中位线的运用(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中位线的运用(2)
中点寻线,线构形
1.如图所示,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()
A.线段EF的长逐渐增大 B.线段EF的长逐渐减少 C.线段EF的长不变 D.线段EF的长不能确定
2.如图,点E,F,G,H分别是CD,BC,AB,DA的中点。求证:四边形EFGH是平行四边形。
3.如图,已知△ABC是锐角三角形,分别以AB,AC为边向外侧作两个等边△ABM•和△CAN.D、E、F 分别是MB,BC,CN的中点,连结DE,FE。求证:DE=EF.
4.如图,(1)E、F为△ABC的中点,G、H为AC的两个三等分点,连接EG、FH并延长交于D,连接AD、CD.
求证:四边形ABCD是平行四边形.
5.如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点。求证:
AF=F
C
6.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.
7.如图1,D 、E 、F 分别是△ABC 三边的中点.G 是AE 的中点,BE 与DF 、DG 分别交于P 、Q 两点.求PQ:BE 的值.
8.如图1,已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点. 求证:PM =PN
9'.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕A E =5cm ,FC EC =43,求
矩形ABCD 的周长.
\
10.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,点P 为AB 边上任一点,过P 分别作PE ⊥AC 于E ,
PF ⊥BC 于F ,则线段EF 的最小值是 .
11.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
12.如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.
13.如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.
(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.