,23)--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4), 代入点B (2,23)--,232(6)a -=-⨯-.解得36a =-. 所以抛物线的解析式为23323(4)663y x x x x =--=-+.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±. 当P 在(2,23)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-. 综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)(2)663y x x x =--=--+,得抛物线的顶点为23(2,)3D .因此23tan 3DOA ∠=.所以∠DOA =30°,∠ODA =120°.例4 如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R AS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例5 如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式. 2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例 6 如图1,在等腰梯形ABCD 中,AD //BC ,E 是AB 的中点,过点E 作EF //BC 交CD 于点F ,AB =4,BC =6,∠B =60°.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过点P 作PM ⊥EF 交BC 于M ,过M 作MN //AB 交折线ADC 于N ,连结PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.图1 图2 图3思路点拨1.先解读这个题目的背景图,等腰梯形ABCD 的中位线EF =4,这是x 的变化范围.平行线间的距离处处相等,AD 与EF 、EF 与BC 间的距离相等.2.当点N 在线段AD 上时,△PMN 中PM 和MN 的长保持不变是显然的,求证PN 的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.3.分三种情况讨论等腰三角形PMN ,三种情况各具特殊性,灵活运用几何性质解题.满分解答(1)如图4,过点E 作EG ⊥BC 于G .在Rt △BEG 中,221==AB BE ,∠B =60°, 所以160cos =︒⋅=BE BG ,360sin =︒⋅=BE EG .所以点E 到BC 的距离为3.(2)因为AD //EF //BC ,E 是AB 的中点,所以F 是D C 的中点.因此EF 是梯形ABCD 的中位线,EF =4.①如图4,当点N 在线段AD 上时,△PMN 的形状不是否发生改变.过点N 作NH ⊥EF 于H ,设PH 与NM 交于点Q .在矩形EGMP 中,EP =GM =x ,PM =EG =3.在平行四边形BMQE 中,BM =EQ =1+x .所以BG =PQ =1.因为PM 与NH 平行且相等,所以PH 与NM 互相平分,PH =2PQ =2.在Rt △PNH 中,NH =3,PH =2,所以PN =7.在平行四边形ABMN 中,MN =AB =4.因此△PMN 的周长为3+7+4.图4 图5②当点N 在线段DC 上时,△CMN 恒为等边三角形.如图5,当PM =PN 时,△PMC 与△PNC 关于直线PC 对称,点P 在∠DCB 的平分线上.在Rt △PCM 中,PM =3,∠PCM =30°,所以MC =3.此时M 、P 分别为BC 、EF 的中点,x =2.如图6,当MP =MN 时,MP =MN =MC =3,x =GM =GC -MC =5-3.如图7,当NP =NM 时,∠NMP =∠NPM =30°,所以∠PNM =120°.又因为∠FNM =120°,所以P 与F 重合.此时x =4.综上所述,当x =2或4或5-3时,△PMN 为等腰三角形.图6 图7 图8 考点伸展第(2)②题求等腰三角形PMN 可以这样解:如图8,以B 为原点,直线BC 为x 轴建立坐标系,设点M 的坐标为(m ,0),那么点P 的坐标为(m ,3),MN =MC =6-m ,点N 的坐标为(26+m ,2)6(3m -). 由两点间的距离公式,得21922+-=m m PN .当PM =PN 时,92192=+-m m ,解得3=m 或6=m .此时2=x .当MP =MN 时,36=-m ,解得36-=m ,此时35-=x .当NP =NM 时,22)6(219m m m -=+-,解得5=m ,此时4=x .。
二次函数动点问题专题
二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。
(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。
3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。
中考—动点产生的相似三角形、等腰三角形、直角三角形、平行四边形问题-含答案
一、动点产生的相似三角形问题1、 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==COAOPM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6,2、 满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2)BF m =+.由2BCBE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+考点伸展第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.二、因动点产生的等腰三角形问题 满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PHBO CO=,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、、(1,)或(1,0).设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得m =此时点M 的坐标为或(1,.③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图54.思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H . 三、①因动点产生的直角三角形问题5、满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334PQ AB ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P 的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344FC OC OF =-=-=,522EC FC ==.进而得到51322OE OC EC =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭.直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2).过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH OH OE =-=-=,所以tan ∠CED 23DH EH ==.②1(12)P -,25(1)2P -.图2 图3 图4②动点产生的平行四边形问题 2 满分解答(1) 因为抛物线与x 轴交于A (-4,0)、C (2,0)两点,设y =a (x +4)(x -2).代入点B (0,-4),求得12a =.所以抛物线的解析式为211(4)(2)422y x x x x =+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.因此当2m =-时,S 取得最大值,最大值为4.(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4. 设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-.①当点P 在点Q 上方时,21(4)()42x x x +---=.解得2x =-±此时点Q 的坐标为(2-+-(如图3),或(2--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=. 解得4x=-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).。
动点产生的等腰三角形问题
动点产生的等腰三角形问题类型1:一动点两定点如图,在平面中找点P,使得点P与已知点A.B构成等腰三角形分类讨论:第一种情况:以AB为腰,分别以AB为圆心,AB长为半径画圆,则在圆上的点(除去AB重合或共线的点)都能与AB构成等腰三角形;第二种情况:以AB为底,即为两圆的交点P1P2,P1P2是线段AB的垂直平分线总结:就是“两圆一线”模型解题技巧:步骤1:通过“两圆一线”确定动点位置;步骤2:分类讨论,建立方程模型求动点坐标注意:去除与直线AB共线的点的方法:求直线AB的解析式,再验证P点是否在直线AB 上,在则共线,不在,则不共线或用几何方法证明例题1:在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.5B.6C.7D.8例题2:如图,在平面直角坐标系中,抛物线2y x x =--x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴交于点C,对称轴与x 轴交于点D,点E(4,n)在抛物线上.(1) 求直线AE 的解析式;(2) 点P 为直线CE 下方抛物线上的一点,连接PC,PE.当△PCE 的面积最大时,求P 点坐标.(3) 点G 是线段CE 下方的中点,将抛物线2y x =x 轴正方向平移得到新抛物线'y ,'y 经过点D, 'y 的顶点为点F.在新抛物线'y 的对称轴上,是否存在点Q,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.练习1:如图1,已知二次函数2y ax bx c =++(a,b,c 为常数,a ≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M 的纵坐标为83-.直线l 的解析式为y=x.(1) 求二次函数的解析式;(2) 直线l 沿x 轴向右平移,得到直线'l ,'l 与线段OA 相交于B,与x 轴下方的抛物线相交于点C,过点C 作CE ⊥x 轴于点E,把△BCE 沿直线'l 折叠,当点E 恰好落在抛物线上'E 点时,(图2),求直线'l 的解析式;(3) 在(2)的条件下, 'l 与y 轴交于点N,把△BON 绕点O 逆时针旋转135°得到△''B ON ,P为'l 上的动点,当△''PB N 为等腰三角形时,求符合条件的点P 的坐标.练习2:如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点A(-5,0)和点B(1,0). (1) 求抛物线的解析式及顶点D 的坐标;(2) 如图2,连接AD,BD,点M 在线段AB 上(不与A,B 重合),∠DMN=∠DBA,MN 交线段AD 于点N,是否存在这样点M,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.类型2:多个动点1.在平面内使构成等腰三角形的三个点中,动点个数≥2个;解决这类问题的方法:让三个点分别做顶角顶点,进行分类讨论;如图,在平面内点A、B、P为动点,使得△PAB是等腰三角形?分类:①以P为顶点,PA=PB;②以A为顶点,AP=AB③以B为顶点,BA=BP2.在具体的题目中有时不仅要找出符合题意的点,还要计算出点的坐标,计算点的坐标的方法可以参考以下几种方法:①全等;②相似;③勾股定理;④锐角三角函数;⑤面积法;⑥方程或者方程组.例题1:如图,△ABC是边长为8的等边三角形,现有两点M,N分别从点A,点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运动速度为每秒2个单位长度,当点M第一次到达B点时,M,N同时停止运动.(1)点M,N运动几秒后,可得到等边三角形AMN?(2)点M,N运动几秒后,M,N两点重合?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰△AMN?若存在,请求出此时M,N运动的时间.例题2:如图1,在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++与y 轴交于点A(0,6),与x 轴交于点B(-2,0),C(6,0).(1) 直接写出抛物线的解析式及其对称轴;(2) 如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P 作PD ⊥AC 于点E,交x 轴于点D,过点P 作PG ∥AB 交AC 于点F,交x 轴于点G.设线段DG 的长为d,求d 与m 的函数关系式,并注明m 的取值范围;(3) 在(2)的条件下,若△PDG 的面积为4912. ①求点P 的坐标;②设M 为直线AP 上一动点,连接OM 交直线AC 与点S,则点M 在运动过程中,在抛物线上是否存在点R,使得△ARS 为等腰直角三角形?若存在,请直接写出点M 及其对应的点R 的坐标;若不存在,请说明理由.练习1:如图①,在平面直角坐标系中,已知A(-2,2),B(-2,0),C(0,2),D(2,0)四点,动点M 以B →C →D 运动(M 不与点B,点D 重合),设运动时间为t(秒).(1) 求经过A,C,D 三点的抛物线的解析式;(2) 点P 在(1)中的抛物线上,当M 为BC 的中点时,若△PAM ≌PBM,求点P 的坐标;(3) 当点M 在CD 上运动时,如图②,过点M 作MF ⊥x 轴,垂足为F,ME ⊥AB,垂足为E,设矩形MEBF 与△BCD 重叠部分的面积为S,求S 与t 的函数关系,并求出S 的最大值;(4) 点Q 为x 轴上一点,直线AQ 与直线BC 交于点H,与y 轴交于点K,是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.练习2:抛物线229y x bx c =-++与x 轴交于A(-1,0),B(5,0)两点,顶点为C,对称轴交x 轴于点D,点P 为抛物线对称轴CD 上的一动点(点P 不与C,D 重合),过点C 作直线PB 的垂线交PB 于点E,交x 轴于点F.(1) 求抛物线的解析式;(2) 当△PCF 的面积为5时,求点P 的坐标;(3) 当△PCF 为等腰三角形时,请直接写出点P 的坐标.课后练习:1.如图所示,二次函数2(1)2y k x =-+的图象与一次函数y=kx-k+2的图象交于A,B 两点,点B 在点A 的右侧,直线AB 分别与x,y 轴交于C,D 两点,其中k <0.(1)求A,B 两点的横坐标;(2)若△OAB 是以OA 为腰的等腰三角形,求k 的值;(3)二次函数图象的对称轴与x 轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.2.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点A(-4,0),B(2,0),交y 轴于点C(0,6),在y 轴上有一个点E(0,-2),连接AE.(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求△ADE 面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP 为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在,请说明理由.3.抛物线263y x x =-+-与y 轴相交于点C(0,-3),且抛物线的对称轴为x=3,D 为对称轴与x 轴的交点,在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E,F 两点,若△DEF 是等腰三角形,求△DEF 的面积.4.如图,抛物线2y ax bx c =++交x 轴于A,B 两点,交y 轴于点C(0,3),顶点F 的坐标为(1,4),对称轴交x 轴于点H,直线112y x =+交x 轴于点D,交y 轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c 的值;(2)点M 为抛物线对称轴上一个动点,若△DGM 是以DG 为腰的等腰三角形时,请求出点M 的坐标;(3)点P 为抛物线上的一个动点,当点P 关于直线112y x =+的对称轴恰好落在x 轴上时,请直接写出此时点P 的坐标.5.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C(0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D,交直线BC 于点E,抛物线的对称轴是直线x=-1.(1) 求抛物线的函数表达式;(2) 若点P 在第二象限内,且PE=14OD,求△PBE 的面积; (3) 在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.6.如图,一次函数3y x =-图象与坐标轴交于点A(3,0),B (0,,二次函数233y x x =-A,B 两点,点B 关于抛物线对称轴的对称点为点C,点P 是对称轴上一动点,在抛物线上是否存在点Q,使得以B,C,P,Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.7.如图,抛物线213222y x x =-++与x 轴交于A(-1,0),B(4,0),与y 轴交于点C,连接AC,BC,点P 在抛物线上运动,如图,若点P 在第一象限,直线AP 交BC 于点F,过点P 作x 轴的垂线交BC 于点H,当△PFH 为等腰三角形时,求线段PH 的长.8.如图,已知两直线1l ,2l 分别经过点A(1,0),点B(-3,0),且两条直线相交于y 轴的正半轴上的点C,当点C 的坐标为时,恰好有1l ⊥2l ,经过点A,B,C 的抛物线的对称轴与1l ,2l ,x 轴分别交于点G,E,F,D 为抛物线的顶点.(1)抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线2l 绕点C 旋转时,与抛物线的另一个交点为M,当△MCG 为等腰三角形时,请直接写出点M 的坐标.9.如图,已知抛物线2y=ax 9a --与坐标轴交于A,B,C 三点,其中C(0,3),∠BAC 的平分线AE 交y 轴于点D,交BC 于点D,交BC 于点E,过点D 的直线l 与射线AC,AB 分别交于点M,N.(1)直接写出a 的值,点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时, 11AM AN+均为定值,并求出该定值.。
专题37 动态几何之动点形成的等腰三角形存在性问题(压轴题)
《中考压轴题》专题37:动态几何之动点形成的等腰三角形存在性问一、选择题1.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是A.2B.3C.4D.5二、填空题1.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的△是腰长为5的等腰三角形时,点P的坐标为。
中点,点P在BC上运动,当ODP2.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q点有个.3.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x 轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标.三、解答题1.如图,抛物线21y x mx n 2=-++与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.2.如图,二次函数24y x bx c 3=++的图象与x 轴交于A (3,0),B (﹣1,0),与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q 为顶点的三角形为等腰三角形?若存在,请求出E 点坐标;若不存在,请说明理由.(3)当P ,Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标.3.已知抛物线经过A (﹣2,0),B (0,2),C (32,0)三点,一动点P 从原点出发以1个单位/秒的速度沿x 轴正方向运动,连接BP ,过点A 作直线BP 的垂线交y 轴于点Q .设点P 的运动时间为t 秒.(1)求抛物线的解析式;(2)当BQ=12AP 时,求t 的值;(3)随着点P 的运动,抛物线上是否存在一点M ,使△MPQ 为等边三角形?若存在,请直接写t 的值及相应点M 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.5.在平面直角坐标系xOy 中,二次函数213y x x 222=-++的图像与x 轴交于点A ,B (点B 在点A 的左侧),与y 轴交于点C ,过动点H (0,m )作平行于x 轴的直线,直线与二次函数213y x x 222=-++的图像相交于点D ,E.(1)写出点A,点B 的坐标;(2)若m >0,以DE 为直径作⊙Q ,当⊙Q 与x 轴相切时,求m 的值;(3)直线上是否存在一点F ,使得△ACF 是等腰直角三角形?若存在,求m 的值;若不存在,请说明理由.6.如图1,抛物线y=ax 2+bx ﹣1经过A (﹣1,0)、B (2,0)两点,交y 轴于点C .点P 为抛物线上的一个动点,过点P 作x 轴的垂线交直线BC 于点D ,交x 轴于点E .(1)请直接写出抛物线表达式和直线BC 的表达式.(2)如图1,当点P 的横坐标为32时,求证:△OBD ∽△ABC .(3)如图2,若点P 在第四象限内,当OE=2PE 时,求△POD 的面积.(4)当以点O 、C 、D 为顶点的三角形是等腰三角形时,请直接写出动点P 的坐标.7.如图,抛物线y=-x 2+bx+c 交x 轴于点A ,交y 轴于点B ,已知经过点A ,B 的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C 的坐标;(2)如图①,点P (m ,0)是线段AO 上的一个动点,其中-3<m <0,作直线DP ⊥x 轴,交直线AB 于D ,交抛物线于E ,作EF ∥x 轴,交直线AB 于点F ,四边形DEFG 为矩形.设矩形DEFG 的周长为L ,写出L 与m 的函数关系式,并求m 为何值时周长L 最大;(3)如图②,在抛物线的对称轴上是否存在点Q ,使点A ,B ,Q 构成的三角形是以AB 为腰的等腰三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.8.如图,抛物线2y ax bx c =++(a≠0)的图象过点M (2,-,顶点坐标为N 1,3⎛⎫- ⎪ ⎪⎝⎭,且与x 轴交于A 、B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标;(3)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF。
因动点产生的等腰三角形问题
因动点产生的等腰(直角)三角形问题1、如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.2、如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.3、如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少? 4、如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.5、如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限. ①当线段34PQ AB =时,求tan ∠CED 的值; ②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.1.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N ,设△BPQ, △DKM, △CNH 的面积依次为S 1,S 2,S 3。
中考数学因动点产生的等腰三角形问题详解
中考数学因动点产生的等腰三角形问题详
解
近年来,中考数学中因动点产生的图象问题,因其能较好地考查学生的空间想象能力和实际操作能力而备受
命题者的青睐。
思路点拨
1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.
2.第(2)题的本质是先代入,再配方求二次函数的最值.
3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.
满分解答
第1页/共1页。
2012因动点产生的等腰三角形问题
中考压轴——因动点产生的等腰三角形问题1.(2009年黄冈中考20题)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.2(2009年深圳中考23题).如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P .(1)连结P A ,若P A =PB ,试判断⊙P 与x 轴的位置关系,并说明理由; (2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?3.(2009年重庆中考26题).已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.. (2010上海宝山中考25题)如图9,矩形ABCD中,AB ,点E 是BC 边上的一个动点,联结AE ,过点D 作DF AE ⊥,垂足为点F . (1)设BE x =,ADF ∠的余切值为y ,求y 关于x 的函数解析式;(2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;(3)对(2)中求出的矩形ABCD ,联结CF ,当BE 的长为多少时,∆CDF 是等腰三角形?26题图x(备用图)DCBA EFD CBA EF(图9)中考压轴——因动点产生的等腰三角形问题答案20(2009年黄冈中考20题) 解:(1)21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A ;………………………1′在21410189y x x =--中,令0x =得10y =即(0,10)B -;………………2′ 由于B C ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x = 即(8,10)C -且易求出顶点坐标为98(4,)9-……………………………………3′于是,(18,0),(0,10),(8,10)A B C --,顶点坐标为98(4,)9-。
挑战中考数学压轴题(第九版精选)之欧阳道创编
目录第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山嘉定区中考模拟第24题例2 2014年武汉市中考第24题例3 2012年苏州市中考第29题例4 2012年黄冈市中考第25题例5 2010年义乌市中考第24题例6 2009年临沂市中考第26题1.2 因动点产生的等腰三角形问题例1 2015年重庆市中考第25题例2 2014年长沙市中考第第26题例3 2013年上海市虹口区中考模拟第25题例42012年扬州市中考第27题例5 2012年临沂市中考第26题例62011年盐城市中考第28题1.3 因动点产生的直角三角形问题例12015年上海市虹口区中考模拟第25题例22014年苏州市中考第29题例3 2013年山西省中考第26题例4 2012年广州市中考第24题例5 2012年杭州市中考第22题例6 2011年浙江省中考第23题例7 2010年北京市中考第24题1.4 因动点产生的平行四边形问题例1 2015年成都市中考第28题例2 2014年陕西省中考第24题例3 2013年上海市松江区中考模拟第24题例42012年福州市中考第21题例5 2012年烟台市中考第26题例6 2011年上海市中考第24题例7 2011年江西省中考第24题1.5 因动点产生的梯形问题例1 2015年上海市徐汇区中考模拟第24题例2 2014年上海市金山区中考模拟第24题例3 2012年上海市松江中考模拟第24题例4 2012年衢州市中考第24题例5 2011年义乌市中考第24题1.6 因动点产生的面积问题例1 2015年河南市中考第23题例22014年昆明市中考第23题例3 2013年苏州市中考第29题例4 2012年菏泽市中考第21题例5 2012年河南省中考第23题例62011年南通市中考第28题例72010年广州市中考第25题1.7因动点产生的相切问题例12015年上海市闵行区中考模拟第24题例22014年上海市徐汇区中考模拟第25题例3 2013年上海市杨浦区中考模拟第25题1.8因动点产生的线段和差问题例1 2015年福州市中考第26题例22014年广州市中考第24题例3 2013年天津市中考第25题例4 2012年滨州市中考第24题第二部分图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例12015年呼和浩特市中考第25题例22014年上海市徐汇区中考模拟第25题例3 2013年宁波市中考第26题例4 2012年上海市徐汇区中考模拟第25题2.2 由面积公式产生的函数关系问题例12015年上海市徐汇区中考模拟第25题例2 2014年黄冈市中考第25题例3 2013年菏泽市中考第21题例4 2012年广东省中考第22题例5 2012年河北省中考第26题例6 2011年淮安市中考第28题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例12015年北京市中考第29题例2 2014年福州市中考第22题例3 2013年南京市中考第26题3.2几何证明及通过几何计算进行说理问题例12015年杭州市中考第22题例2 2014年安徽省中考第23题例3 2013年上海市黄浦区中考模拟第24题第四部分图形的平移翻折与旋转4.1图形的平移例12015年泰安市中考第15题例2 2014年江西省中考第11题4.2图形的翻折例1 2015年上海市宝山区嘉定区中考模拟第18题例2 2014年上海市中考第18题4.3图形的旋转例12015年扬州市中考第17题例2 2014年上海市黄浦区中考模拟第18题4.4三角形例12015年上海市长宁区中考模拟第18题例2 2014年泰州市中考第16题4.5四边形例12015年安徽省中考第19题例2 2014年广州市中考第8题4.6圆例12015年兰州市中考第15题例22014年温州市中考第16题4.7函数图像的性质例12015年青岛市中考第8题例2 2014年苏州市中考第18题第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E 的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入ky,得k=8.x(2)将点B(n, 2),代入8y x =,得n =4. 所以点B 的坐标为(4, 2). 设直线BC 为y =x +b ,代入点B(4,2),得b =-2.所以点C 的坐标为(0,-2).由A(2, 4)、B(4, 2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB =22,BC =42,∠ABC =90°. 图2所以S △ABC =12BA BC ⋅=122422⨯⨯=8. (3)由A(2, 4)、D(0, 2)、C (0,-2),得AD =22,AC =210. 由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC =时,CE =AD =22.此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD=时,21021022=.解得CE =102.此时C 、E 两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4 考点伸展第(2)题我们在计算△ABC 的面积时,恰好△ABC 是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例22014年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ 的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ 与△ABC 相似,存在两种情况:① 如果BP BA BQ BC =,那么510848t t =-.解得t =1. ② 如果BP BC BQ BA =,那么588410t t =-.解得3241t =. 图3 图4(2)作PD ⊥BC ,垂足为D .在Rt △BPD 中,BP =5t ,cosB =45,所以BD =BPcosB =4t ,PD =3t .当AQ ⊥CP 时,△ACQ ∽△CDP . 所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E .由于H 是PQ 的中点,HF//PD ,所以F 是QD 的中点.又因为BD =CQ =4t ,所以BF =CF .因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.考点伸展本题情景下,如果以PQ 为直径的⊙H 与△ABC 的边相切,求t 的值.如图7,当⊙H 与AB 相切时,QP ⊥AB ,就是BP BC BQ BA=,3241t =. 如图8,当⊙H 与BC 相切时,PQ ⊥BC ,就是BP BA BQ BC =,t =1.如图9,当⊙H 与AC 相切时,直径PQ半径等于FC =48=. 解得12873t =,或t =0(如图10,但是与已知0<t <2矛盾).图7 图 8 图9 图10例3 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b, 0),点C 的坐标为(0, 4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55). 图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A(1, 0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14b b =-.解得8b =±Q 为(1,2+.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
动点产生地等腰三角形
中考问题之-因动点产生的等腰三角形【压轴题型概述】本专题专门探求图形在变化过程中,符合等腰三角形的点的存在性问题. 这个动点可以在x 轴、y 轴上,也可以在正、反比例函数、一次函数、二次函数上;可能是一个点在运动,也有可能两个点同时运动;所以这类题目的解答要根据运动本身的特点,写出符合这个特点的点的坐标或求出线段的长度.等腰三角形的题目范围较广,题型很多. 数形结合,可以直观地找到解题的捷径;代数方法、几何方法各有千秋,灵活应用才能事半功倍.这部分考题在中考试卷中的比例很大,约占30%左右. 【策略分级细述】 1. 怎样设动点的坐标(1)若动点在x 轴上,因为横坐标x 在变化,纵坐标y 没有变化,始终等于0,所以可设动点坐标为(x,0);若动点在y 轴上,横坐标x 没有变化,始终等于0,纵坐标y 在变化,所以可设动点坐标为(0,y ). (2)若动点在函数y =f (x)上,则横坐标设为x,纵坐标设为f (x). 例如,点A 在反比例函数 y = 3x 的图像上,设A (x,y ),因为y = 3x ,所以用 3x 来代替y,这种情况一般就直接设A (x,3x );又如:点B 在一次函数 y =2 x ─ 12 上,直接设B (x,2 x ─ 12).2. 等腰三角形要分类讨论如图1-1,一个三角形为等腰三角形时,存在三种情况:AB = A C ;AB = B C ;BC = A C ,所以要分类进 行讨论.3. 坐标系中三角形边长的表示如图1-2,若三角形AOB 的三个顶点在平面直角坐标系中,设A (x 1,y 1),B (x 2,y 2)则AB 两点间的距离公式为:AB = (x 1─x 2)2+(y 1─y 2)2 . 用同样的方法,把其他两条边的距离也写出来,OA = x 12+y 12 ,OB = x 22+y 22 . 然后按照图1-1的方法,让三条边两两相等,解方程即可. 我们来具体的解一道反比例函数图像上求等腰三角形的题.图 1-1AB CBA Oxy图1-3图 1-2(x 2,y 2)(x 1,y 1)OAB xy例1. 如图1-3,在直角坐标系xOy 中,反比例函数 y = 8x图像上的点A、B 的坐标分别为(2,m )、(n,2),点C 在x 轴上,且△ABC 为等腰三角形,求点C 的坐标. 分析:1. 反比例函数y = 8x图像上的A、B 点,满足这个解析式,所以把A、B 点的坐标分别代入,求出这两个点的坐标.2. 如图1-4,点C 在x 轴上,所以设C (x,0).3. 为了方便起见,讨论前可以利用两点间的距离公式,分别把AB ,BC ,CA 的长度写出来.4. 根据等腰三角形存在三种情况:分别对AB = A C ;AB = B C ;BC = A C 进行讨论.解:因为A(2,m )、B(n,2)在y=8x 上,所以m =82 ,2=8n ,解得:m =4,n=4,所以A(2,4)、B(4,2).因为点C 在x 轴上,所以设C (x,0),则AB =(4─2)2+(2─4)2 =22,AC =(x─2)2+42 =x 2─4x+20 ,BC =(x─4)2+22 =x 2─8x+20 . 若△ABC 为等腰三角形,分三种情况讨论:① AB =AC ,即x 2─4x+20 =22,整理得x 2─4x+12=0,因为△<0,所以方程无实数根,这种情 况不存在.② AB =BC ,即x 2─8x+20 =22,整理得x 2─8x+12=0,解得x 1=2,x 2=6,所以C (2,0)(如 图1-4);C (6,0)(因为A、B、C 三点在一条直线上,不能构成三角形,如图1-5,所以舍去).③ BC =AC ,即x 2─4x+20 =x 2─8x+20 ,解得:x=0,所以C (0,0)(如图1-6). 所以这样的点C 有两个,C (2,0)或(0,0).例1有两个固定的点在反比例函数上,动点在x 轴上,探求符合条件的等腰三角形的点的存在性.接下来我们再来探讨正、反比例函数上的两个点和y 轴上的点构成的等腰三角形的问题. BA OxyC图1-4BA OxyC图1-5BA O xyC图1-6例2. 如图1-7,点A(m ,2)是正比例函数和反比例函数的交点, AB ⊥y 轴于点B,OB = 2 AB.(1)求正比例函数和反比例函数的解析式;(2)求正比例函数和反比例函数的另一个交点C 的坐标;(3)在y 轴上是否存在一点D ,使△ACD 为等腰三角形,若存在,请求出 点D 的坐标,若不存在,请说明理由.分析:1.从点A(m ,2),AB ⊥y 轴可得:OB =2,因为OB =2AB ,所以AB =1,所以A(1,2)把A 点的坐标分别代入所设的正比例函数和反比例函数解析式中,即可求得(1).2.一般地,求两个函数的交点坐标,可以把这两个函数联立方程组,解这个方程组得到的x,y 就是它们的交点坐标. 但是此题也可以利用正比例函数和反比例函数的特殊性:它们的交点关于原点对称,得到C 点坐标.3.因为点D 在y 轴上,设出D 点坐标,按照等腰三角形存在的三种情况:AC = A D ,AC = C D ,AD = CD ,进行分类讨论. 解:(1)因为AB ⊥y 轴于点B,OB =2 AB ,点A(m ,2)所以OB =2,AB =1,所以A(1,2), 因为A(1,2)在y=kx (k ≠ 0)上,所以k=2,所以y=2x. 又因为A(1,2)在y=k x (k ≠ 0)上,所以k=2,所以y=2x.(2)因为A(1,2),正比例函数和反比例函数的交点关于原点对称,所以C ( ─ 1,─ 2 ). (3)存在.因为点D 在y 轴上,所以设D (0,y),则AC =(1+1)2+(2+2)2 =25,AD =12+(y─2)2 , CD =(─1)2+(y+2)2若△ACD 为等腰三角形,分三种情况讨论:① AC =AD ,即25=12+(y─2)2 ,整理得y 2─4y─15=0,解得y=2±19,所以D (0,2+19) 或(0,2─19)② AC =CD ,即25=(─1)2+(y+2)2 ,整理得y 2+4y─15=0,解得y=─2±19,所以D (0,─ 2 +19)或(0,─2─19).③ AD =CD ,即12+(y─2)2 =(─1)2+(y+2)2 ,解得y=0,此时点D 与原点重合,舍去. 所以这样的点D 有四个,D (0,2+19),(0,2─19),(0,─ 2 +19),(0,─2─19). 这一道题的方法和例1一样,但是计算的难度加大,解一元二次方程用到了公式法. B AO xyC图 1-71.1因动点产生的等腰三角形【阶梯题组训练】4.已知:如图,抛物线的解析式为 y = ─ x 2 + 2 x + 2的顶点坐标为点P,点A 的坐标为(-1,─ 1),点B 的坐标为 (1,m ),且3m ,若△ABP 是等腰三角形,求点B 的坐标.5.如图,已知:抛物线y = ─ 12 x 2+ x + 4与轴交于点C ,与x 轴交于点A、B,平行于x 轴的动直线l 与该抛物线交于点P,与直线AC 交于点F,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.DC B A O x y (第5题) (第4题) O xy1.1因动点产生的等腰三角形4.动点移动的路程如图1-8,点P 由点C 向点A 移动,速度是每秒1cm ,设运动的时间为t秒,则路程CP =速度×时间=1×t =t ;点Q 由点B 向点C 移动,速度是每秒2cm ,设运动的时间为t秒,则路程BQ =2×t =2 t .动点的移动,是中考经常会碰到的类型,要熟练的掌握它.例3. 如图1-9,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =12,AD =18,AB =10. 动点P 、Q 分别从点D 、B 同时出发,动点P 沿射线DA 的方向以每秒2个单位长的速度运动,动点Q 在线段BC 上以每秒1个单位长的速度向点C 运动,当点Q 运动到点C 时,点P 随之停止运动.设运动的时间为 t(秒).射线PQ 与射线AB 相交于点E ,AEP能否为等腰三角形?如果能,求出t 的值;如果不能,请说明理由.分析:1. 路程=速度×时间,动点P 移动的路程DP =2 t ,动点Q 移动的路程BQ =t2. 直角梯形作高,构造矩形和直角三角形,利用矩形的对边相等或勾股定理找到等量关系.3. 动点P 沿射线DA 的方向运动,所以要分点P 在线段DA 上,和点P 在DA 的延长线上两种情况 分别讨论4. 当点P 在线段DA 上,△AEP 是等腰三角形的三种情况要根据三种不同的情况,灵活的采用不同 的方法求出t的值5. 当点P 在DA 的延长线上时,可利用等边对等角,对顶角,平行来找到等量关系求之.解:直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =12,AD =18,AB =10,DP =2t ,BQ =t . 动点P 沿射线DA 的方向运动,所以分两种情况:(1)点P 在线段DA 上时:若△BDG 为等腰三角形,则分三种情况讨论:① 如图1-10,AE =AP ,因为DP =2t ,AD =18,所以AP =18 ─ 2 t ,又因为AE =AP ,所以∠APE = ∠E ,梯形AD ∥BC ,∠APE =∠BQE ,所以∠BQE =∠E,所以BE =BQ =t ,AE =10+t ,所以18 ─ 2 t=10 + t ,解得t = 83.② 如图1-11,EP =AE ,作PM ⊥BC 于M ,得CM =DP =2 t ,BC =12,BQ =t ,所以MQ =12─3 t , 又因为PQ =AB =10,PM =CD =8,所以MQ =6,所以12─3 t =6,解得 t =2. ③ 如图1-12,AP =EP ,所以∠A=∠E,因为AD ∥BC ,∠EBQ =∠A,所以∠EBQ =∠E,所以EQ =BQ =t , 又因为AP =18 ─ 2 t ,所以PE =18 ─ 2 t ,PQ =18 ─ 2 t ─ t =18 ─ 3 t ,MQ =12─3 t ,在Rt △PQM图 1-8ABCP Q图1-9EQD CBAP中,(18 ─ 3 t ) 2=(12─3 t ) 2+82,解得:t =299. (2)点P 在DA 的延长线上时: 如图4,AP =2 t ─18=AE ,所以∠AEP =∠P,因为AD ∥BC ,∠BQE =∠P,因为∠AEP =∠BEQ ,所以∠BQE =∠BEQ ,所以BQ =BE =t ,所以AE =10─ t ,即2 t ─18=10─ t ,解得:t = 283综上所述,△AEP 能构成等腰三角形,此时t =83 ,2,299 ,283 .在解等腰三角形的题目时,一般情况下是分类讨论两条边相等,但有时利用等腰三角形的三线合一也可使问题更快地解决. 本题还有一个难点:点P 是在线段上,还是在延长线上,容易疏忽.5. 构造相似三角形,利用相似比,探求等腰三角形的存在性.学了相似三角形以后, 通过作等腰三角形底边上的高,构造一个与基础三角形相似的三角形,通过相似比,探求点的存在性.如图1-13,若要证△PRQ 为等腰三角形中的PQ =PR ,已知AB =5,AH =4,∠B=∠PQR ,PQ = 125,RQ =x,而PR 没有任何条件求不出来. 我们可以作底边上的高PG ,利用等腰三角形三线合一的性质,得到PG 平分QR , 所以QG = x 2 ,从已知不难得到Rt△QPG 与Rt △ABH 相似,利用相似比 PQ AB = QGAH,得到 125254x,解出x.例4. 如图1-14,在△ABC 中,AB = A C = 5,BC = 6,,D 、E 分别是边AB 、 AC 上的两个动点(D 不与A、B 重合),且保持DE ∥BC ,以DE 为边,在点 A 的异侧作正方形DEFG .设AD = x ,当△BDG 是等腰三角形时,请求出 AD 的长.分析:1.由DE ∥BC ,利用平行线分线段成比例可以求出DE ,因为正方形DG =DE ,所以求出了三角形的边H GRQ E D CB AP 图 1-13 MEQD CBA P图1-11EQ DCBA P图1-12GFECBA D 图1-14MEQD C BAP图 1-102.如果已知一个三角形的两条边,来求它是等腰三角形需满足的条件,可以根据等腰三角形的三线合一来添辅助线,这样构造了一个直角三角形,想办法在已知条件中也构造一个直角三角形与之相似,使问题得到解决.3.按照等腰三角形存在的三种情况,进行分类讨论.解:如图1-15,作AQ ⊥BC 于Q ,因为DE ∥BC ,所以 DE BC =ADAB,因为AB =5,BC =6,AD =x,BD =5 ─ x,DE 6 = x 5 ,得DE =65 x. 因为正方形DEFG ,所以DG = DE =65x.若△BDG 为等腰三角形,分三种情况讨论:① 如图1-15,BD =DG ,即5 ─ x=65 x,解得x= 2511 ,所以AD = 2511② 如图1-16,BD =BG ,此时BC 正好是DG 的垂直平分线,所以DM ∥AQ ,DM AQ =BDAB,即35545x x , 解得x=207 ,所以AD =207 .③ 如图1-17,BG =DG ,作GH ⊥AB 于H ,则DH = 12 BD =12( 5 ─ x ),因为∠GHD =∠AQB =90°,又∠GDH +∠DGH =90°,∠GDH +∠ADE =90°,所以∠DGH =∠ADE =∠ABC ,所以△DGH ∽△ABQ ,所以 DH AQ =DG AB ,即 61(5)5245x x ,解得:x=12573 ,所以AD = 12573 . 综上所述,当△BDG 是等腰三角形时,AD = 2511 ,207 ,12573 .1.1因动点产生的等腰三角形【阶梯题组训练】答案:4.顶点P (1,3)AB =4+(m +1)2,AP =25,PB =3 ─ m (3 m ).①AB =AP ,即4+(m +1)2=25,解得:m =─ 5,所以B(1,─ 5);②AP =PB ,即25=3 ─ m ,解得:x=3 ─ 25,,所以B(1,3 ─ 25);③AB =PB ,即4+(m +1)2=3 ─ m ,解得:x=12 ,所以B(1,12).图1-15N MP GFE CBA QD NM GFE C BAQD 图1-16H G FECBA QD图1-175. A(4,0),B(─ 2,0),C (0,4),D (2,0),AC 的解析式为:y=─ x + 4. 设F(x,─ x + 4) ①如图1-33,OD =DF =2,所以F(2,2).当y=2时 ,─ 12 x 2+ x + 4=2,解得:x=2±5,所以P(1+5,2)(1 ─ 5,2 );②如图1-34,OF =DF ,由等腰三角形三线合一得:F(1,3),.当y=3时 ,─ 12 x 2 + x + 4=3,解得:x=1±3,所以P(1+3,3)(1 ─ 3,3 ).1.1因动点产生的等腰三角形【阶梯题组训练】答案:1.(1)y=─ 6x;(2)设B(x,0),则OB =∣x∣,OA =13,AB =(x + 2)2+32. ①OA =OB ,即∣x∣=13,解得:x=±13,所以B(13,0)或(─ 13,0);②OA =AB ,即(x + 2)2+32 =13,解得:x=0(舍去),x= ─ 4,所以B(─ 4,0);③OB =AB ,即(x + 2)2+32=∣x∣,解得:x= ─134 ,所以B(─ 134 ,0).2. A(2,0),B(0,2),设P( x,– x + 2),OP =x 2+(─ x+2)2,PA=(x ─ 2)2+(─x+2)2,OA =2. ①OP =PA ,即x 2+(─ x+2)2 =(x ─ 2)2+(─x+2)2,解得:x=1,所以P(1,1);②OP =OA ,即x 2+(─ x+2)2 =2,解得:x=0,x=2(舍去),所以P(0,2);③PA =OB ,即(x ─ 2)2+(─x+2)2=2,解得:x= 2±2,所以P(2+2,─ 2 )(2 ─ 2, 2 ).3.解:(1)令y=0,所以 ─ 12 x + 1=0,解得x=2,所以A(2,0);令x=0,y=1,所以B(0,1).(2)因为点C 在y= ─ 12 x + 1上,所以设C (x,─ 12x + 1),又因为A(2,0),B(0,1),所以P P'DCB AOxyF 图 1P P'DCB AOxyF 图2(第5题)OA =2,OC =x 2+(─12x + 1)2 ,AC =( x ─ 2)2+(─12x + 1)2 . 若△AOC 为等腰三角形,分三种情况讨论:① OC =AC ,即x 2+(─12 x + 1)2 =( x ─ 2)2+(─ 12x + 1)2 ,整理得:4x=4,解得:x=1,把 x=1代入设的C (x,─ 12 x + 1)中的 ─ 12 x + 1=12 ,所以C (1,12)② OC =OA ,即x 2+(─12 x + 1)2 =2,整理得:5x 2─4x─12=0,解得x 1=─ 65,x 2=2(因为点C与点A 重合,舍去),所以C (─ 65 ,85) .③ AC =OA ,即( x ─ 2)2+(─12 x + 1)2 =2,整理得:5x 2─20x+4=0,解得:x=10±455,所以 C ( 10+455 ,0),( 10─455,0)所以这样的点C 有四个,C (1,12 ),(─ 65 ,85 ),( 10+455 ,─ 255 ),( 10─455 ,255 ).。
模型 一文搞定初中数学8大动点问题
专题1 动点在等腰三角形中的分类讨论(基础篇)【专题说明】点的存在性问题,在中考压轴题中非常普遍。
比如因动点产生的平行四边形问题、因动点产生的线段和差问题、因动点产生的全等三角形问题、因动点产生的等腰三角形。
这些动点产生的几何图形问题可谓十分的普遍,难度系数究竟怎么样?又有什么规律可遵循?下面,从动点产生的等腰三角形出发,分析探究这一点的存在性问题。
既然是探究因动点产生的等腰三角形,那么等腰三角形的基础知识必须总结归纳,牢记于心。
等腰三角形的性质:(1)等边对等角;(2)三线合一。
等腰三角形的判定:等角对等边。
而等腰三角形还有一点要特别注意:不确定性!①边的不确定性;①角的不确定性。
当给出等腰三角形的一条边时,我们要确定这条边到底是腰还是底边,同时还要确保三角形的两边之和大于第三边,三角形的两边之差小于第三边。
如果边不确定,那么一定要分类讨论!当给出等腰三角形的一个角时,也要确定这个角是底角还是顶角。
如果题中没有明显说明,那么一定要分类讨论!因此,分类讨论思想是动点产生的等腰三角形问题中非常重要的思想方法!【精典例题】 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ①若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以①中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?【解析】:(1)①①1t =秒,①313BP CQ ==⨯=厘米,①10AB =厘米,点D 为AB 的中点,①5BD =厘米.又①8PC BC BP BC =-=,厘米,①835PC =-=厘米,①PC BD =.又①AB AC =,①B C ∠=∠,①BPD CQP △≌△.①①P Q v v ≠, ①BP CQ ≠,又①BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,①点P ,点Q 运动的时间433BP t ==秒,①515443Q CQ v t ===厘米/秒. (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =秒. ①点P 共运动了803803⨯=厘米. ①8022824=⨯+,①点P 、点Q 在AB 边上相遇,①经过803秒点P 与点Q 第一次在边AB 上相遇.AQC D B P2、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.【解析】:(1)过点C 作CD AB ⊥,垂足为D .则2AD =,当MN 运动到被CD 垂直平分时,四边形MNQP 是矩形,即32AM =时, 四边形MNQP 是矩形,32t ∴=秒时,四边形MNQP 是矩形. 3tan 6032PM AM =°=,332MNQP S ∴=四边形(2)1°当01t <<时,1()2MNQP S PM QN MN =+四边形·332t =+ 2°当12t ≤≤时,1()2MNQP S PM QN MN =+四边形·332= 3°当23t <<时,1()2MNQP S PM QN MN =+四边形·7332t =-+ 【点评】此题关键也是对P 、Q 两点的不同位置进行分类。
动点产生等腰三角形或平行四边形
H G F E D B C A G F E D C B A 例1.如图,在正方形ABCD 中,点F 在CD 边上,射线AF 交BD 于点E ,交BC 的延长线于点G
(1)求证:△ADE ≌△CDE ;(2)过点C 作CH ⊥CE ,交FG 于点H ,求证:FH=GH
(3)设AD=1,DF=x ,试问是否存在x 的值使得△ECG 为等腰三角形?若存在,请求出x 的值,若不存在请说明理由
例2.如图,在矩形ABCD 中,AB=4,BC=3,点E 是边CD 上任意一点(点E 与点C 、D 不重合),过点A 作AF ⊥AE ,交
边CB 的延长线于点F ,连结EF ,交边AB 于点G 设DE=x ,BF=y
(1)求y 关于x 的函数关系式,并写出函数的定义域
(2)如果AD=BF ,求证:△AEF ≌△DEA
(3)当点E 在边CD 上移动时,△AEG 能否称为等腰三角形?如果能,请直接写出线段DE 的长,如果不能,请说明理由。
动点产生的等腰三角形
3
例 6.如图,点 A(﹣2,0) 、B(4,0) 、C(3,3)在抛物线 y=ax2+bx+c 上,点 D 在 y 轴上,且 DC⊥BC,∠BCD 绕点 C 顺时针旋转后 两边与 x 轴、y 轴分别相交于点 E、F. (1)求抛物线的解析式; (2)CF 能否经过抛物线的顶点?若能,求出此时点 E 的坐标;若不能,说明理由; (3)若△ FDC 是等腰三角形,求点 F 的坐标.
2
例 4 如图,已知一次函数 y=-x+7 与正比例函数 y (1)求点 A 和点 B 的坐标;
4 x 的图象交于点 A,且与 x 轴交于点 B. 3
(2)过点 A 作 AC⊥y 轴于点 C,过点 B 作直线 l//y 轴.动点 P 从点 O 出发,以每秒 1 个单位长的速度,沿 O—C—A 的路线向点 A 运动; 同时直线 l 从点 B 出发,以相同速度向左平移,在平移过程中,直线 l 交 x 轴于点 R ,交线段 BA 或线段 AO 于点 Q.当点 P 到达点 A 时, 点 P 和直线 l 都停止运动.在运动过程中,设动点 P 运动的时间为 t 秒. 是否存在以 A、P、Q 为顶点的三角形是等腰三角形?若存在,求 t 的值;若不存在,请说明理由.
图1
备用图
1
例 2 如图,抛物线 y=ax2+bx+c 经过 A(-1,0)、B(3, 0)、C(0 ,3)三点,直线 l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点 P 是直线 l 上的一个动点,当△PAC 的周长最小时,求点 P 的坐标; (3)在直线 l 上是否存在点 M,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点 M 的坐标;若不存在,请说明理由.
动点产生的等腰三角形 例:在平面直角坐标系中,二次函数y = −x +bx+c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,直线x = t 平行于y 轴且与直线y = x ,y =12
-
x +2分别交于点D 、E (E 在D 的上方) (1)分别用t 表示点D 、E 的坐标; (2)设DE 长度为y ,把y 用t 的函数表示,并写出t 的取值范围 ;
(3)若P 是y 轴上一动点,是否存在t 的值使△PED 是等腰直角三角形,若存在,写出t 的值及点P
坐标,若不存在,请说明理由.
1
2-x+2
2.如图,在矩形ABCD 中,AB = 20cm ,BC = 4cm ,点P 从A 点开始沿折线A →B →C →D →A →B →…以4cm/s 的速度循环移动。
(1)当P 移动6s 时,求ABP S ;
(2)如图2,另有一动点Q 从C 点开始沿CD 以1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当Q 点到达D 时,P 点也随之停止运动,设运动时间为t (s).
①当Q 点到达D 点时,此时P 点在矩形ABCD 的哪一条边上,P 与A 的距离为多少?
②在CD 上取一点M ,使得DM = 4cm ,当t 为何值时,以A 、M 、Q 、P 为顶点的四边形为等腰梯形.
备用图
图1 图2。