人教版初二数学下册勾股定理课件.ppt
合集下载
人教版八年级下册17.1-勾股定理(课件)(共23张PPT)
ac
b
总结:已知直角三角形的任意两 边,通过勾股定理可以求出第三边.
2 蚂蚁沿图中的折线从A点爬到D点,一共爬了
多少厘米?(小方格的边长为1厘米)
A
G
B
E
C
F
D
勾股定理
已知: a=7, c=2如5, 求b果; 直角三角形两直角边分别为a,b,斜
边为c,那么 a + b = c 大正方形的面积可以表示为
解:∵ SE= 49 S1=SA+SB S2=SC+SD
∴ SA+SB+SC+SD = S1+S2 = SE = 49
C D
B
S2
A S1
E
1、本节课我们经历了怎样的过程?
经历了从实际问题引入数学问题然后发现定理,再到探 索定理,最后学会验证定理及应用定理解决实际问题的过程。
2、本节课我们学到了什么?
我a2国+是b对2最=早c这2了解个勾股命定理题的国的家之证一。明方法已有几百种之多.下面我们就来看
毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学家、天文学家。
已知: a一=5,看b=12我, 求国c; 汉代数学家赵爽是怎样证明这个命题的.
即直角三角形两直角边的平方和等于斜边的平方.
1945年,人们在研究古巴比伦人遗留下的一块数学泥 板时,惊讶地发现上面竟然刻有15组能构成直角三角形三 边的数,其年代远在商高之前。
相传二千多年前,希腊的毕达哥拉斯学派首先证明了
勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯 定理。
是不是所有的直角三角形都具有这样的特点呢?这就
需要我们对一个一般的直角三角形进行证明.到目前为止,
人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
勾股定理课件(共19张PPT)人教版初中数学八年级下册
1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2
伽
菲
尔
德
证
法
归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前
人教版八年级下册17.1 勾股定理(共36张PPT)
探索勾股定理
畅所欲言:
1、你听说过勾股定理吗? 2、说说你所知道的勾股定理知识
……
勾股定理知识知多点…
读一读
勾股世界
我国是最早了解勾股定理的国家之一。早在三千多年
前,周朝数学家商高就提出,将一根直尺折成一个直角三 角形,如果勾等于三,股等于四,那么弦就等于五。即 “勾三、股四、弦五”。它被记载于我国古代著名的数学 著作《周髀算经》中。在这本书中的另一处,还记载了勾 股定理的一般形式。
c
那么
a2b2c2
b
即直角三角形两直角边的平方和等于 斜边的平方.
勾股定理的发现
相传2500年前,毕达哥拉斯有 一次在朋友家做客时,发现朋 友家用砖铺成的地面中反映了 直角三角形的某种数量关系。
SA+SB=SC
AB C
探索活动一:
C A
B 图甲
1对.观于察任图意甲的,等小腰方直格 的 角边三长角为形1都. 有这样 ⑵⑴ 的正性方质形吗A、?B自、己C的在 方面格积本有各探什为索么多…关少C 系??
风 廉 政 建 设 和廉洁 从政方 面的工 作述职 汇报如 下: 一 、 加 强 学 习,牢固 筑起拒 腐防变 的思想 道德防 线 一 年 来 ,我 根 据区委 、区纪 委制定 的党风 廉政建 设工作 规划,作 好学习 计划,努 力把 加 强 自 身 党 风廉政 建设与 其他业 务工作 紧密结 合,一起 落实,一 起促进。我不仅积极 参 加 区 政 府 办班子 的党纪 政纪学 习,而且 还挤出 时间自 学党风 廉政建 设责任 制的有 关 规定 ,特 别是结 合先进 性教育 活动 ,加 强学习 了《党 章》、 《建立 健全教 育、制 度、 监 督 并 重 的 惩治和 预防腐 败体系 实施纲 要》、 《“三个 代表” 重要思想反腐倡廉理 论 学 习 纲 要 》、《 党员权 利保障 条例》 、《国 共产党 纪律处 分条例 》、《 国共产 党 党 内 监 督 条例(试 行)》 、《国 共产党 领导干 部廉洁 从政若 干准则 (试行)》
畅所欲言:
1、你听说过勾股定理吗? 2、说说你所知道的勾股定理知识
……
勾股定理知识知多点…
读一读
勾股世界
我国是最早了解勾股定理的国家之一。早在三千多年
前,周朝数学家商高就提出,将一根直尺折成一个直角三 角形,如果勾等于三,股等于四,那么弦就等于五。即 “勾三、股四、弦五”。它被记载于我国古代著名的数学 著作《周髀算经》中。在这本书中的另一处,还记载了勾 股定理的一般形式。
c
那么
a2b2c2
b
即直角三角形两直角边的平方和等于 斜边的平方.
勾股定理的发现
相传2500年前,毕达哥拉斯有 一次在朋友家做客时,发现朋 友家用砖铺成的地面中反映了 直角三角形的某种数量关系。
SA+SB=SC
AB C
探索活动一:
C A
B 图甲
1对.观于察任图意甲的,等小腰方直格 的 角边三长角为形1都. 有这样 ⑵⑴ 的正性方质形吗A、?B自、己C的在 方面格积本有各探什为索么多…关少C 系??
风 廉 政 建 设 和廉洁 从政方 面的工 作述职 汇报如 下: 一 、 加 强 学 习,牢固 筑起拒 腐防变 的思想 道德防 线 一 年 来 ,我 根 据区委 、区纪 委制定 的党风 廉政建 设工作 规划,作 好学习 计划,努 力把 加 强 自 身 党 风廉政 建设与 其他业 务工作 紧密结 合,一起 落实,一 起促进。我不仅积极 参 加 区 政 府 办班子 的党纪 政纪学 习,而且 还挤出 时间自 学党风 廉政建 设责任 制的有 关 规定 ,特 别是结 合先进 性教育 活动 ,加 强学习 了《党 章》、 《建立 健全教 育、制 度、 监 督 并 重 的 惩治和 预防腐 败体系 实施纲 要》、 《“三个 代表” 重要思想反腐倡廉理 论 学 习 纲 要 》、《 党员权 利保障 条例》 、《国 共产党 纪律处 分条例 》、《 国共产 党 党 内 监 督 条例(试 行)》 、《国 共产党 领导干 部廉洁 从政若 干准则 (试行)》
勾股定理ppt课件
人教版八年级(下册)
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
人教版八年级数学下册17.1 勾股定理课件 (共84张PPT)
3 . AC=___ 6.在一个直角三角形中, 两边长分别为3,4,则
5 或 7 第三边的长为________.
7.蚂蚁沿图中的折线从A点爬到D点,一共爬了____厘米.(小方 格的边长为1厘米)
A
3
G
4
B
12
E 5 C 6
8
F
答案:28
D
· ·
· ·
· ·
·
·
3.如图所示,一棵大树在一 次强台风中离地面5米处折 断倒下,倒下部分与地面 成30°角,则这棵大树在 折断前的高度和AB的长分 别为( ) B.15米, 125米 D.15米, 75 米 A.10米, 75 米 C.10米, 125米
第十七章 勾股定理
17.1 勾股定理(第1课时)
1.掌握勾股定理的内容. 2.理解勾股定理的证明.
3.应用勾股定理进行有关计算与证明.
星期日老师带领初二全体学生去凌峰山风景区游 玩,同学们看到山势险峻,查看景区示意图得知:凌峰 山主峰高约为900米,如图:为了方便游人,此景区从主 峰A处向地面B处架了一条缆车路线,已知山底端C处与 地面B处相距1200米, ACB 90 ,请问缆车路线AB长 应为多少?
2ab+(b² -2ab+a² )=c²
赵爽弦图
∴a² +b²=c²
结论: 直角三角形中,两条直角边的平方和等于斜边 的平方. B
在Rt△ABC中,∠C=90°, 边BC,AC,AB所对应的边 勾 分别为a,b,c,则存在下 C 列关系 a2+b2=c2 b
勾股定理
如果直角三角形的两条直角边长分别为a,b, a 2 + b 2 = c 2. 斜边长为c,那么 即直角三角形两直角边长的平方和等于斜边长的平方. ∵ ∠C=90°
5 或 7 第三边的长为________.
7.蚂蚁沿图中的折线从A点爬到D点,一共爬了____厘米.(小方 格的边长为1厘米)
A
3
G
4
B
12
E 5 C 6
8
F
答案:28
D
· ·
· ·
· ·
·
·
3.如图所示,一棵大树在一 次强台风中离地面5米处折 断倒下,倒下部分与地面 成30°角,则这棵大树在 折断前的高度和AB的长分 别为( ) B.15米, 125米 D.15米, 75 米 A.10米, 75 米 C.10米, 125米
第十七章 勾股定理
17.1 勾股定理(第1课时)
1.掌握勾股定理的内容. 2.理解勾股定理的证明.
3.应用勾股定理进行有关计算与证明.
星期日老师带领初二全体学生去凌峰山风景区游 玩,同学们看到山势险峻,查看景区示意图得知:凌峰 山主峰高约为900米,如图:为了方便游人,此景区从主 峰A处向地面B处架了一条缆车路线,已知山底端C处与 地面B处相距1200米, ACB 90 ,请问缆车路线AB长 应为多少?
2ab+(b² -2ab+a² )=c²
赵爽弦图
∴a² +b²=c²
结论: 直角三角形中,两条直角边的平方和等于斜边 的平方. B
在Rt△ABC中,∠C=90°, 边BC,AC,AB所对应的边 勾 分别为a,b,c,则存在下 C 列关系 a2+b2=c2 b
勾股定理
如果直角三角形的两条直角边长分别为a,b, a 2 + b 2 = c 2. 斜边长为c,那么 即直角三角形两直角边长的平方和等于斜边长的平方. ∵ ∠C=90°
人教版数学八年级下册《 勾股定理》ppt课件
C A
B
C A
B
这两幅图中A, B的面积都好求, 该怎样求 C 的 面积呢?
方法一:割 分割为四个直 角三角形和一 个小正方形.
方法二:补
方法三:拼
补成大正方形, 将几个小块拼成若干
用大正方形的面 个小正方形,图中两
积减去四个直角 块红色(或绿色)可
三角形的面积. 拼成一个小正方形.
分析表中数据,你发现了什么? 几何画板:面积法验证勾股定理.gsp
求证:a2 + b2 = c2.
a
证明:
∵
S梯形
1 (a b)(a b) 2
,
bc
S梯形
1 2
ab
1 2
ab
1 2
c2
,
c a
∴a2 + b2 = c2.
b
探究新知
勾股定理
如果直角三角形两直角边分别
为a、b,斜边为c,那么
ac
a2 b2 c2 B
即直角三角形两直角边的平方和等于 斜边的平方.
人教版 数学 八年级 下册
17.1 勾股定理(第1课时)
导入新知 2002年在北京召开了第24届国际数学家大会.此图案就是
大会会徽的图案。
大会的会徽图案有什么特殊含义呢?这个图案与数学中的 勾股定理有着密切的关系.中国古代人把直角三角形中较短的 直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。 上述图案就揭示了“勾”“股”“弦”之间的特殊关系。
ac
b
c b
探究新知
考 点 2 勾股定理和方程相结合求直角三角形的边长 在Rt△ABC中, ∠C=90°. (1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.
人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)
探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2
S3
1 2
a 2
2
1 2
b 2
2
1 a2 1 b2
8
8
S1
1 2
c 2
2
1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题
人教版八年级数学下册课件:17.1勾股定理(共15张PPT)
SA+SB=SC
“拼” 法:
将几个小块拼成一个正 方形,如图中两块红色 可拼成一个小正方形。
S正方形C = 18
C A
B
图1
命题:直角三角形两直角边的平方和等于斜边的平方.
a
c
a2 b2 c2
b
是不是所有的直角三角形都具有这样的特点呢?这
就需要我们对一个更一般的直角三角形进行证明.到目
前为止,对这个命题的证明方法已有几百种之多.下面
我们来证明这个命题.
证法
赵爽弦图的证法
看左边的图案,这个图案是3世 纪我国汉代的赵爽在注解《周髀算 经》时给出的,人们称它为“赵爽 弦图”.赵爽根据此图指出:四个 全等的直角三角形(红色)可以如 图围成一个大正方形,中空的部分 是一个小正方形 (黄色).
赵爽弦图的证法
S大正方形= S小正方形+4S直角三角形
A
B
D
C
5、 如图,∠ACB=∠ABD=90°,CA=CB,
∠DAB=30°,AD=8,求AC的长。
D
C
8
A 30°
B
1.勾股定理的内容:
如果直角三角形两直角边分别为a,b,斜边为c,那 么a2 + b2 = c2.即直角三角形两直角边的平方和等于斜边 的平方。
2.勾股定理的用途: (1)在纯数学领域中的应用:直角三角形的三边中已 知任意两边求第三边; (2)在生活中的应用:先构建直角三角形模型,再用 勾股定理解决问题。
CD=12cm,且∠A=90°,求四边形
ABCD的面积。
A
D
B C
3、在等腰△ABC中,AB=AC=
13cm ,BC=10cm,求△ABC的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级(下)第十八章
读一读
我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.图1-1称为“弦图 ”,最早是由三国时期的数学家赵爽在为《周髀算经 》作法时给出的.图1-2是在北京召开的2002年国际数 学家大会(TCM-2002)的会标,其图案正是“弦图 ”,它标志着中国古代的数学成就.
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
AC=__1_5_______
6 2
x
X=__4___2_______
3 4
2、湖的两端有A、B两点,从与BA方向成直
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为
(A)
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
议一议:
24m 9m
?
如图,大风将一根木制旗 杆吹裂,随时都可能倒下, 十分危急。接警后“119” 迅速赶到现场,并决定从 断裂处将旗杆折断。现在 需要划出一个安全警戒区 域,那么你能确定这个安 全区域的半径至少是多少 米吗?
9 个单位面积。
B 图2-1
C A
B
正方形B的面积是 9 个单位面积。 正方形C的面积是
图2-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结
果的?与同伴交流交流。
C A
S正方形c
B C
图2-1
A
4 1 33 18 2
B
(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
分“割”成若干个直 角边为整数的三角形
C A
S正方形c
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
1 62 2
18(单位面积)
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
• 1881年,伽菲尔德就任 美国第20任总统。后来, 人们为了纪念他对勾股 定理直观、简捷、易懂、 明了的证明,就把这一 证法称为“总统证法”。
无字证明
青出
青方
青 出
青 入
朱
朱方 出
朱入 青入
青出
⑤
④
b
c
③
a
①②
无字证明
对比两个图形,你能直接观
察验证出勾股定理吗?
b
a
a
b
a
c
cb
a
ca
bc
x 62 22 32 4 2
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁
20
算
得
快 方法小结: 可用勾股定理建立方程.
!
1、如图,一个高3 米,宽4 米的大门,需在相
对角的顶点间加一个加固木条,则木条的长
为
(C)
A.3 米 B.4 米 C.5米 D.6米
图1-1
图1-2
勾股定理(1)
看
发们映友 现,直家
一
什我角 作 相 么们三 客 传
看
? 也 角 , 25 来 形 发 00
观三现年
察边朋前 下的友,
面某家一
的种用次 图数砖毕 案量铺达
,关成哥 看系的拉 看,地斯
你同面去
能学反朋
(1)观察图2-1
C A
正方形A中含有 9 个 小方格,即A的面积是
c
a
bc
b
a
b
a
b
提示:图中的两个大正方形面积相等吗?
两幅图中彩色的四个直角三角形总面积呢?
空白部分的面积呢?那剩余的
1
1
美丽的勾股树
小结
①本节课学到了什么数学知识? ②你了解了勾股定理的发现方法了吗? ③你还有什么困惑?
作业
教材第77页习题18.1第1、2、3题
直角三角形两直角边的平方和 等于斜边的平方.
弦c 股b
┏
勾a
a2+b2=c2
勾股世界
两千两多千多年年前前,,古古希希腊有腊个有哥拉个毕达哥拉斯 学斯学派派,,他他们们首首先发先现发了勾现股了定勾理,股因定此 理,因此在 在国国外外人人们们通通常常称勾称股勾定理股为定毕理达哥为拉毕斯 达哥拉斯定 定理理。。为为了了纪纪念念毕达毕哥达拉斯哥学拉派斯,1学95派5 ,1955年 年希希腊腊曾曾经经发发行行了一了枚一纪念枚票纪。念邮票。
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
一般的直角三角形 三边为边作正方形
S正方形c
A
C
4 1 431 2
25(面积单位)
B
图3-1
c a
b c
b
a
(b a)2 4 1 ab c2 2
b2 2ab a2 2ab c2 a2 b2 c2
a
b c
a
c
b
(a b)2 c2 4 1 ab 2
a2 b2 c2
• 1876年4月1日,伽菲尔 德在《新英格兰教育日 志》上发表了他对勾股 定理的这一证法。
C
B
图3-1
C A
B
图3-2
观察所得到的各组数据,你有什么发现?
A a
Sa+Sb=Sc
Bb c
C
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现?
a
Sa+Sb=Sc
bc
a2+b2=c2
猜想两直角边a、b与斜边c 之间的关系?
勾股定理பைடு நூலகம்(毕达哥拉斯定理)
C A
B
图3-2
分割成若干个直角边为 整数的三角形
S正方形c
A
C
1 (72 1) 2
25(面积单位)
B
图3-1
C A
B
图3-2
思考:面积A,B, 把C“补”成边长为7的
C还有上述关系
正方形面积加1单位面
吗?
积的一半
议一议
(1)你能用三 角形的边长表示 A 正方形的面积吗?
(2)你能发现 直角三角形三边 长度之间存在什 么关系吗?与同 伴进行交流。
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作 《国家周之髀一。算早经在》三千中多。年前
读一读
我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.图1-1称为“弦图 ”,最早是由三国时期的数学家赵爽在为《周髀算经 》作法时给出的.图1-2是在北京召开的2002年国际数 学家大会(TCM-2002)的会标,其图案正是“弦图 ”,它标志着中国古代的数学成就.
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
AC=__1_5_______
6 2
x
X=__4___2_______
3 4
2、湖的两端有A、B两点,从与BA方向成直
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为
(A)
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
议一议:
24m 9m
?
如图,大风将一根木制旗 杆吹裂,随时都可能倒下, 十分危急。接警后“119” 迅速赶到现场,并决定从 断裂处将旗杆折断。现在 需要划出一个安全警戒区 域,那么你能确定这个安 全区域的半径至少是多少 米吗?
9 个单位面积。
B 图2-1
C A
B
正方形B的面积是 9 个单位面积。 正方形C的面积是
图2-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结
果的?与同伴交流交流。
C A
S正方形c
B C
图2-1
A
4 1 33 18 2
B
(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
分“割”成若干个直 角边为整数的三角形
C A
S正方形c
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
1 62 2
18(单位面积)
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
• 1881年,伽菲尔德就任 美国第20任总统。后来, 人们为了纪念他对勾股 定理直观、简捷、易懂、 明了的证明,就把这一 证法称为“总统证法”。
无字证明
青出
青方
青 出
青 入
朱
朱方 出
朱入 青入
青出
⑤
④
b
c
③
a
①②
无字证明
对比两个图形,你能直接观
察验证出勾股定理吗?
b
a
a
b
a
c
cb
a
ca
bc
x 62 22 32 4 2
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁
20
算
得
快 方法小结: 可用勾股定理建立方程.
!
1、如图,一个高3 米,宽4 米的大门,需在相
对角的顶点间加一个加固木条,则木条的长
为
(C)
A.3 米 B.4 米 C.5米 D.6米
图1-1
图1-2
勾股定理(1)
看
发们映友 现,直家
一
什我角 作 相 么们三 客 传
看
? 也 角 , 25 来 形 发 00
观三现年
察边朋前 下的友,
面某家一
的种用次 图数砖毕 案量铺达
,关成哥 看系的拉 看,地斯
你同面去
能学反朋
(1)观察图2-1
C A
正方形A中含有 9 个 小方格,即A的面积是
c
a
bc
b
a
b
a
b
提示:图中的两个大正方形面积相等吗?
两幅图中彩色的四个直角三角形总面积呢?
空白部分的面积呢?那剩余的
1
1
美丽的勾股树
小结
①本节课学到了什么数学知识? ②你了解了勾股定理的发现方法了吗? ③你还有什么困惑?
作业
教材第77页习题18.1第1、2、3题
直角三角形两直角边的平方和 等于斜边的平方.
弦c 股b
┏
勾a
a2+b2=c2
勾股世界
两千两多千多年年前前,,古古希希腊有腊个有哥拉个毕达哥拉斯 学斯学派派,,他他们们首首先发先现发了勾现股了定勾理,股因定此 理,因此在 在国国外外人人们们通通常常称勾称股勾定理股为定毕理达哥为拉毕斯 达哥拉斯定 定理理。。为为了了纪纪念念毕达毕哥达拉斯哥学拉派斯,1学95派5 ,1955年 年希希腊腊曾曾经经发发行行了一了枚一纪念枚票纪。念邮票。
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
一般的直角三角形 三边为边作正方形
S正方形c
A
C
4 1 431 2
25(面积单位)
B
图3-1
c a
b c
b
a
(b a)2 4 1 ab c2 2
b2 2ab a2 2ab c2 a2 b2 c2
a
b c
a
c
b
(a b)2 c2 4 1 ab 2
a2 b2 c2
• 1876年4月1日,伽菲尔 德在《新英格兰教育日 志》上发表了他对勾股 定理的这一证法。
C
B
图3-1
C A
B
图3-2
观察所得到的各组数据,你有什么发现?
A a
Sa+Sb=Sc
Bb c
C
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现?
a
Sa+Sb=Sc
bc
a2+b2=c2
猜想两直角边a、b与斜边c 之间的关系?
勾股定理பைடு நூலகம்(毕达哥拉斯定理)
C A
B
图3-2
分割成若干个直角边为 整数的三角形
S正方形c
A
C
1 (72 1) 2
25(面积单位)
B
图3-1
C A
B
图3-2
思考:面积A,B, 把C“补”成边长为7的
C还有上述关系
正方形面积加1单位面
吗?
积的一半
议一议
(1)你能用三 角形的边长表示 A 正方形的面积吗?
(2)你能发现 直角三角形三边 长度之间存在什 么关系吗?与同 伴进行交流。
国我家国之是一。最早早在三了千解多勾年前股,定理的 国国家家之之一。一早。在早三千在多三年前千,多年前,周 朝国家数之学一。家早商在高三千就多提年前出,,将一根直 尺国家折之成一。一早个在直三千角多,年前如,果勾等于三, 股国家等之于一。四早,在那三千么多弦年前就,等于五,即 “国家勾之三一。、早股在四三千、多弦年前五,”,它被记 载国家于之我一。国早古在代三千著多名年前的,数学著作 《国家周之髀一。算早经在》三千中多。年前