三角函数试题

合集下载

三角函数专项练习

三角函数专项练习

三角函数专项练习一.选择题(共6小题)1.已知角θ的终边过点P(﹣4k,3k)(k<0),则2sinθ+cosθ的值是()A.B.﹣C.或﹣D.随着k的取值不同其值不同2.若sin2α>0,且cosα<0,则角α是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.若α为第三象限,则的值为()A.3 B.﹣3 C.1 D.﹣14.已知:在△ABC中,,则此三角形为()A.直角三角形 B.等腰直角三角形C.等腰三角形D.等腰或直角三角形5.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.已知函数f(x)=sin(2ωx﹣)(ω>0)的最小正周期为4π,则()A.函数f(x)的图象关于点(,0)对称B.函数f(x)的图象关于直线x=对称C.函数f(x)的图象在(,π)上单调递减D.函数f(x)的图象在(,π)上单调递增二.解答题(共20小题)7.已知函数.(Ⅰ)若点在角α的终边上,求f(α)的值;(Ⅱ)若,求f(x)的值域.8.已知角α的终边经过点P(﹣4,3),(1)求的值;(2)求sinαcosα+cos2α﹣sin2α+1的值.9.已知函数f(x)=2cos2x+2sinxcosx.(1)求的值;(2)求函数f(x)的最小正周期和最小值.10.已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中.(1)若,求角α的值;(2)若,求的值.11.函数称为“双曲正弦函数”,类似地,函数称为“双曲余弦函数”.(Ⅰ)判断双曲正弦函数的奇偶性,并证明你的结论;(Ⅱ)双曲函数的恒等变形多具有与三角函数的恒等变形相似甚至相同的形式,请判断下列等式恒成立的是.(填写序号)①sinh2x+cosh2x=1;②sinh2x=2sinhx•coshy;③cosh2x=cosh2x﹣sinh2x.(Ⅲ)请合理定义“双曲正切函数”y=tanhx,写出用tanhx表示tanh2x的恒等变形式,并证明之.12.已知函数f(x)=sin(π﹣x)sin(﹣x)+cos2x(1)求函数f(x)的最小正周期;(2)当x∈[﹣,]时,求f(x)的最值.13.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(I)求f(x)的解析式,并求函数f(x)在[﹣,]上的值域;(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.14.已知函数f(x)=2x2﹣3x+1,g(x)=Asin(x﹣)(A≠0).(1)当0≤x≤时,求y=f(sinx)的最大值;(2)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?15.已知函数.(1)求f(x)的定义域和值域;(2)若的值.(3)若曲线f(x)在点P(x0,f(x0))处的切线平行直线,求x0的值.16.设函数f(x)=2sin(ωx+ϕ)(﹣π<ϕ<0),若函数y=f(x)的图象与x轴相邻两个交点间的距离为,且图象的一条对称轴是直线x=.(1)求ω,ϕ的值;(2)求函数y=f(x)的单调增区间;(3)画出函数y=f(x)在区间[0,π]上的图象.17.已知:函数f(x)=的最小正周期为3π(ω>0),且当x∈[0,π]时,函数f(x)的最小值为0,(1)求函数f(x)的表达式;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.18.已知函数f(x)=a﹣bcos(2x+)(b>0)的最大值为,最小值为﹣.(1)求a,b的值;(2)求函数的最小值并求出对应x的集合.19.已知向量=(sin2x,﹣),=(,cos2x),函数f(x)=•.(Ⅰ)试用五点作图法画出函数f(x)在一个周期内的图象(要求列表);(Ⅱ)求方程f(x)=m(0<m<1)在[﹣,]内的所有实数根之和.20.函数f(x)=Asin(ϖx+φ)(A>0,0<ϖ<4,|φ|<)过点(0,),且当x=时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.21.已知函数f(x)=sinx+cosx(x∈R).(Ⅰ)若a∈[0,π]且f(a)=2,求a;(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x=对称,求θ的最小值.22.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<满足下列条件:①周期T=π;②图象向左平移个单位长度后关于y轴对称;③f(0)=1.(Ⅰ)求函数f(x)的解析式;(Ⅱ)设α,β∈(0,),f(α﹣)=﹣,f(β+)=,求cos(2α﹣2β)的值.23.函数f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b(1)若时,求f(sinθ)的最大值;(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.24.已知函数f(x)=2sinx+1.(Ⅰ)设ω为大于0的常数,若f(ωx)在区间上单调递增,求实数ω的取值范围;(Ⅱ)设集合,B={x||f(x)﹣m|<2},若A∪B=B,求实数m的取值范围.25.如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=.管理部门欲在该地从M到D修建小路:在上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.(1)若∠PBC=,求PQ的长度;(2)当点P选择在何处时,才能使得修建的小路与PQ及QD的总长最小?并说明理由.26.节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.(1)将y表示为x的函数;(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).参考答案与试题解析一.选择题(共6小题)1.(2011•番禺区校级模拟)已知角θ的终边过点P(﹣4k,3k)(k<0),则2sinθ+cosθ的值是()A.B.﹣C.或﹣D.随着k的取值不同其值不同【分析】根据角的终边所过的一个点,写出这点到原点的距离,注意字母的符号,根据三角函数的定义,写出角的正弦和余弦值,代入要求的算式得到结果即可.【解答】解:∵角θ的终边过点P(﹣4k,3k),(k<0),∴r==5|k|=﹣5k,∴sinθ==﹣,cosθ==,∴2sinθ+cosθ=2(﹣)+=﹣故选B.【点评】本题是一个对于任意角的三角函数的定义的考查,解题时若没有字母系数的符合,我们就得讨论两种情况,在两种情况下,分别做出角的三角函数值,再进行运算.2.(2015•天津模拟)若sin2α>0,且cosα<0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【分析】cosα<0,确定α的象限,sin2α>0,确定sinα的范围,再确定α的范围;然后推出结论.【解答】解:由cosα<0,可知α是二,三象限角;由sin2α=2sinαcosα>0,可得sinα<0可知:α是三、四象限角;所以α是第三象限角故选C.【点评】本题考查象限角、轴线角,任意角的三角函数的定义,二倍角的正弦,考查分析问题解决问题的能力,是基础题3.(2013•衡水校级模拟)若α为第三象限,则的值为()A.3 B.﹣3 C.1 D.﹣1【分析】对于根号内的三角函数式,通过平方关系sin2α+cos2α=1,去掉根号,注意三角函数值的正负号,最后化简即得.【解答】解:∵α为第三象限,∴sinα<0,cosα<0则=.故选:B.【点评】本题考查三角函数的同角公式,同角三角函数的基本关系主要是指:平方关系和商数关系,它反映了同一个角的不同三角函数间的联系,其精髓在“同角”.4.(2016春•内江期末)已知:在△ABC中,,则此三角形为()A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形【分析】由条件可得sinCcosB=cosCsinB,故sin(C﹣B)=0,再由﹣π<C﹣B<π,可得C﹣B=0,从而得到此三角形为等腰三角形.【解答】解:在△ABC中,,则ccosB=bcosC,由正弦定理可得sinCcosB=cosCsinB,∴sin(C﹣B)=0,又﹣π<C﹣B<π,∴C﹣B=0,故此三角形为等腰三角形,故选C.【点评】本题考查正弦定理,两角差的正弦公式,得到sin(C﹣B)=0 及﹣π<C﹣B<π,是解题的关键.5.(2016•福建模拟)下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【分析】由条件利用诱导公式化简函数的解析式,再根据三角函数的奇偶性和周期性得出结论.【解答】解:由于函数y=sin(2x+)=cos2x为偶函数,故排除A;由于函数y=cos(2x+)=﹣sin2x为奇函数,且周期为,故B满足条件;由于函数y=sin2x+cos2x=sin(2x+)为非奇非偶函数,故排除C;由于函数y=sinx+cosx=sin(x+)为非奇非偶函数,故排除D,故选:B.【点评】本题主要考查三角函数的奇偶性和周期性,诱导公式的应用,属于基础题.6.(2015秋•潍坊校级期末)已知函数f(x)=sin(2ωx﹣)(ω>0)的最小正周期为4π,则()A.函数f(x)的图象关于点(,0)对称B.函数f(x)的图象关于直线x=对称C.函数f(x)的图象在(,π)上单调递减D.函数f(x)的图象在(,π)上单调递增【分析】根据三角函数的周期性求出ω,结合三角函数的图象和性质进行判断即可.【解答】解:∵函数f(x)的最小正周期为4π,∴T==4π,即ω=,则函数f(x)=sin(2×x﹣)=sin(x﹣),则f()=sin(×﹣)=sin(﹣)≠0,且f()≠±1,则函数f(x)的图象关于点(,0)不对称,且关于直线x=不对称,当<x<π时,<x<,<x﹣<,此时函数f(x)为增函数,故选:D.【点评】本题主要考查三角函数的周期的应用,根据条件求出ω是解决本题的关键.结合三角函数的单调性和对称性进行求解是解决本题的关键.二.解答题(共20小题)7.(2015•抚州校级一模)已知函数.(Ⅰ)若点在角α的终边上,求f(α)的值;(Ⅱ)若,求f(x)的值域.【分析】(Ⅰ)因为点在角α的终边上,所以,,化简f(α)=2sinαcosα﹣2sin2α,把,代入运算得到结果.(Ⅱ)化简f(x)=,根据x的范围得到,从而求得f(x)的值域.【解答】解:(Ⅰ)因为点在角α的终边上,所以,,所以=.(Ⅱ)==,因为,所以,所以,所以f(x)的值域是[﹣2,1].【点评】本题考查任意角的三角函数的定义,三角函数的恒等变换及化简求值,正弦函数的单调性和值域,三角恒等变换是解题的关键.8.(2015秋•丰城市校级期末)已知角α的终边经过点P(﹣4,3),(1)求的值;(2)求sinαcosα+cos2α﹣sin2α+1的值.【分析】(1)由条件利用任意角的三角函数的定义,求得sinα、cosα的值,再利用诱导公式求得所给式子的值.(2)由条件利用同角三角函数的基本关系,求得sinαcosα+cos2α﹣sin2α+1的值.【解答】解:(1)∵角α的终边经过点P(﹣4,3)∴r=5,sinα=,cosα=,∴===.(2)sinαcosα+cos2α﹣sin2α+1=sinαcosα+2cos2α=×(﹣)+2×=.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,诱导公式,属于基础题.9.(2015•龙川县校级模拟)已知函数f(x)=2cos2x+2sinxcosx.(1)求的值;(2)求函数f(x)的最小正周期和最小值.【分析】(1)利用二倍角、两角和的正弦函数化简函数为一个角的一个三角函数的形式,代入求出函数的值即可.(2)结合(1)的结论,利用周期公式求出函数的最小正周期,求出最小值即可.【解答】解:(1)f(x)=cos2x+1+sin2x=,(6分)∴.(8分)(2)由(1)可知,∴函数f(x)的最小正周期.(10分)函数f(x)的最小值为.(12分)【点评】本题是基础题,考查三角函数的化简求值,周期的求法,最值的求法,考查计算能力,常规题目.10.(2016秋•雁峰区校级月考)已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中.(1)若,求角α的值;(2)若,求的值.【分析】先由A、B、C三点的坐标,求出的坐标,再根据,列出一个关于α的方程,可将问题转化为简单的三角函数化简求值问题.【解答】解:(1)∵,,∴,.由得sinα=cosα.又,∴.(2)由,得(cosα﹣3)cosα+sinα(sinα﹣3)=﹣1,∴,∴.又由,∴,∴.故=.【点评】解决此题的关键是:熟练掌握向量数量积公式以及三角函数的变换方法.已知某三角函数值、求其它三角函数的值.一般先化简,再求值.化简三角函数的基本方法:统一角、统一名通过观察“角”“名”“次幂”,找出突破口,利用切化弦、降幂、逆用公式等手段将其化简.11.(2014秋•北京校级期末)函数称为“双曲正弦函数”,类似地,函数称为“双曲余弦函数”.(Ⅰ)判断双曲正弦函数的奇偶性,并证明你的结论;(Ⅱ)双曲函数的恒等变形多具有与三角函数的恒等变形相似甚至相同的形式,请判断下列等式恒成立的是②.(填写序号)①sinh2x+cosh2x=1;②sinh2x=2sinhx•coshy;③cosh2x=cosh2x﹣sinh2x.(Ⅲ)请合理定义“双曲正切函数”y=tanhx,写出用tanhx表示tanh2x的恒等变形式,并证明之.【分析】(Ⅰ)利用奇函数的定义判断双曲正弦函数的奇偶性;(Ⅱ)对选项分别进行判断,即可得出结论;(Ⅲ)(Ⅲ)y=tanhx=,e2x=,即可得出结论.【解答】解:(Ⅰ)∵sin(﹣hx)==﹣sinhx,∴双曲正弦函数是奇函数;(Ⅱ)①sinh2x+cosh2x=+≠1,不正确;②sinh2x═=2sinhx•coshy,正确;③cosh2x﹣sinh2x=﹣≠cosh2x,不正确.(Ⅲ)y=tanhx=,∴e2x=tanh2x===﹣.故答案为:②.【点评】本题为开放题型,考查类比推理,考查分析问题、解决问题的能力.12.(2015春•德宏州校级期中)已知函数f(x)=sin(π﹣x)sin(﹣x)+cos2x(1)求函数f(x)的最小正周期;(2)当x∈[﹣,]时,求f(x)的最值.【分析】(1)由三角函数公式化简可得f(x)=sin(2x+)+,由周期公式可得;(2)由x∈[﹣,]和三角函数的值域可得.【解答】解:(1)由三角函数公式化简可得f(x)=sin(π﹣x)sin(﹣x)+cos2x=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+,∴函数f(x)的最小正周期T==π;(2)当x∈[﹣,]时,2x+∈[0,π],∴sin(2x+)∈[0,1],∴sin(2x+)+∈[,],∴f(x)的最小值为,最大值为【点评】本题考查三角函数的最值,涉及三角函数公式周期性,属基础题.13.(2016•潍坊二模)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(I)求f(x)的解析式,并求函数f(x)在[﹣,]上的值域;(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.【分析】(1)由函数图象可得周期,进而由周期公式可得ω值,代点(,2)可得φ值,可得解析式,再由x∈[﹣,]和三角函数的值域可得;(2)由(1)的解析式和三角形的知识可得A=,由余弦定理可得BC,再由余弦定理可得cosB,进而可得sinB,代入sin2B=2sinBcosB,计算可得.【解答】解:(1)由函数图象可知函数的周期T满足T=﹣=,解得T=π,∴ω===2,故f(x)=2sin(2x+φ),又函数图象经过点(,2),故2sin(2×+φ)=2,故sin(+φ)=1,结合0<φ<π可得φ=,故f(x)的解析式为f(x)=2sin(2x+),由x∈[﹣,]可得2x+∈[0,],∴sin(2x+)∈[0,1],∴2sin(2x+)∈[0,2],故函数的值域为[0,2];(2)∵在△ABC中,AB=3,AC=2,f(A)=1,∴f(A)=2sin(2A+)=1,即sin(2A+)=,结合三角形内角的范围可得2A+=,A=,由余弦定理可得BC2=32+22﹣2×3×2×,BC=,∴cosB==,故sinB==,∴sin2B=2sinBcosB=2××=【点评】本题考查正弦函数的图象和性质,涉及正余弦定理解三角形以及三角函数的值域,属中档题.14.(2014秋•宿豫区校级期中)已知函数f(x)=2x2﹣3x+1,g(x)=Asin(x﹣)(A≠0).(1)当0≤x≤时,求y=f(sinx)的最大值;(2)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?【分析】(1)用换元法,设t=sinx,x∈[0,],化为求关于t的函数在闭区间上的最大值即可;(2)用换元法,设t=sinx,化为t∈[﹣1,1]上讨论方程2t2﹣2t+1=a解的情况,从而求出a的取值范围.【解答】解:(1)∵y=f(sinx)=2sin2x﹣3sinx+1,设t=sinx,x∈[0,],则0≤t≤1;∴,∴当t=0时,y取得最大值y max=1;…(6分)(2)方程2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1=a,该方程在[0,2π]上有两解,设t=sinx,则方程2t2﹣2t+1=a在[﹣1,1]上解的情况如下:①当在(﹣1,1)上只有一个解或相等解,x有两解,(5﹣a)(1﹣a)<0或△=0;∴a∈(1,5)或;②当t=﹣1时,x有惟一解,③当t=1时,x有惟一解,综上,当a∈(1,5)或时,方程f(sinx)=a﹣sinx在[0,2π)上有两解.…(16分)【点评】本题考查了函数的性质与应用问题,解题时应利用换元法,把三角函数化为研究普通函数在某一区间上的性质问题,是中档题.15.(2013春•船营区校级期中)已知函数.(1)求f(x)的定义域和值域;(2)若的值.(3)若曲线f(x)在点P(x0,f(x0))处的切线平行直线,求x0的值.【分析】(1)根据分式有意义的条件可得,cosx≠0,求解即可得函数的定义域;利用二倍角公式及辅助角对函数化简可得f(x)=,结合正弦函数性质可求函数的值域,(2)由于cos2x=sin(2x+)=sin[2(x+)],故需要求sin(x+),cos(x+),代入可求sin(x+),结合已知条件中x的范围可求cos(x+),然后代入可求,(3)对函数求导可得,f/(x)=cosx﹣sinx代入已知可得,=从而可得结合可求.【解答】解(1)=(2分)由,∴(4分)(6分)(2)∵,∴.∴(7分)∵,∴∴(8分)∴=2sin(x+)cos(x+)=(10分)(3)f/(x)=cosx﹣sinx由题意得=(12分)∴又∵∴(14分)【点评】本题主要考查了正弦函数的定义域及值域的求解,辅助角公式的应用,导数的基本运算,及由三角函数值求解角等知识的综合运用.16.(2016春•长治校级期中)设函数f(x)=2sin(ωx+ϕ)(﹣π<ϕ<0),若函数y=f(x)的图象与x轴相邻两个交点间的距离为,且图象的一条对称轴是直线x=.(1)求ω,ϕ的值;(2)求函数y=f(x)的单调增区间;(3)画出函数y=f(x)在区间[0,π]上的图象.【分析】(1)利用正弦函数的图象的周期性求得ω的值,利用正弦函数的图象的对称性求得φ,可得函数的解析式.(2)利用正弦函数的单调性,求得函数y=f(x)的单调增区间.(3)利用五点法作图,作出函数y=f(x)在区间[0,π]上的图象.【解答】解:(1)函数y=f(x)的图象与x轴的两个相邻交点间的距离为,∴=,∴ω=2.又函数图象的一条对称轴是直线,∴2×+φ=kπ+,k∈Z,∵﹣π<ϕ<0,∴φ=﹣,f(x)=2sin(2x﹣).(2)由(1)可知,令2kπ﹣≤2x﹣≤2kπ+求得:kπ+≤x≤kπ+,可得函数y=f(x)的单调增区间是[kπ+,kπ+],k∈Z.(3)∵x∈[0,π],则2x﹣∈[﹣,],列表:X0 π0 π﹣2 2.【点评】本题主要考查正弦函数的图象和性质,五点法作图,属于中档题.17.(2013秋•和平区校级月考)已知:函数f(x)=的最小正周期为3π(ω>0),且当x∈[0,π]时,函数f(x)的最小值为0,(1)求函数f(x)的表达式;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.【分析】(1)利用三角函数公式将函数进行化简,利用最小周期和最小值即可求函数f(x)的表达式;(2)根据条件f(C)=1,建立方程关系,求出C的值,然后根据三角公式即可求出sinA的值.【解答】解:(1)f(x)==,∵函数f(x)的周期为3π,即,∴,因此,函数f(x)的解析式是,∵x∈[0,π],∴,,∴,即f(x)的最小值为m,即m=0,∴.(2)∵,∴,∵C∈(0,π),∴,即,解得C=.∵在Rt△ABC中,A+B=,有2sin2B=cosB+cos(A﹣C)∴2cos2A﹣sinA﹣sinA=0,即sin2A+sinA﹣1=0,解得,∵0<sinA<1,∴.【点评】本题主要考查了三角恒等变换、三角函数的图象与性质和同角三角函数的基本关系等知识点,要求熟练掌握三角函数的公式,属于中档题.18.(2014秋•高邮市校级期末)已知函数f(x)=a﹣bcos(2x+)(b>0)的最大值为,最小值为﹣.(1)求a,b的值;(2)求函数的最小值并求出对应x的集合.【分析】(1)根据余弦函数的性质可分别表示出函数的最大和最小值,进而联立方程气的a和b的值.(2)根据(1)中求得a和b的值,得到函数的解析式,根据x的范围确定x﹣的范围,利用正弦函数的性质求得最小值和对应的x的集合.【解答】解:(1),∵b>0,∴﹣b<0,;∴;(2)由(1)知:∴,∴g(x)∈[﹣2,2],∴g(x)的最小值为﹣2,对应x的集合为.【点评】本题主要考查了三角函数的最值问题,三角函数的单调性和值域问题.考查了学生综合分析问题和基本的运算能力.19.(2015春•南安市校级期中)已知向量=(sin2x,﹣),=(,cos2x),函数f(x)=•.(Ⅰ)试用五点作图法画出函数f(x)在一个周期内的图象(要求列表);(Ⅱ)求方程f(x)=m(0<m<1)在[﹣,]内的所有实数根之和.【分析】(Ⅰ)利用向量的数量积求出f(x)的表达式,然后利用五点作图法画出函数f(x)在一个周期内的图象;(Ⅱ)利用函数f(x)=m在[﹣,]内对称性,求出相应的对称轴,进行求解即可.【解答】解:(Ⅰ)f(x)=•=sin2x﹣cos2x=sin(2x﹣),…(2分)2x﹣xf(x)0 1 0 ﹣1 0…(4分)通过描出五个关键点,再用光滑曲线顺次连接作出函数f(x)在一个周期内的图象如下图所示:…(6分)(Ⅱ)∵y=sin(2x﹣)的周期t=π,∴y=sin(2x﹣)在[﹣,]内有3个周期.…(7分)令2x﹣=kπ+,k∈Z,∴x=+,k∈Z,即函数y=sin(2x﹣)的对称轴为x=+,k∈Z.…(8分)又x∈[﹣,],则2x﹣∈[﹣,],且0<m<1,∴f(x)=m(0<m<1)在[﹣,]内有6个实根,…(9分)不妨从小到大依次设为x i,(i=1,2,3,4,5,6),则,=,=即x1+x2=,x3+x4=,x5+x6=,∴所有实数根之和=x1+x2+x3+x4+x5+x6=++=.…(12分)【点评】本题主要考查三角函数的图象做法,要掌握五点法作图,同时利用三角函数的对称性是解决本题的关键.20.(2016秋•铁岭月考)函数f(x)=Asin(ϖx+φ)(A>0,0<ϖ<4,|φ|<)过点(0,),且当x=时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.【分析】(1)由函数的最值求出A,由特殊点的坐标求出φ的值,由五点法作图求出ω,可得f(x)的解析式,再根据y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式.(2)由条件利用正弦函数的最值以及周期性,求得|x1﹣x2|的最小值.【解答】解:(1)由题意A=1,将点(0,)代入解得,,再根据,结合0<ϖ<4,所以ϖ=2,.将函数f(x)的图象向右平移个单位得到函数的图象.(2)函数h(x)=f(x)+g(x)+2cos2x﹣1=2sin(2x+),故函数的周期T=π.对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),故|x1﹣x2|的最小值为.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由特殊点的坐标求出φ的值,由五点法作图求出ω,y=Asin(ωx+φ)的图象变换规律,属于中档题.21.(2016•湖北模拟)已知函数f(x)=sinx+cosx(x∈R).(Ⅰ)若a∈[0,π]且f(a)=2,求a;(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x=对称,求θ的最小值.【分析】(Ⅰ)有条阿金利用辅助角公式化简函数f(x)的解析式,再利用f(a)=2,求得a的值.(Ⅱ)根据y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得θ的最小值.【解答】解:(Ⅰ)∵函数f(x)=sinx+cosx=2sin(x+),∵a∈[0,π],∴a+∈[,],∵f(a)=2sin(a+)=2,∴sin(a+)=,∴a+=,∴a=.(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到y=2sin(2x+)的图象;再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到y=2sin(2x﹣2θ+)的图象,再结合得到的图象关于直线x=对称,可得﹣2θ+=kπ+,求得θ=﹣,k∈Z,故θ的最小值为.【点评】本题主要考查辅助角公式,y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于中档题.22.(2016•临沂一模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<满足下列条件:①周期T=π;②图象向左平移个单位长度后关于y轴对称;③f(0)=1.(Ⅰ)求函数f(x)的解析式;(Ⅱ)设α,β∈(0,),f(α﹣)=﹣,f(β+)=,求cos(2α﹣2β)的值.【分析】(Ⅰ)根据f(x)的周期求出ω的值,根据f(x)的图象平移以及g(x)的图象关于y轴对称,求出φ的值,再由f(0)=1求出A的值,即得f(x)的解析式;(Ⅱ)根据f(α﹣)与f(β+)的值求出cos2α、cos2β,再根据α、β的范围求出sin2α、sin2β,从而求出cos(2α﹣2β)的值.【解答】解:(Ⅰ)∵f(x)的周期为T==π,∴ω=2;又函数f(x)的图象向左平移个单位长度,变为g(x)=Asin[2(x+)+φ],由题意,g(x)的图象关于y轴对称,∴2×+φ=+kπ,k∈Z;又|φ|<,∴φ=,∴函数f(x)=Asin(2x+);又f(0)=1,∴Asin=1,解得A=2,∴函数f(x)=2sin(2x+);(Ⅱ)由f(α﹣)=﹣,f(β+)=,得2sin(2α﹣+)=﹣,2sin(2β++)=,∴cos2α=,cos2β=;又α、β∈(0,),∴2α、2β∈(0,),∴sin2α=,sin2β=,∴cos(2α﹣2β)=cos2αcos2β+sin2αsin2β=×+×=.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的恒定变换应用问题,是基础题目.23.(2015•东阳市模拟)函数f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b(1)若时,求f(sinθ)的最大值;(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.【分析】(1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2﹣2bt﹣a+b在t∈[0,1]的最大值,由二次函数区间的最值可得;(2)令sinθ=t∈[﹣1,1],由恒成立和最大值可得可得二次函数的顶点坐标为(0,﹣1),进而可得ab的值,可得解析式.【解答】解:(1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2﹣2bt﹣a+b在t∈[0,1]的最大值,∵a>0,抛物线开口向上,二次函数的对称轴,由二次函数区间的最值可得(2)令sinθ=t∈[﹣1,1],则|f(t)|≤1可推得|f(0)|≤1,|f(1)|≤1,|f(﹣1)|≤1,∵a>0,∴g(sinθ)max=g(1)=2,而g(1)=2a﹣2b=2而f(0)=b﹣a=﹣1而t∈[﹣1,1]时,|f(t)|≤1,即﹣1≤f(t)≤1,结合f(0)=﹣1可知二次函数的顶点坐标为(0,﹣1)∴b=0,a=1,∴f(x)=2x2﹣1.【点评】本题考查二次函数的性质,涉及三角换元和等价转化,属中档题.24.(2013秋•延庆县期末)已知函数f(x)=2sinx+1.(Ⅰ)设ω为大于0的常数,若f(ωx)在区间上单调递增,求实数ω的取值范围;(Ⅱ)设集合,B={x||f(x)﹣m|<2},若A∪B=B,求实数m的取值范围.【分析】(Ⅰ)由题意,f(ωx)=2sinωx+1,由ωx∈[﹣,],ω>0,可得x∈[﹣,],利用f(ωx)在区间上单调递增,可得不等式组,解不等式组,即可求实数ω的取值范围;(Ⅱ)求出函数的值域,根据A∪B=B,可得A⊆B,从而可得不等式组,解不等式,即可求出实数m的取值范围.【解答】解:(Ⅰ)由题意,f(ωx)=2sinωx+1,由ωx∈[﹣,],ω>0,可得x∈[﹣,],∵f(ωx)在区间上单调递增,∴,∴0<ω≤;(Ⅱ)∵A∪B=B,∴A⊆B,∵|f(x)﹣m|<2,∴m﹣2<f(x)<m+2,∵,∴,∴2≤f(x)≤3,∴,∴1<m<4.【点评】本题考查三角函数的性质,考查函数的值域,考查集合知识,考查学生分析解决问题的能力,正确运用正弦函数的单调性是关键.25.(2016秋•句容市期中)如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=.管理部门欲在该地从M到D修建小路:在上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.(1)若∠PBC=,求PQ的长度;(2)当点P选择在何处时,才能使得修建的小路与PQ及QD的总长最小?并说明理由.【分析】(1)作出辅助线,根据梯形的性质求出PQ的长即可;(2)设∠PBP1=θ,求出PQ的长,得到总路径长f(θ)的表达式,通过求导得到函数的单调性,从而求出去最小值时θ的值,即P点的位置即可.【解答】解.(1)如图示:,连接BP,过P作PP1⊥BC,垂足为P1,过Q作QQ1⊥BC垂足为Q1,在Rt△PBP1中,,PQ=1;(2)设∠PBP1=θ,,∴,在Rt△QBQ1中,,∴总路径长f(θ)=﹣θ+4﹣cosθ﹣sinθ,(0<θ<),f′(θ)=sinθ﹣cosθ﹣1=2sin(θ﹣)﹣1,令f'(θ)=0,,当时,f'(θ)<0,当时,f'(θ)>0,所以当时,总路径最短.答:当BP⊥BC时,总路径最短.【点评】本题考查了数形结合思想,考查三角函数问题以及导数的应用,是一道中档题.26.(2016•徐汇区一模)节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.(1)将y表示为x的函数;(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).【分析】(1)直接由已知条件求出AO、BO、OP的长度,即可得到所求函数关系式;(2)记,则sinx+pcosx=2,求出p的范围,即可得出结论.【解答】解:(1)由已知得,即(其中)(2)记,则sinx+pcosx=2,则有,解得或﹣(10分)由于y>0,所以,当,即点O在CD中垂线上离点P距离为km处,y取得最小值(km).11。

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)三角函数综合测试题一、选择题(共18小题,每小题3分,共54分)1.(08全国一6)函数y=(sinx-cosx)-1的最小正周期为π的奇函数。

2.(08全国一9)为得到函数y=cos(x+π/3)的图象,只需将函数y=sinx的图像向左平移π/3个长度单位。

3.(08全国二1)若sinα0,则α是第二象限角。

4.(08全国二10)函数f(x)=sinx-cosx的最大值为2.5.(08安徽卷8)函数y=sin(2x+π/3)图像的对称轴方程可能是x=-π/6.6.(08福建卷7)函数y=cosx(x∈R)的图象向左平移π/2个单位后,得到函数y=g(x)的图象,则g(x)的解析式为-sinx。

7.(08广东卷5)已知函数f(x)=(1+cos2x)sinx,则f(x)是以π为最小正周期的奇函数。

8.(08海南卷11)函数f(x)=cos2x+2sinx的最小值为-2,最大值为3/3π。

9.(08湖北卷7)将函数y=sin(x-θ)的图象F向右平移π/3个单位长度得到图象F′,若F′的一条对称轴是直线x=5π/12,则θ=π/4.10.(08江西卷6)函数f(x)=(sinx+2sin2x)/x的最小正周期为2π的偶函数。

11.若动直线x=a与函数f(x)=sinx和g(x)=cosx的图像分别交于M,N两点,则MN的斜率为tan(a-π/4)。

19.若角 $\alpha$ 的终边经过点 $P(1,-2)$,则$\tan2\alpha$ 的值为 ________。

20.函数 $f(x)=\cos(\omega x-\frac{\pi}{6})$ 的最小正周期为 $\frac{\pi}{5}$,其中 $\omega>0$,则 $\omega=$ ________。

21.设 $x\in\left(0,\frac{\pi}{2}\right)$,则函数$y=\frac{2\sin2x+1}{\cos x}$ 的最小值为 ________。

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。

根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。

根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。

根据正切的定义,$\tan A=\frac{a}{b}$。

根据余切的定义,$\cotA=\frac{b}{a}$。

根据正割的定义,$\sec A=\frac{c}{a}$。

根据余割的定义,$\csc A=\frac{c}{b}$。

2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。

2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。

4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。

5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。

6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。

三角函数练习题含答案

三角函数练习题含答案

三角函数练习题含答案一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 5.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.6.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④13.已知点P 是曲线e 3xy =+α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知,a b Z ∈,满足)98sin 50sin 50a b -︒︒=,则a b +的值为( )A .1B .2C .3D .415.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则91()()44t t --( )A .1B .27764C .1693192D .9816.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④17.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数18.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围. 22.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.23.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.26.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?27.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 28.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数2()2cos 23cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1.6π2.23⎛ ⎝⎭33(21)+ 475.3+36.1π-##1π-+7.80π 8.9[,4]4-9.1或2##2或110.( 二、单选题 11.A 12.B 13.A 14.B 15.B 16.A 17.A 18.C 19.B 20.C 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点,令()()222204x Q x x-'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e-+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+,()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.23.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可; (2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤.因为()33f x m -≤-≤,所以()3m f x m ≤+, 所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题. 26.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题27.(1)34C π=(2)sin A =1c = 【解析】 【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值. 【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sinA C =∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin abC A B=2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题. 28.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】 【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。

2020高考数学专项复习《三角函数10道大题》(带答案)

2020高考数学专项复习《三角函数10道大题》(带答案)

4 2 ) 三角函数1.已知函数 f (x ) = 4 c os x s in(x +(Ⅰ)求 f (x ) 的最小正周期;) -1.6(Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值.6 42、已知函数 f (x ) = sin(2x + ) 3+ sin(2x - 3 + 2 cos 2 x - 1, x ∈ R .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值.4 43、已知函数 f (x ) = tan(2x +),4(Ⅰ)求 f (x ) 的定义域与最小正周期;⎛ ⎫(II )设∈ 0, ⎪ ,若 f ( ) = 2 cos 2, 求的大小⎝ ⎭4、已知函数 f (x ) =(sin x - cos x ) sin 2x.sin x(1) 求 f (x ) 的定义域及最小正周期;(2) 求 f (x ) 的单调递减区间.5、 设函数 f (x ) = cos(2x + + sin 2x .24(I )求函数 f (x ) 的最小正周期;( II ) 设 函 数 1g (x ) 对 任 意 x ∈ R , 有g (x + 2 = g (x ) , 且 当x ∈[0, ] 时 , 2g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式.22 ) )3 + = 6、函数 f (x ) = A sin(x -称轴之间的距离为 ,2) +1(A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6(1)求函数 f (x ) 的解析式;(2)设∈(0, ) ,则 f ( ) = 2 ,求的值.2 27、设 f ( x ) = 4cos( ωx -π)sin ωx + cos 2ωx ,其中> 0.6(Ⅰ)求函数 y = f ( x ) 的值域(Ⅱ)若 y = f ( x ) 在区间⎡- 3π ,π⎤上为增函数,求 的最大值.⎣⎢ 2 2 ⎥⎦8、函数 f (x ) = 6 cos 2x + 23 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且∆ABC 为正三角形.(Ⅰ)求的值及函数 f (x ) 的值域;8 3 (Ⅱ)若 f (x 0 ) 5,且 x 0 ∈(- 10 2, ) ,求 f (x 0 1) 的值.3 39、已知 a , b , c 分别为∆ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0(1)求 A ;(2)若 a = 2 , ∆ABC 的面积为 ;求b , c .10、在 ∆ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C .= 2,sin B = 53(Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求∆ ABC 的面积.3 2 2 ) max+ = - (x )答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为 f (x ) = 4 cos x sin(x + 1) -1 = 4 cos x ( sin x + cos x ) -1622= 3 sin 2x + 2 cos 2 x -1 = 3 sin 2x + cos 2x = 2 s in(2x +,所以 f (x ) 的最小正周期为.62(Ⅱ)因为- ≤ x ≤ 6 4 ,所以- ≤ 2x + ≤ 6 6 3 .于是,当2x + = 6 2 ,即 x =6时, f (x ) 取得最大值 2;当2x + = - 6 6 ,即 x = - 时, f (x ) 取得最小值-1.62、【解析】 (1)2f (x )= sin (2x + )+sin(2x - )+2cos x -1 = 2 s in 2x cos + cos 2x = 2 sin(2x + )3 3 3 42函数 f (x ) 的最小正周期为T = =23 (2) - ≤ x ≤ ⇒ - ≤ 2x + ≤ ⇒ - ≤ sin(2x +4 4 4 4 4 2 4) ≤ 1 ⇔ -1 ≤ f (x ) ≤当 2x + = (x = ) 时 , 4 2 8 f (x )min = -1f (x ) = , 当 2x = - 时 , 4 4 4【点评】该试题关键在于将已知的函数表达式化为 y =A sin (x +) 的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.k【精讲精析】(I)【解析】由2x +≠ + k , k ∈ Z , 得 x ≠ + , k ∈ Z . 4 2 8 2k为 .2所以 f (x ) 的定义域为{x ∈ R | x ≠ + 8 2, k ∈ Z } , f (x ) 的最小正周期(II)【解析】由 f ( ) = 2 cos 2, 得tan(+2) = 2 cos 2,42) ) )1 sin(+ 4 = 2(cos2 - s in 2 ), cos(+整理得4 sin + coscos - sin= 2(cos + sin )(cos - sin ). 21 1 因为∈(0, ) ,所以sin + cos ≠ 0.因此(cos - s in ) 4= ,即sin 2= .2 2由∈(0, ) ,得2∈(0, ) .所以2= ,即= .4 2 6 124、解(1): sin x ≠ 0 ⇔ x ≠ k(k ∈ Z ) 得:函数 f (x ) 的定义域为{x x ≠ k , k ∈ Z }f (x ) =(sin x - cos x ) sin 2x= (sin x - cos x ) ⨯ 2 cos xsin x= sin 2x - (1+ cos 2x ) = 2 sin(2x --14 2得: f (x ) 的最小正周期为T = = ;2(2)函数 y = sin x 的单调递增区间为[2k - , 2k + 2 2](k ∈ Z )3则2k - ≤ 2x - ≤ 2k + ⇔ k - ≤ x ≤ k +2 4 2 8 8得: f (x ) 的单调递增区间为[k - , k ),(k , k + 3](k ∈ Z )8 85、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【 解 析 】1 1f (x ) = cos(2x + + sin 2 x = 1 cos 2x - 1 sin 2x + 1 (1- cos 2x )2 4 2 2 2= - sin 2x , 2 22(I )函数 f (x ) 的最小正周期T = =21 1(II )当 x ∈[0, ] 时, g (x ) = - f (x ) = sin 2x2 当 x ∈[-2 21 1 sin 2x 当 x ∈[-, - ) 时, (x +) ∈[0, )2 2 g (x ) = g (x +) = sin 2(x +) = 2 2sin 2x⎧- 1 sin 2x (x ≤ 0) - ≤ ⎪ 22 得函数 g (x ) 在[-, 0] 上的解析式为 g (x ) = ⎨ .⎪ sin 2x (-≤ x <⎩⎪ 2 22 ) ) , 0] 时, (x + ) ∈[0, ] g (x ) = g (x + ) = 1 sin 2(x + ) = - 1 2 2 2 2 2 2 23 ⎢ ⎥ 6、【解析】(1)∵函数 f ( x ) 的最大值是 3,∴ A +1 = 3,即 A = 2 .∵函数图像的相邻两条对称轴之间的距离为 ,∴最小正周期T =,∴= 2 .2故函数 f ( x ) 的解析式为 f (x ) = 2 s in(2x -) +1.61(2)∵ f ( ) = 2 s in(- 2) +1 = 2 ,即sin(- 6 ) = ,6 2∵ 0 << ,∴ - <- < ,∴- = ,故= .2 6 63 6 6 3⎛ 3 1⎫ 7、解:(1) f ( x ) = 4 2 cos x + 2 sin x ⎪⎪s in x + cos 2x ⎝ ⎭= 2 3 sin x cos x + 2 sin 2 x + cos 2 x - sin 2 x =3 sin 2x +1因-1 ≤ sin 2x ≤ 1,所以函数 y = f ( x ) 的值域为⎡1- 3,1+ 3⎤⎣⎦⎡ ⎤(2)因 y = sin x 在每个闭区间 ⎢⎣2k - 2 , 2k + 2 ⎥⎦ (k ∈ Z ) 上为增函数,故 f ( x ) = 3 sin 2x +1 (> 0) 在每个闭区间⎡ k - 4 , k + ⎤(k ∈ Z ) 上 4为增函数.⎡ 3 ⎤⎡ kk ⎤⎣⎦依题意知⎢- , ⎥ ⊆ ⎢ -, + ⎥ 对某个 k ∈ Z 成立,此时必有 k = 0 ,于是 ⎣ 2 2 ⎦ ⎣ 4 4⎦⎧- 3≥ -⎪ 2 41 1⎨⎪ ≤⎩ 2 4,解得≤ ,故的最大值为 . 6 6 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得: f (x ) = 6 cos2x+ 23 cos x - 3(> 0)=3cosωx+ 3 sin x = 2 3 s in(x + )3又由于正三角形 ABC 的高为 2 ,则 BC=42 所以,函数 f (x )的周期T = 4 ⨯ 2 = 8,即= 8,得= 4所以,函数 f (x )的值域为[-2 3,2 3] .......................... 6 分 (Ⅱ)因为 f (x 0 ) =853,由(Ⅰ)有1 - ( 4)2 57 6 53 1 c os 2A5 561f (x ) = x 08 3x 0 42 3sin( 4 + ) =3 , 即sin( 54 + ) = 35 由 x 0∈(- 10 2x 0 + ∈ (-,),得( ) , )3 34 3 2 2所以,即 x 0 3 cos( 4 + ) = =3 5 故 f (x + 1) = x 0= x 0 + + 02 3sin( = 4 x 0 + + ) 2 4 33sin[( ) ] 4 3 4x 0 2 3[sin( 4 + ) cos 3 4 + cos( 4 + ) s in3 4 = 2 3( 4⨯ 2 + 3 ⨯ 2 )5 2 5 2=12 分9..解:(1)由正弦定理得:a cos C + 3a sin C -b -c = 0 ⇔ sin A c os C - 3 sin A sin C = sin B + sin C⇔ sin A cos C + 3 sin A sin C = sin(a + C ) + sin C⇔ 3 sin A - cos A = 1 ⇔ sin( A - 30︒ ) = 12⇔ A - 30︒ = 30︒ ⇔ A = 60︒(2) S = bc sin A = ⇔ bc = 4 , 2a 2 =b 2 +c 2 - 2bc cos A ⇔ b + c = 410. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A 2 0,∴sin A = ,= >33又2 sin C .35 cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5 cos C +3整理得:tan C = 5 .(Ⅱ) 由图辅助三角形知: sin C =. 又由正弦定理知:a sin A c ,sin C故c 3 . (1)b 2c 2 a 2 2对角 A 运用余弦定理:cos A =2bc . (2) 3 解(1) (2)得: b 3 or b = 3 (舍去). ∴∆ ABC 的面积为:S = 5. 3 2。

三角函数10道大题(带答案解析)

三角函数10道大题(带答案解析)

三角函数1.已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xxx x x f sin 2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()5f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos (sin cos )122x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x ,当2()444x x πππ+=-=-时,m i n ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;(2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co242f x x π=++11sin222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A=cos C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C =,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b=or b舍去).∴∆ABC的面积为:S.。

三角函数测试题(带答案)

三角函数测试题(带答案)

一、选择题1 .若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 ( )A .0B .33C .1D .32 .若角α的终边经过点M (5,2--),则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3 .若角α的终边经过点()3,4λλ-,且0λ≠,则sin cos sin cos αααα+-等于( )A .17-B .17 C .-7D .74 .已知α是第四象限角,5tan()12πα-=,则sin α=( ).15 B .15-C .513D .513-5 .623sin π等于( )A .23-B .21-C .21 D .23 6 .记k =︒-)80cos(,那么=︒100tan( )A .kk 21-B .-kk 21- C .21kk - D .-21kk -7 .已知),0(,137cos sin πααα∈=+,则αtan 等于 ( )A .512B .512-C .125D .125-8 .已知α是第四象限角,5tan()12πα-=,则sin α=( )A .15B .15-C .513D .513-9 .已知1sin 2x >,且[]0,2x π∈,则x 的取值范围是( )A .5,66ππ⎡⎤⎢⎥⎣⎦ B .5,66ππ⎛⎫⎪⎝⎭C .2,33ππ⎡⎤⎢⎥⎣⎦ C .2,33ππ⎛⎫⎪⎝⎭10.已知函数)0)(6sin(2)(>+=ωπωx x f 的最小正周期为π4,则该函数的图象 ( )A .关于点⎪⎭⎫⎝⎛0,3π对称 B .关于点⎪⎭⎫⎝⎛0,35π对称 C .关于直线3π=x 对称D .关于直线35π=x 对称 11.函数()sin()4f x x π=-的一个单调增区间为( )A .37(,)44ππB .3(,)44ππ-C .(,)22ππ- D .3(,)44ππ-12.函数x cos 4x sin 3y 2--=的最小值为( )A .-2B .-1C .-6D .-3二、填空题13.已知扇形的周长为8cm ,则该扇形面积的最大值为________cm 2。

三角函数基础测试题及答案

三角函数基础测试题及答案

三角函数单元测试题一、选择题:(12ⅹ5分=60分)1.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为( )A )sin ,cos (αα-B )sin ,(cos ααC )sin ,(cos αα-D );sin ,cos (αα--2.已知角α的终边经过点P (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-3.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对 4.函数)62sin(5π+=x y 图象的一条对称轴方程是( ))(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x 5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B6.已知函数()2sin()f x x ωϕ=+对任意x 都有()(),66f x f x ππ+=-则()6f π等于( )A. 2或0B. 2-或2C. 0D. 2-或07.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A. 1D.2- 8.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )A .35(,)(,)244ππππ B.5(,)(,)424ππππC.353(,)(,)2442ππππD.33(,)(,)244ππππ9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为( )A .1个B .2个C .3个D .4个10.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,则这个多边形是( )A .正六边形B .梯形C .矩形D .含锐角菱形 11.同时具有性质“(1)最小正周期是π;(2)图像关于直线3π=x 对称;(3)在]3,6[ππ-上是增函数”的一个函数是( ) A .)62sin(π+=x y B . )32cos(π+=x y C . )62sin(π-=x y D . )62cos(π-=x y12.已知函数f (x )=f (π-x ),且当)2,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b二、填空题(4x4分=16分)13.函数y =的定义域是14. 函数]0,[)(62sin(2ππ-∈+=x x y 的单调递减区间是 15.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移2π,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________.16.关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝⎛+=π有下列命题: ① 由()()021==x f x f 可得21x x -必是π的整数倍; ② ()x f y =的表达式可改写为()⎪⎭⎫ ⎝⎛-=62cos 4πx x f ;③ ()x f y =的图象关于点⎪⎭⎫ ⎝⎛-0,6π 对称; ④ ()x f y =的图象关于直线6π-=x 对称.以上命题成立的序号是__________________.三.解答题:(5ⅹ12分+14分=74分)17.(本题共12分)化简:)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(απαπαπαπαπαπαπαπ+-----++-18.(本题共12分)已知αsin 、αcos 是方程06242=++m x x 的两实根,求:(1) m 的值; (2)αα33cos sin +的值.19.(本题共12分)已知函数12sin()63y x π=-,(1)求它的单调区间;(2)当x 为何值时,使1>y ?20.(本题共12分)函数)2,0,0(),sin()(πθθ<>>+=w A wx A x f 的图象如右,求出它的解析式,并说出它的周期、振幅、初相。

三角函数高考试题精选(含详细答案)

三角函数高考试题精选(含详细答案)

三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若ta nθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。

第一章三角函数测试题 (含详细答案)

第一章三角函数测试题 (含详细答案)

必修四第一章三角函数单元测试 一、选择题1.设A ={小于90°的角},B ={第一象限的角},则A ∩B 等于( ). A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{α|k ·360°<α<k ·360°+90°(k ∈Z ,k ≤0)} 2.终边在直线y =-x 上的角的集合是( ). A .{α|α=45°+k ·180°(k ∈Z )} B .{α|α=135°+k ·180°(k ∈Z )} C .{α|α=45°+k ·360°(k ∈Z )}D .{α|α=-45°+k ·360°(k ∈Z )}3. 已知sin α=54,α∈(0,π),则tan α等于( ). A .34B .43 C .34±D .43±4.已知角 α 的终边经过点P (4,-3),则2sin α+cos α的值等于( ). A .-53 B .54 C .52 D .-52 5.已知sin α=-22,2π<α<23π,则角 α 等于( ). A .3πB .32πC .34πD .45π6.已知tan 14°≈41,则tan 7°约等于( ). A .17+4B .17-4C .17+2D .17-27.α是三角形的内角,则函数y =cos 2α-3cos α+6的最值情况是( ). A .既有最大值,又有最小值 B .既有最大值10,又有最小值831 C .只有最大值10 D .只有最小值831 8.若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ). A .sin xB .cos xC .sin 2xD .cos 2x9.设4π<α<2π,sin α=a ,cos α=b ,tan α=c 则a ,b ,c 的大小关系为( ). A .a <b <cB .a >b >cC .b >a >cD .b <a <c10.已知sin α>sin β,那么下列命题成立的是( ). A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β 二、填空题11.已知扇形的半径是1,周长为π,则扇形的面积是 . 12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4}, 求A ∩B = .13.已知点P (tan α,cos α)在第三象限,则角 α 的终边在第 象限. 14.已知cos (π+α)=-53,sin αcos α<0,则sin (α-7π)的值为 . 15.函数y =x sin log 21的定义域是 .16.函数y =a +b sin x 的最大值是23,最小值是-21,则a = ,b = . 三、解答题17.设 α 是第二象限的角,sin α=53,求sin (637π-2α)的值.18.求下列函数的周期: (1)y =cos 2(πx +2),x ∈R ; (2)y =cos 4x -sin 4x ,x ∈R ; (3)y =sin x ·cos x +3cos 2x -23,x ∈R .19.已知x ∈[-3π,4π],f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出相应的x 值.20.求函数y =1tan tan 1tan tan 22+++-x x x x 的值域.第一章 三角函数参考答案一、选择题 1.D解析:A 集合中包含小于90°的正角,还有零角和负角,而B 集合表示终边落在第一象限的角.二者的交集不是A ,B ,C 三个选项.2.B解析:先在0°~360°内找终边在直线y =-x 上的角分别为135°或315°,所以终边在直线y =-x 上的所有角为k ·360°+135°,或k ·360°+315°,k ∈Z .k ·360°+135°=2k ·180°+135°,k ·360°+315°=(2k +1)180°+135°,由此得答案为B . 3.C解析:∵sin α=54,α∈(0,π),∴cos α=±53,∴tan α=±34. 4.D解析:∵r =22)3(4-+=5,∴sin α=ry =-53,cos α=r x =54.∴2sin α+cos α=2×(-53)+54=-52. 5.D 解析:∵sin 45π=sin (π+4π)=-sin 4π=-22,且2π<45π<23π,∴α=45π. 6.B解析:设tan 7°=x ,则tan 14°=2-12xx ≈41. 解得x ≈-4±17(负值舍去), ∴x ≈17-4. 7.D解析:∵y =cos 2α-3cos α+6=2cos 2α-3cos α+5=2(cos α-43)2+831,又 α 是三角形的内角,∴-1<cos α<1. 当cos α=43时,y 有最小值831.8.B解析:取f (x )=cos x ,则f (x )·sin x =21sin 2x 为奇函数,且T =π. 9.D解析:在单位圆中做出角 α 的正弦线、余弦线、正切线得b <a <c . 10.D解析:若α,β是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β的终边,故选D .二、填空题 11.答案:12-π. 12.答案:A ∩B ={α|-4≤α≤-π 或0≤α≤π }.解析:在集合A 中取k =…,-1,0,1,…得到无穷个区间…,[-2π,-π],[0,π],[2π,3π],…将这些区间和集合B 所表示的区间在数轴上表示如图:由图可知A ∩B ={α|-4≤α≤-π 或0≤α≤π }. 13.答案:二.解析:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧ ,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以 α 为第二象限角.即角 α 的终边在第二象限.14.答案:54. 解析:∵cos (π+α)=-cos α=-53,∴cos α=53. 又∵sin αcos α<0,∴sin α<0,α为第四象限角,∴sin α=-54=-cos 12α-,∴sin (α-7π)=sin (α+π-8π)=sin (π+α)=-sin α=54. 15.答案:(2k π,2k π+π)(k ∈Z ).解析:由x sin log 21≥0,得0<sin x ≤1,∴2k π<x <2k π+π(k ∈Z ).tan α<0cos α<0(第12题)(第10题`)16.答案:21,±1. 解析:当b >0时,得方程组⎪⎩⎪⎨⎧21=--23=+b a b a 解得⎪⎩⎪⎨⎧1=21=b a 当b <0时,得方程组⎪⎩⎪⎨⎧21=-+23=-b a b a 解得⎪⎩⎪⎨⎧1=-21=b a 三、解答题 17.答案:32512+507. 解:∵sin α=53,α是第二象限角, ∴cos α=-54,sin 2α=2sin αcos α=-2524, ∴cos 2α=1-2sin 2α=257, 故sin (637π-2α)=sin (6π-2 α)=21×257-23(-2524)=32512507+.18.答案:(1)1;(2)π;(3)π. 解:(1)y =cos 2(πx +2)=21[1+cos (2πx +4)] =21cos (2πx +4)+21. ∴T =ππ22=1. (2)y =cos 4x -sin 4x=(cos 2x +sin 2x )(cos 2x -sin 2x ) =cos 2x -sin 2x =cos 2x . ∴T =22π=π. (3)y =sin x ·cos x +3cos 2x -23 =21sin 2x +3·22cos +1x-23=21sin 2x +23cos 2x=sin (2x +3π).∴T =22π=π. 19.答案:x =-4π时y min =1,x =4π时y max =5.解析:f (x )=tan 2x +2tan x +2=(tan x +1)2+1.∵x ∈[-3π,4π],∴tan x ∈[-3,1]. ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1;当tan x =1,即x =4π时,y 有最大值,y max =5.20.答案: [31,3].解析:将原函数去分母并整理得(y -1)tan 2x +(y +1)tan x +y -1=0. 当y ≠1时,∵tan x ∈R ,∴方程是关于tan x 的一元二次方程,有实根. ∴判别式△=(y +1)2-4(y -1)2≥0, 即3y 2-10y +3≤0.解之31≤y ≤3.而tan x =0时,y =1,故函数的值域为[31,3].。

三角函数练习题附答案

三角函数练习题附答案

三角函数练习题附答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.4.已知单位向量1e ,2e 与非零向量a 满足12322e e +≤()120a e e ⋅-≤,则()1232a e e a⋅+的最大值是______.5.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =BD 长度的最大值为______.6.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.7.在ABC 中,AB BC ≠,O 为ABC 的外心,且有23AB BC AC +=,sin (cos 3)cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.8.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______9.关于函数()()33cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).10.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3⎡⎫⎪⎢⎪⎣⎭B .3⎛ ⎝⎦C .122⎛ ⎝⎦D .2⎡⎫⎪⎢⎪⎣⎭13.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭14.已知ABC 的内角分别为,,A B C ,23cos 1sin 26A A =-,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.设函数()211f x x =-,()122x f e x --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I << D .213I I I <<16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A .132B .2C .31+D .2317.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-18.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( ) A .6B .62C .12D .12219.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间. 23.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.24.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间;(2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?26.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S . 29.已知函数2133()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.982.473.28π 4535616.32⎝⎭7.4333-8.09.②③10.2二、单选题 11.A 12.A 13.A 14.A 15.D 16.C 17.A 18.C19.B 20.C 三、解答题21.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+ ⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.23.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tanα.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ 在△OPQ 中,OQOP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π.故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f ′(θ)令f ′(θ)=0,得sinθθ0满足0sin θ则0cos θ=,即()02f θ===列表如下:由(1)可知tanα=f (θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭, tanα单调递增则当tanα取最大值2时,α也取得最大值. 故游客在观赏亭P 处的观赏效果最佳时,sinθ 【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 24.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题. 25.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题26.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅,即222m n mn =++.所以22222()3()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值. 【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==, 所以集合3{2S =-,0,3}2. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数2133()sin 24f x x x =131cos 23sin 242x x +=131sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力. 30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。

三角函数试题及答案

三角函数试题及答案

三角函数试题及答案本文将针对三角函数进行试题及答案的探讨,通过一系列问题来帮助读者深入理解与掌握三角函数的相关知识。

以下是一些试题及相应的答案。

I. 选择题1. 以下哪个是三角函数的定义?A. sin(x) = a/c, cos(x) = b/cB. sin(x) = b/c, cos(x) = a/cC. sin(x) = a/b, cos(x) = c/bD. sin(x) = c/a, cos(x) = b/a答案:B2. sin(π/2) 的值是多少?A. 0B. 1C. -1D. 无定义答案:B3. 以下哪个等式成立?A. sin(x) = cos(x)B. sin(x) = tan(x)C. cos(x) = tan(x)D. sin^2(x) + cos^2(x) = 1答案:DII. 填空题1. sin(0) =答案:02. cos(π/3) =答案:1/23. tan(π/4) =答案:1III. 解答题1. 求解方程 sin(x) = 1/2 的所有解。

解答:根据三角函数的定义,当 sin(x) = 1/2 时,可以得到x = π/6 + 2kπ 或x = 5π/6 + 2kπ,其中 k 是整数。

2. 求解方程 tan(x) + 1 = 0 的所有解。

解答:将 tan(x) + 1 = 0 移项得 tan(x) = -1。

在单位圆上,我们知道tan(x) 的值等于对应点的 y 坐标除以 x 坐标。

因此,我们可以找到tan(x) = -1 对应的两个点,它们是 (-√2/2, -1/2) 和(√2/2, 1/2)。

根据三角函数的性质,我们可以得到 x = -3π/4 + kπ 或x = π/4 + kπ,其中 k 是整数。

通过以上试题和答案,相信读者能够更好地理解和掌握三角函数的相关知识。

不断练习三角函数的运用和求解,将有助于读者在数学学习中取得更好的成绩。

希望本文能为读者提供帮助。

三角函数测试题及答案

三角函数测试题及答案

三角函数测试题及答案试题一:一、选择题1. 下列各三角函数式中,值为正数的是 ( )A. B. C. D.2. 若=,且为锐角,则的值等于 ( )A. B. C. D.3. 若=,,则的值为 ( )A. 1B. 2C.D.4. 已知,则 ( )A. B.C. D.5. a=,则成立的是 ( )A. ab>c C. a6. 函数的定义域是( )A. B.C. D.7. 下面三条结论:①存在实数,使成立;②存在实数,使成立;③若cosacosb=0,则其中正确结论的个数为( )A. 0B. 1C. 2D. 38. 函数的值域是 ( )A. [-2,2]B. [-1,2]C. [-1,1]D. [,2]9. 函数y=-x·cosx的部分图象是( )10. 函数f(x)=cos2x+sin(+x)是( )A. 非奇非偶函数B. 仅有最小值的奇函数C. 仅有最大值的偶函数D. 既有最大值又有最小值的偶函数二、填空题1、函数的最小值等于并使函数y 取最小值的x的集合为2、若函数的图象关于直线对称,则函数的值域为3、已知函数三、解答题1、已知,求的值2、在DABC中,已知三边满足,试判定三角形的形状。

试题二:1、若sinα=-5/13,且α为第四象限角,tanα=?(文.6)A.12/5B.-12/5C.5/12D.-5/12解析:主要考察基础知识。

α是第四象限角,所以cosα为正,tanα为负。

cos2α=1-sin2α,且cosα是正数,所以cosα=12/13,t anα=sinα/cosα=-5/12,选D。

2、已知函数f(x)=10√3sin(x/2)*cos(x/2)+10cos2(x/2)1)求f(x)的最小正周期2)将f(x)的函数图像向右平移π/6个单位长度,再向下平移a个单位长度后得到g(x)的函数图像,且函数g(x)的`最大值为2.i)求g(x)的解析式ii)证明存在无穷多互不相同个正整数x0,使得g(x0)>0.解析:1)函数的化简,可以看到两个式子都跟两倍角公式有关系,可以考虑先都变成两倍角。

(完整)三角函数习题及答案

(完整)三角函数习题及答案

第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sin cos 22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B)第二象限 (C)第三象限 (D )第四象限 二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角.7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。

11.已知Cos(α+β)+1=0, 求证:sin (2α+β)+sin β=0。

12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值. §4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A)0 (B )1- (C)2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D ±4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5.的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C)一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。

三角函数

三角函数

三角函数一、选择题:(每小题5分,共60分)1.(5分)若sinθ>0,cosθ<0,,则θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知sin(﹣2)=﹣,则cos(+2)的值为()A.B.﹣C.D.﹣3.(5分)下列等式恒成立的是()A.c os(﹣α)=﹣cosαB.s in(360°﹣α)=sinαC.tan(2π﹣α)=tan(π+α)D.cos(π+α)=cos(π﹣α)4.(5分)已知函数y=2cosx(0≤x≤2π)的图象与直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是()A.4B.8C.2πD.4π5.(5分)函数y=tanxcotx的定义域是()A. R B.{x|x≠π,k∈z} C.{x|x≠kπ,k∈z} D.{x|x≠kπ+π,k∈z}6.(5分)要得到y=sin(3x+)的图象,只要把y=sin3x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.(5分)函数y=3sin(x+)﹣1在下列区间上是增函数的是()A.[﹣,]B.[﹣π,]C.[﹣π,0]D.[﹣,π]8.(5分)定义新运算a*b为:,例如1*2=1,3*2=2,则函数f(x)=sinx*cosx的值域为()A.B.C.D.9.(5分)(2012•北京模拟)函数的图象是中心对称图形,其中它的一个对称中心是()A.B.C.D.10.(5分)等于()A.s in2﹣cos2 B.c os2﹣sin2 C.±(sin2﹣cos2)D.s in2+cos211.(5分)函数y=sin(x+)的图象是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x=﹣π对称12.(5分)函数y=4sin2x+6cosx﹣6,(﹣≤x≤π)的值域是()A.[﹣6,0]B.C.D.二、填空题:(每小题5分,共25分)13.(5分)315°=_________弧度,弧度=_________°.14.(5分)若f(cosx)=cos2x,则f(sin15°)=_________.15.(5分)(2011•南昌模拟)关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x﹣);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是_________.16.(5分)已知函数f(x)=tanx+cotx+2,且f(2)=m,则f(﹣2)=_________.17.17.(5分)已知f(x)=,则f(﹣)+f()=_________.三、解答题18.(12分)求证:=.19.(12分)已知关于x的函数(﹣π<φ<0),f(x)的一条对称轴是(Ⅰ)求φ的值;(Ⅱ)求使f(x)≥0成立的x的取值集合.20.(13分)函数y=Asin(ωx+ϕ)(x∈R,A>0,ω>0,|ϕ|<)的图象上相邻的最高点与最低点的坐标分别为M(),N(,﹣3),(1)求此函数的解析式;(2)写出函数的单调区间.21.(14分)已知函数f(x)=1+sin(2x﹣).(1)求函数的最小正周期和最大值;(2)求函数的增区间;(3)函数的图象可以由函数y=sinx的图象经过怎样的变换得到?22.(14分)阅读与理解:给出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α﹣β)=cosαcosβ+sinαsinβ;我们可以根据公式将函数g(x)=sinx+cosx化为:g(x)=2(sinx+cosx)=2(sinxcos+cosxsin)=2sin(x+)(1)根据你的理解将函数f(x)=sinx+cos(x﹣)化为f(x)=Asin(ωx+φ)的形式.(2)求出上题函数f(x)的最小正周期、对称中心及单调递增区间.三角函数参考答案与试题解析一、选择题:(每小题5分,共60分)1.(5分)若sinθ>0,cosθ<0,,则θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:三角函数值的符号.专题:计算题.分析:利用三角函数的定义,可确定y>0,x<0,进而可知θ在第二象限.解答:解:由题意,根据三角函数的定义sinθ=,cosθ=∵r>0,∴y>0,x<0.∴θ在第二象限,故选B.点评:本题以三角函数的符号为载体,考查三角函数的定义,属于基础题.2.(5分)已知sin(﹣2)=﹣,则cos(+2)的值为()A.B.﹣C.D.﹣考点:诱导公式的作用.专题:三角函数的求值.分析:根据已知sin(﹣2)=﹣,可得sin2=,再由cos(+2)=﹣sin2,从而求得结果.解答:解:∵已知sin(﹣2)=﹣,则sin2=,∴cos(+2)=﹣sin2=﹣,故选B.点评:本题主要考查利用诱导公式求式子的值,属于基础题.3.(5分)下列等式恒成立的是()A. cos(﹣α)=﹣cosαB. sin(360°﹣α)=sinαC. tan(2π﹣α)=tan(π+α)D. cos(π+α)=cos(π﹣α)考点:诱导公式的作用.专题:三角函数的求值.分析:利用诱导公式判断A、B、C都不正确,只有D正确,从而得出结论.解答:解:根据诱导公式可得cos(﹣α)=cosα,sin(360°﹣α)=﹣sinα,tan(2π﹣α)=tan (﹣α)=﹣tan(π+α),可得A、B、C都不正确,再由cos(π+α)=﹣cosα=cos(π﹣α),可得D正确,故选D.点评:本题主要考查诱导公式的应用,属于基础题.4.(5分)已知函数y=2cosx(0≤x≤2π)的图象与直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是()A.4B.8C.2πD.4π考点:余弦函数的图象.专题:数形结合.分析:画出函数y=2cosx(0≤x≤2π)的图象与直线y=2围成一个封闭的平面图形,作出y=﹣2的图象,容易求出封闭图形的面积.解答:解:画出函数y=2cosx(0≤x≤2π)的图象与直线y=2围成一个封闭的平面图形如图:显然图中封闭图形的面积,就是矩形面积的一半,=4π.故选D.点评:本题是基础题,考查余弦函数的图象,几何图形的面积的求法,利用图象的对称性解答,简化解题过程,可以利用积分求解;考查发现问题解决问题的能力.5.(5分)函数y=tanxcotx的定义域是()A. R B.{x|x≠π,k∈z} C.{x|x≠kπ,k∈z} D.{x|x≠kπ+π,k∈z}考点:正切函数的定义域.专题:三角函数的图像与性质.分析:由题意可得sinx≠0,且cosx≠0,求得x≠,k∈z,从而求得函数的定义域.解答:解:要使函数y=tanxcotx 由题意,应有sinx≠0,且cosx≠0,∴x≠,k∈z,故函数的定义域为{x|x≠π,k∈z},故选B.点评:本题主要考查正切函数的定义域,体现了转化的数学思想,属于基础题.6.(5分)要得到y=sin(3x+)的图象,只要把y=sin3x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:由于y=sin(3x+)=sin3(x+),要得到y=sin(3x+)的图象,只要把y=3sinx的图象向左平移个单位即可,故选C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.7.(5分)函数y=3sin(x+)﹣1在下列区间上是增函数的是()A.[﹣,]B.[﹣π,]C.[﹣π,0]D.[﹣,π]考点:复合三角函数的单调性.专题:计算题;三角函数的图像与性质.分析:由2kπ﹣≤x+≤2kπ+,k∈Z可求得该函数的单调增区间,从而可得答案.解答:解:由2kπ﹣≤x+≤2kπ+,k∈Z得:2kπ﹣≤x≤2kπ+,k∈Z.当k=0时,﹣≤x≤,∴函数y=3sin(x+)﹣1的一个单调增区间为[﹣,].故选B.点评:本题考查复合三角函数的单调性,着重考查正弦函数的单调性,考查分析与运算能力,属于中档题.8.(5分)定义新运算a*b为:,例如1*2=1,3*2=2,则函数f(x)=sinx*cosx的值域为()A.B.C.D.考点:正弦函数的定义域和值域.专题:新定义.分析:本题可以采用排除法解答,分析已知中,易得f(x)=sinx*cosx的功能为计算x正弦函数sinx与余弦函数cosx最小值,结合正弦函数和余弦函数的值域,分析即可得到答案.解答:解:由已知中可知新运算的功能是计算a,b中的最小值则f(x)=sinx*cosx的功能为计算x正弦函数sinx与余弦函数cosx最小值由正余弦函数的值域均为[﹣1,1]可得f(x)的最小值为﹣1由此可以排除B、D答案最大值不大于1,可以排除C答案故选A点评:本题考查的知识点是正弦函数和余弦函数的值域,排除法是解答选择题常用的方法之一,但要求对基础知识掌握比较牢固,当两个答案无法排除时,就不能使用本法.9.(5分)(2012•北京模拟)函数的图象是中心对称图形,其中它的一个对称中心是()A.B.C.D.考点:正弦函数的对称性.专题:计算题.分析:根据正弦曲线的对称中心,写出所给的函数的角等于对称中心的横标,做出函数的对称中心,代入数值检验看选项中哪一个适合题意.解答:解:∵正弦曲线的对称中心(kπ,0)∴,∴x=×,k∈z,∴函数的对称中心是(,0)当k=﹣2时,对称中心是(﹣,0)故选B.点评:本题考查三角函数的对称性,本题解题的关键是写出正弦曲线的对称中心,对于选择题目也可以代入选项进行检验.10.(5分)等于()A.s in2﹣cos2 B.c os2﹣sin2 C.±(sin2﹣cos2)D.s in2+cos2考点:同角三角函数间的基本关系;诱导公式的作用.专题:计算题;三角函数的求值.分析:利用诱导公式化简表达式,通过角2的范围,得到sin2大于0,cos2小于0,进而确定出sin2﹣cos2大于0,将所求式子中的“1”利用同角三角函数间的基本关系化为sin22+cos22,利用完全平方公式及二次根式的化简公式化简,即可得到结果.解答:解:∵<2<π,∴sin2>0,cos2<0,即sin2﹣cos2>0,则====|sin2﹣cos2|,(又2是钝角)=sin2﹣cos2.故选A点评:此题考查了同角三角函数间的基本关系,完全平方公式,以及二次根式的化简,熟练掌握基本关系及公式是解本题的关键.11.(5分)函数y=sin(x+)的图象是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x=﹣π对称考点:运用诱导公式化简求值.专题:三角函数的图像与性质.分析:利用诱导公式化简函数的解析式,再利用余弦函数的图象特征得出结论.解答:解:∵函数y=sin(x+)=﹣cosx,此函数为偶函数,故它的图象关于y轴对称,故选B.点评:本题主要考查余弦函数的图象特征,诱导公式的应用,属于中档题.12.(5分)函数y=4sin2x+6cosx﹣6,(﹣≤x≤π)的值域是()A. [﹣6,0]B.C.D.考点:正弦函数的定义域和值域.专题:计算题.分析:把函数化简为关于cosx的二次函数f(x)=﹣4cos2x+6cosx﹣2,利用二次函数在闭区间上的最值求解即可.解答:解:f(x)=4sin2x+6cosx﹣6=﹣4cos2x+6cosx﹣2=∵,∴﹣≤cosx≤1∴函数在cosx=﹣时取得最小值:﹣6;∴函数在cosx=时取得最大值,故选D.点评:本题以三角函数的值域为载体,考查二次函数在闭区间上的最值的求解,解题中需注意的是不能忽略的范围限制.二、填空题:(每小题5分,共25分)13.(5分)315°=弧度,弧度=105°.考点:弧度与角度的互化.专题:计算题.分析:直接利用角度与弧度的互化,求解即可.解答:解:315°=315×===105°故答案为:;105点评:本题考查弧度与角度的互化,考查计算能力,是基础题.14.(5分)若f(cosx)=cos2x,则f(sin15°)=.考点:三角函数中的恒等变换应用;二倍角的余弦.专题:计算题.分析:用三角函数中的诱导公式进行转化,可转化问题已知条件直接代入求解即可.解答:解:f(sin15°)=f(cos(900﹣150))=f(cos75°)=cos(2×750)=cos150°=故答案为:.点评:本题主要通过求函数值来考查三角函数中的诱导公式,在三角函数中公式的灵活运用是研究三角函数的重要方面.考查函数的定义的理解.15.(5分)(2011•南昌模拟)关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x﹣);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是①,③.考点:函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法.专题:压轴题;分析法.分析:先根据诱导公式可判断①,再由最小正周期的求法可判断②,最后根据正弦函数的对称性可判断③和④,得到答案.解答:解:∵f (x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正确;∵T=,故②不正确;令x=﹣代入f (x)=4sin(2x+)得到f(﹣)=4sin(﹣)=0,故y=f(x)的图象关于点对称,③正确④不正确;故答案为:①③.点评:本题主要考查正弦函数的基本性质﹣﹣周期性、对称性,考查诱导公式的应用.三角函数的基础知识是解题的关键.16.(5分)已知函数f(x)=tanx+cotx+2,且f(2)=m,则f(﹣2)=4﹣m.考点:正切函数的奇偶性与对称性.专题:三角函数的求值.分析:令g(x)=tanx+cotx,则函数g(x)为奇函数,且f(x)=g(x)+2.由f(2)=g(2)+2=m,求得g(2)=m﹣2,再根据f(﹣2)=g(﹣2)+2=﹣g(2)+2,运算求得结果.解答:解:令g(x)=tanx+cotx,则函数g(x)为奇函数,且f(x)=g(x)+2.由于f(2)=g(2)+2=m,∴g(2)=m﹣2,∴f(﹣2)=g(﹣2)+2=﹣g(2)+2=2﹣m+2=4﹣m,故答案为4﹣m.点评:本题主要考查利用函数的奇偶性求函数的值,正切函数的奇偶性,属于中档题.17.(5分)已知f(x)=,则f(﹣)+f()=﹣2.考点:函数的值.专题:计算题.分析:求分段函数的函数值,先判断自变量在什么范围,然后代入相应的解析式进行求值.解答:解:∵﹣<0∴f(﹣)=sin(﹣π)=∵x>0时,f(x)=f(x﹣1)﹣1∴f()=f(﹣1)﹣1=f()﹣1=f(﹣)﹣2=sin(﹣π)﹣2=﹣﹣2∴f(﹣)+f()=﹣2故答案为:﹣2点评:本题主要考查了分段函数的函数值,要注意判断自变量的范围才可求解,同时考查了计算能力,属于基础题.三、解答题18.(12分)求证:=.考点:三角函数恒等式的证明.专题:证明题.分析:由同角三角函数的基本关系可得cos2x=1﹣sin2x=(1+sinx)(1﹣sinx),变形可得=成立.解答:证明:∵cos2x=1﹣sin2x=(1+sinx)(1﹣sinx),∴=.点评:本题主要考查同角三角函数的基本关系的应用,证明三角恒等式,属于中档题.19.(12分)已知关于x的函数(﹣π<φ<0),f(x)的一条对称轴是(Ⅰ)求φ的值;(Ⅱ)求使f(x)≥0成立的x的取值集合.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.专题:计算题.分析:(Ⅰ)利用f(x)的一条对称轴是,得到,根据﹣π<φ<0,求φ的值;(Ⅱ)利用f(x)≥0,直接解得,然后求出x的取值集合.解答:解:由已知,即,(3分)(Ⅰ)∵﹣π<φ<0,取(5分)(Ⅱ)由,得(8分)解得(11分)∴使f(x)≥0成立的x的取值集合为:(12分)点评:本题是中档题,考查正弦函数的基本性质,对称轴方程,三角不等式的求法,一般借助三角函数曲线和三角函数线求解,考查计算能力,注意角的范围.20.(13分)函数y=Asin(ωx+ϕ)(x∈R,A>0,ω>0,|ϕ|<)的图象上相邻的最高点与最低点的坐标分别为M(),N(,﹣3),(1)求此函数的解析式;(2)写出函数的单调区间.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的单调性.专题:计算题.分析:(1)利用题目中图象上相邻的最高点与最低点的坐标求出函数的周期,与A,求出ω,利用最高点的坐标分别为M(,求出ϕ,得到函数的解析式;(2)利用正弦函数的单调性,求出函数的单调区间.解答:解:(1)由题意知,,且A=3∴T=π∴∴函数y=3sin(2x+ϕ)把,y=3代入上式得,∴,k∈Z,解得:,k∈Z,又∴∴函数解析式是,x∈R.(2)因为,k∈Z,所以,k∈Z,因为,k∈Z,所以,k∈Z,所以函数的单调增区间为:,k∈Z,调减区间为:,k∈Z.点评:本题是中档题,考查三角函数的解析式的求法,函数的单调区间的求法,考查计算能力.21.(14分)已知函数f(x)=1+sin(2x﹣).(1)求函数的最小正周期和最大值;(2)求函数的增区间;(3)函数的图象可以由函数y=sinx的图象经过怎样的变换得到?考点:复合三角函数的单调性;三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)由函数f(x)的解析式可得它的最小正周期和最大值.(2)函数f(x)=1+sin(2x﹣)的单调区间与函数y=sin(2x﹣)的单调区间相同.令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到所求的增区间.(3)根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.解答:解:(1)由函数f(x)的解析式可得它的最小正周期为=π,最大值为1+.(2)函数f(x)=1+sin(2x﹣)的单调区间与函数y=sin(2x﹣)的单调区间相同.令2kπ﹣≤2x﹣≤2kπ+,k∈z,解得kπ﹣≤x≤kπ+,故所求的增区间为[kπ﹣,kπ+],k∈z.(3)将y=sinx的图象先向右平移个单位长度,再把横坐标缩短为原来的(纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位长度,可得f(x)=1+sin(2x﹣)的图象.点评:本题主要考查函数y=Asin(ωx+φ)的周期性、最值、单调增区间以及它的图象变换规律,属于中档题.22.(14分)阅读与理解:给出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α﹣β)=cosαcosβ+sinαsinβ;我们可以根据公式将函数g(x)=sinx+cosx化为:g(x)=2(sinx+cosx)=2(sinxcos+cosxsin)=2sin(x+)(1)根据你的理解将函数f(x)=sinx+cos(x﹣)化为f(x)=Asin(ωx+φ)的形式.(2)求出上题函数f(x)的最小正周期、对称中心及单调递增区间.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为sin(x+).(2)由(1)可得函数的最小正周期T=2π.令x+=kπ,k∈z,求得x=kπ﹣,可得函数的中心.令2kπ﹣≤x+≤2kπ+,k∈z,求得x的范围,可得递增区间.解答:解:(1)函数f(x)=sinx+cos(x﹣)=sinx+cosx+sinx=sinx+cosx=(sinx+cosx)=sin(x+).(2)由(1)可得函数的最小正周期T=2π,令x+=kπ,k∈z,求得x=kπ﹣,故函数的中心为(kπ﹣,0),k∈z.令2kπ﹣≤x+≤2kπ+,k∈z,求得2kπ﹣≤x≤2kπ+,故递增区间为[2kπ﹣,2kπ+],k∈z.点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性、单调性、对称性和求法,属于中档题.。

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。

$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。

$-\frac{\pi}{3}$C。

$\frac{\pi}{6}$D。

$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。

2B。

$\frac{1}{6164}$C。

$-\frac{1}{6164}$D。

$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。

在 $x$ 轴上B。

在直线 $y=x$ 上C。

在 $y$ 轴上D。

在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。

$-\frac{2}{3}$B。

$\frac{3}{2}$C。

$\frac{1}{2}$D。

$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。

向左平移 $\frac{\pi}{4}$ 个单位B。

向右平移 $\frac{\pi}{4}$ 个单位C。

三角函数练习题及答案百度文库

三角函数练习题及答案百度文库

三角函数练习题及答案百度文库精心选一选山岳得分1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都A、缩小2倍B、扩大2倍C、不变D、不能确定4,BC=4,sinA=52、在Rt△ABC中,∠C=90,则AC=A、3B、C、D、61sinA=3,则3、若∠A是锐角,且A、00 13sinA?tanA4、若cosA=3,则4sinA?2tanA=411A、 B、 C、D、05、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=2A、1:1:B、1:1:C、1:1:3D、1:1:26、在Rt△ABC中,∠C=900,则下列式子成立的是A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB.已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是2223A.sinB=B.cosB=C.tanB=D.tanB=28.点关于y轴对称的点的坐标是11113A.B.C.D.9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.?某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,?若这位同学的目高1.6米,则旗杆的高度约为A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60o方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地503m100 m150m m11、如图1,在高楼前D点测得楼顶的仰角为30?,向高楼前进60米到C点,又测得仰角为45?,则该高楼的高度大约为A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40o的方向行驶40海里到达B 地,再由B地向北偏西10o的方向行驶40海里到达C地,则A、C两地相距.30海里0海里 0海里 0海里细心填一填1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____..在△ABC中,若AC=3,则cosA=________.3.在△ABC中,AB=,B=30°,则∠BAC的度数是______.图14.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第4题图第5题图第6题图6.如图,机器人从A点,沿着西南方向,行了个2单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号)..求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=90,BC=13,AB=12,则tanB?_________..根据图中所给的数据,求得避雷针CD的长约为_______m..11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,?这时测得大树在地面上的影子约为10米,则大树的高约为________米。

(完整版)三角函数公式练习(答案)

(完整版)三角函数公式练习(答案)

三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数(一)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=
αsin 5
4
,则=βsin (
A .
5
3
B .
5
4
C .5
3-
D .-
5
4 2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α< C .sin 20α>
D .sin 20α<
3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=1
5x ,则tan α=( ) A .43
B .34
C .-34
D .-43
4. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .
2
π B .
3
π C 2
D 3
5.若4sin cos 3θθ-=
,且3π,π4θ⎛⎫
∈ ⎪⎝⎭
,则sin(π)cos(π)θθ---=( ) A .2
B 2
C .43
-
D .
43
6.(2020全国III 卷)已知2tan tan()74
π
θθ-+=,则tan θ=( )
A .2-
B .1-
C .1
D .2
7.若2cos 23
πα⎛⎫
-=
⎪⎝⎭()cos 2πα-=( ) A . 2
9-
B .
2
9
C . 5
9-
D . 59
8 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )
A .sin()3
x π
+
B .sin(
2)3x π
- C .)6
2cos(π
-
x
D .5cos(2)6
x π
- 9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )
A 5
B .
2
3
C .
1
3
D 510. 设函数()sin()3)f x x x ωϕωϕ=++(0,2
π
ωϕ><)的最小正周期为π,且()f x 为偶函数,
则( ) A .()f x 在(0,)2
π
单调递减 B .()f x 在3(
,
)44ππ
单调递减
C .()f x 在(0,
)2
π
单调递增
D .()f x 在3(,)44
ππ
单调递增 11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛
⎭⎪⎫α+β2=( )
A .3
3
B .-3
3
C .539
D .-6
9
12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )
A .π
B .3π
4
C .3π2
D .7π4
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13. (2020江苏卷)将函数3sin(2)4
y x π
=+的图象向右平移
6
π
个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .
14. (2020北京) 若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________. 15. (2020江苏卷)已知2
2
sin (
)4
3
π
α+=
,则sin2α的值是________.
16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫
=+ ⎪⎝

.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫
⎪⎝⎭
是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3
π
个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<
,4sin 5
α=. (1)求tan α及sin 2α的值; (2)求πcos 2sin()2
αα++的值.
18.(12分)已知f(α)=.
(1)化简f(α);
(2)若f(α)=,且<α<,求cos α-sin α的值;
(3)若α=-,求f(α)的值.
19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.
(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数;
(2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米? 20.(12分)【2020·天津高三二模】已知函数()()2
1
cos 3sin cos 2
f x x x x x =+-
∈R (1)求()f x 的最小正周期; (2)讨论()f x 在区间,44ππ⎡⎤
-
⎢⎥⎣⎦
上的单调性;
21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=3
5. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.
22.(12分) 已知函数f(x)=sin2x -2sin2x.
(1)求函数f(x)的最大值; (2)求函数f(x)的零点的集合.。

相关文档
最新文档