2015北京市密云县初三(一模)数学
2014-2015学年北京市密云县初三第一学期期末数学试题(含答案)、三下数学期末应用题专项复习
密云县2014-2015学年度第一学期期末2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+-D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒,8AC =,6BC =,则sinB 的值等于A .34 B . 34C .45D . 35ABCDCBA 6. 如图,AB 是O 的直径,CD 、是圆上两点,70CBA ∠=︒,则D ∠的度数为 A .10︒ B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是 A .相离 B .相交 C .相切 D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为DCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标;(2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.ABBAPEOD CBA 16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
2015年北京市海淀区及密云区初三一模数学试题及答案
海 淀 区 九 年 级 第 二 学 期 期 中 练 习数学2015.5下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A .50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A.三棱柱B. 三棱锥C. 长方体D.正方体3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为A .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于 A .40° B .50° C .60° D .140°2A0Bba 216.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是 A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称 D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958.甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于 A .1.2 B .2 C .2.4 D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6 B. CD .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是A B CD二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD BC 的长为__________. 15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意的观点, 理由是.16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证:BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD中,∠BAD的平分线交CD于点E,交BC Array的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.25.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,过点C 作⊙O 与边AB 相切于点E ,交BC 于点F ,CE 为⊙O 的直径. (1) 求证:OD ⊥CE ;(2) 若DF =1, DC =3,求AE 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.EDC B AEDCBA29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.b n '<海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17.(本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分 18. (本小题满分5分) 解:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得3x <. ……………………………………………………2分由不等式②得2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分 19. (本小题满分5分)解:22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分 243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分 20. (本小题满分5分)证明: ∠EBC =∠FCB ,ABE FCD ∴∠=∠.…………………………………………………………1分在△ABE 与△FCD 中,,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD .………………………………………………………………………5分21. (本小题满分5分) (1)证明: 0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x = ∴1221,x x k k==-. …………………………………………………………4分 方程的两个实数根都是整数,且k 是整数,∴1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解:设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得4x =. ………………………………………………………3分经检验,4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分)(1)证明: 四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F . ∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠= . 90DAB ∴∠= .又 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图. 四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°. AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分在Rt △AHB 中,∠HAB=45°,∴sin 45BH AB =⋅= . …………………………………………4分 在Rt △BHE 中,∠BHE=90°, ∴sin ∠AEB=BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分 (2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)(1)证明: ⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在⊙O 上, ∴∠EFC =90°. CE ⊥AB , ∴∠BEC =90°.∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠. ∴BF EF EFFC=.又 DF =1, BD=DC =3, ∴ BF =2, FC =4.∴EF =. ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得BE . ……………………4分EF ∥AD , ∴21BE BF EA FD ==.∴AE = ……………………………………………………5分26. (本小题满分5分)解:BC +DE. ……………………………………………………2分解决问题: 连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC //FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分) 解:(1)∵抛物线2212y x x =-+与y 轴交于点A , ∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为 112y x =+.…………………………3分(2)∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时,点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . , .是菱形ABCD 的对角线,∴. ……………………………………………………………2分GFEDCBA120ADC ∠=︒ 60DCB ∴∠=︒AC 1302DCA DCB ∠=∠=︒GFEDCBA.由菱形的对称性可知, ,.……………………………………………………………………3分 . GEB CBE ∴∠=∠. ,.…………………………………………………………4分 EBG BEC ∴∠=∠. 在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC .,.是菱形ABCD 的对角线,∴. ………………………2分.由菱形的对称性可知,,.……………………………………………3分50FBC ∠=︒ ,图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3). …………………………………………………………………7分 29.(本小题满分8分)解:(1)①; ……………………………………………………………………1分②点B . ………………………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒50BEC DEC ∠=∠=︒100EBC EDC ∠=∠=︒100GEB DEC BEC ∴∠=∠+∠=︒50FBC ∠=︒ 50EBG EBC FBC ∴∠=∠-∠=︒120ADC ∠=︒ 60DCB ∴∠=︒AC 1302DCA DCB ∠=∠=︒180100EDC DEC DCA ∴∠=︒-∠-∠=︒50BEC DEC ∠=∠=︒100EBC EDC ∠=∠=︒AE BG +=HG F ED CBA(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当时,取最大值2.当时,.5x ∴=. ………………………………………3分 当时,或.2x ∴=-或8x =. ………………………………4分 52≤≤b '- ,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分(3),∴顶点坐标为.………………………………………………………………6分若,的取值范围是≥b m '或≤b n ',与题意不符.若1≥t ,当1≥x 时,的最小值为,即;当时,的值小于,即..∴s 关于t 的函数解析式为211)s t t =+≥ ( . ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分1x =b '2b '=-23x -=-+5b '=-53x -=-53x -=-+2222()y x tx t t x t t =-++=-+ (,)t t 1t <b 'y t m t =1x <y 2[(1)]t t --+2[(1)]n t t =--+22(1)1s m n t t t t ∴=-=+-+=+。
密云三中2015— 2016学年度第一学期期末九年级数学试卷
北京市朝阳区2015~2016学年度第一学期期末检测九年级数学试卷(选用) 2016.1(考试时间120分钟 满分120分) 成绩______________一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列交通标志中,既是轴对称图形又是中心对称图形的是ABCD2.下列事件为必然事件的是A. 任意掷一枚均匀的硬币,正面朝上B. 篮球运动员投篮,投进篮筐C. 一个星期有七天D. 打开电视机,正在播放新闻3.在平面直角坐标系中,点B 的坐标为(3,1),则点B 关于原点的对称点的坐标为 A. (3,-1) B. (-3,1) C. (-1,-3) D. (-3,-1)4.如图,AC 与BD 相交于点E ,AD ∥BC .若AE =2,CE =3,AD =3,则BC 的长度是 A. 2 B. 3 C. 4.5 D. 65.如图,在Rt △ABC 中,∠C =90°,BC =3,AC =4,则sin A 的值是A.43B.34 C.53 D.54第4题图 第5题图第6题图6.如图,反比例函数2y x=-的图象上有一点A ,过点A 作AB ⊥x 轴于B ,则AOB S V 是 A. 12B.1C.2D.47.如图,在⊙O 中,∠BOC =100°,则∠A 等于 A. 100° B. 50° C. 40° D. 25°第7题图第8题图8.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ’OB ’,若∠AOB =15°,则∠AOB ’的度数是 A. 25° B. 30° C. 35° D. 40° 9.如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列条件中的一个:①∠AED =∠B ,②∠ADE =∠C ,③BC DE AB AE =,④ABAEAC AD =,⑤AE AD AC ⋅=2,使△ADE 与△ACB 一定相似的有A.①②④B.②④⑤C.①②③④D. ①②③⑤图①图②第9题图 第10题图10.小阳在如图①所示的扇形舞台上沿O -M -N 匀速行走,他从点O 出发,沿箭头所示的方向经过点M 再走到点N ,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t (单位:秒),他与摄像机的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图②,则这个固定位置可能是图①中的 A. 点Q B. 点P C. 点M D. 点N二、填空题(本题共18分,每小题3分)11.在一个不透明的袋子中,装有2个红球和3个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是 . 12.如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则»AB 的长为 .13.已知y是x的反比例函数,且在每个象限内,y随x的增大而减小.请写出一个满足以上条件的函数表达式.第12题图第14题图第15题图第16题图14.如图,矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F,则△AFE与△BCF的面积比等于.15.如图,⊙O的半径为6,OA与弦AB的夹角是30°,则弦AB的长度是.16.如图,已知反比例函数2yx=的图象上有一组点B1,B2,…,B n,它们的横坐标依次增加1,且点B1横坐标为1.“①,②,③…”分别表示如图所示的三角形的面积,记S1=①-②,S2=②-③,…,则S7的值为,S1+S2+…+S n=(用含n的式子表示).三、解答题(本题共72分,第17-26小题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:12cos45tan60sin302︒-︒+︒--.18.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,DE⊥AB于点E.若DE=2,BC=3,AC=6,求AE的长.19.如图,点A的坐标为(3,2),点B的坐标为(3,0).作如下操作:①以点A为旋转中心,将△ABO顺时针方向旋转90°,得到△AB1O1;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1∶2,且点A2在第三象限.(1)在图中画出△AB1O1和△A2B2O;(2)请直接写出点A2的坐标:__________.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家..层面的价值目标; “自由、平等、公正、法治”是社会..层面的价值取向;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家..层面价值目标、一次是社会..层面价值取向的概率(卡片名称可用字母表示).21.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,点A 的横坐标为2,AC ⊥x 轴于点C ,连接BC . (1)求反比例函数的表达式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 的面积是△ABC 面积的一半,请直接写出点P 的坐标.22.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO ⊥CD 于点A ,求间径就是要求⊙O 的直径.再次阅读后,发现AB =______寸,CD =____寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O 的直径.图①图②23.如图,在一次户外研学活动中,老师带领学生去测一条东西流向的河流的宽度(把河两岸看做平行线,河宽即两岸之间的垂线段的长度).某同学在河南岸A 处观测到河对岸水边有一棵树P ,测得P 在A 北偏东60°方向上,沿河岸向东前行20米到达B 处,测得P 在B 北偏东45°方向上.求河宽(结果保留一24. 如图,已知△ABC 是等边三角形,以AB 为直径作⊙O ,交BC 边于点D ,交AC 边于点F ,作DE ⊥AC 于点E . (1)求证:DE 是⊙O 的切线;(2)若△ABC 的边长为4,求EF 的长度.25.如图①,在Rt △ABC 中,∠C =90°.将△ABC 绕点C 逆时针旋转得到△A ’B ’C ,旋转角为α,且0°<α<180°.在旋转过程中,点B ’可以恰好落在AB 的中点处,如图②. (1)求∠A 的度数;(2)当点C 到AA ’的距离等于AC 的一半时,求α的度数.图①图②备用图26. 有这样一个问题:探究函数262--=x x y 错误!未找到引用源。
北京各区2015初中数学一模26题汇编及答案
北京各区2015初三数学一模26题汇编26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值;(2)若CD=2,则BP =. 26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系; 请回答:AF 与BE 的数量关系是. (2) 如图2,若四边形ABCD 是菱形,120ABC ∠=︒,请参考上述方法,求AFBE的值.图1 图2图1图2图326.小明遇到这样一个问题:如图1,在锐角△ABC 中,AD 、BE 、CF 分别为△ABC 的高,求证:∠AFE =∠ACB . 小明是这样思考问题的:如图2,以BC 为直径做半⊙O ,则点F 、E 在⊙O 上, ∠BFE +∠BCE =180°,所以∠AFE =∠ACB .请回答:若∠ABC =40 ,则∠AEF 的度数是. 参考小明思考问题的方法,解决问题:如图3,在锐角△ABC 中,AD 、BE 、CF 分别为△ABC 的高,求证:∠BDF =∠CDE .26.阅读下面材料:学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF 中,AC =DF ,BC =EF ,∠B =∠E . 小聪想:要想解决问题,应该对∠B 进行分类研究.∠B 可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B 是直角时,如图1,在△ABC 和△DEF 中,AC =DF ,BC =EF , ∠B =∠E =90°,根据“HL”定理,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是锐角时,如图2,BC =EF ,∠B =∠E<90°,在射线EM 上有点D ,使DF =AC ,画出符合条件的点D ,则△ABC 和△DEF 的关系是;A .全等B .不全等C .不一定全等 第三种情况:当∠B 是钝角时,如图3,在△ABC 和△DEF 中,AC =DF ,BC =EF , ∠B =∠E >90°,求证:△ABC ≌△DEF .图1 图2 图3O图1图3图226. 阅读下面资料: 问题情境:(1)如图1,等边△ABC ,∠CAB 和∠CBA 的平分线交于点O ,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点与点O 重合,已知OA =2,则图中重叠部分△OAB 的面积是. 探究:(2)在(1)的条件下,将纸片绕O 点旋转至如图2所示位置,纸片两边分别与AB ,AC 交于点E ,F ,求图2中重叠部分的面积.(3)如图3,若∠ABC =α(0°<α<90°),点O 在∠ABC 的角平分线上,且BO =2,以O 为顶点的等腰三角形纸片(纸片足够大)与∠ABC 的两边AB ,AC 分别交于点E 、F ,∠EOF =180°﹣α,直接写出重叠部分的面积.(用含α的式子表示)26.阅读下面材料:小军遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,点D 为BC 的中点,求AD 的取值范围. 小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD 到E ,使DE =AD ,连接BE ,构造△BED ≌△CAD ,经过推理和计算使问题得到解决.请回答:AD 的取值范围是.参考小军思考问题的方法,解决问题:如图3,△ABC 中,E 为AB 中点,P 是CA 延长线上一点,连接PE 并延长交BC 于点D .求证:PA •CD =PC •BD .图1ABDCABDC图2图3E ABP26.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍 的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+. 所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请 你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到, 整理,得, 所以.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2图3请回答:BC +DE 的值为_______. 参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.图1图2a26.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中, ∠A =2∠B,CD 平分∠A CB ,AD=2.2,AC=3.6 求BC 的长.小聪思考:因为CD 平分∠A CB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.(2)BC 的长为__________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC 中,AB=AC, ∠A =20°,BD 平分∠ABC,BD=2.3,BC=2.求AD 的长. 26.阅读下面材料:小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分 ∠ACB ,试判断BC 和AC 、AD 之间的数量关系.小明发现,利用轴对称做一个变化,在BC 上截取CA′=CA ,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).图1 图2请回答:(1)在图2中,小明得到的全等三角形是△≌△;(2)BC 和AC 、AD 之间的数量关系是.参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.A'DDCB CBAAC ED CB ABC图3DCBA26.阅读下面材料:小红遇到这样一个问题:如图1,在四边形ABCD 中,︒=∠=∠90C A ,︒=∠60D ,34=AB ,3=BC ,求AD 的长.小红发现,延长AB 与DC 相交于点E ,通过构造Rt△ADE ,经过推理和计算能够使问题得到解决(如图2). 请回答:AD 的长为.参考小红思考问题的方法,解决问题:如图3,在四边形ABCD 中,21tan =A ,︒=∠=∠135C B ,9=AB ,3=CD ,求BC 和AD 的长.26.(1)请你根据下面画图要求,在图①中完成画图操作并填空.如图①,△ABC 中,∠BAC =30°,∠ACB =90°,∠P AM =∠A . 操作:(1)延长BC . (2)将∠P AM 绕点A 逆时针方向旋转60°后,射线AM 交BC 的延长线于点D . (3)过点D 作DQ//AB .(4)∠P AM 旋转后,射线AP 交DQ 于点 (5)连结BG ..结论:ABAG=__________ (2)如图②,△ABC 中,AB =AC =1,∠BAC =36°,进行如下操作:将△ABC 绕点A 按逆时针方向旋转度角,并使各边长变为原来的n 倍(n >1),得到△''AB C . 当点B 、C 、'B 在同一条直线上,且四边形''ABB C 为平行四边形时(如图③),求和n 的值.αα图1 图2E26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题: 如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC =°.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.答案 26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分26. 解:(1)AF =BE ; …………1分(2)AFBE=2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒, ∴AC BD ⊥,60ABO ∠=︒. ∴90FAO AFO ∠+∠=︒. ∵AG BE ⊥,∴90EAG BEA ∠+∠=︒. ∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分 ∴AF AOBE OB= . ∵60ABO ∠=︒,AC BD ⊥,∴tan 60AOOB=︒=∴AFBE=. …………5分 26. (1)40 ……………………1分 (2)如图由题意:∵90AEB ADB ∠=∠= ,∴点A 、E 、D 、B 在以AB 为直径的半圆上 ∴∠B AE +∠BDE =180°………………3分 又∵∠CDE +∠BDE =180°∴∠CDE =∠B A E ……………………4分 同理:点A 、F 、D 、C 在以AC 为直径的半圆上. ∴∠BDF =∠BAC∴∠BDF =∠CDE ……………………5分26.解:画出DF ,选择A (或画出D ’F ,选择B )…………………………………………………1 画出DF 和D ’F ,选择C ……………………………………………………………………2 证明:如图,过点C 作CG ⊥AB 交AB 的延长线于点G , 过点F 作DH ⊥DE 交DE 的延长线于点H , ∵∠B =∠E , ∴180°﹣∠B =180°﹣∠E , 即∠CBG =∠FEH ,…………………………………………………………………………3 在△CBG 和△FEH 中,90CBG FEH G H BC EF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△CBG ≌△FEH (AAS ),-----------1分 -----------2分 -----------3分 -----------5-----------4分 -----------5分∴CG =FH ,在Rt △ACG 和Rt △DFH 中,AC DFCG FH=⎧⎨=⎩,Rt △ACG ≌Rt △DFH (HL ),∴∠A =∠D , (4)在△ABC 和△DEF 中,A D B E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (AAS ).………………………………………………………………5 26.(2) 连接AO 、BO ,如图②,由题意可得:∠EOF =∠AOB ,则∠EOA =∠FOB . 在△EOA 和△FOB 中,EAO FBO OA OBEOA FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EOA ≌△FOB .∴S 四边形AEOF =S △OAB .过点O 作ON ⊥AB ,垂足为N ,如图, ∵△ABC 为等边三角形, ∴∠CAB =∠CBA =60°.∵∠CAB 和∠CBA 的平分线交于点O ∴∠OAB =∠OBA =30°.∴OB=OA =2.∵ON ⊥AB ,∴AN=NB ,ON =1.∴AN = ∴AB=2AN =2.∴S △OAB =AB •ON =.S 四边形AEOF = (3) S 面积=4sincos.26.(1)1<AD <5;………………………2分(2)证明:延长PD 至点F ,使EF =PE ,连接BF .………………………3分∵BE =AE ,∠BEF =∠AEP , ∴△BEF ≌△AEP , ∴∠APE =∠F ,BF =PA . 又∵∠BDF =∠CDP ,∴△BDF ∽△CDP . (4)分 FE AB D CPy =2即PA ·CD =PC ·BD . ………………………5分26.22142ab b a c ⨯+-=(),.…….3分 22222ab b ab a c +-+=,.……. 4分222a b c +=..……. 5分26.(本小题满分5分)解:BC +DE .解决问题:连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形, ∴AB // FE ,BF =AE . ∴DC //FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形.…………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°.…………………………………………………………5分26.解:(1)△BDE 是等腰三角形. ………………………1分. (2)BC 的长为5.8.………………………………2分. ∵△ABC 中,AB=AC, ∠A =20°,654321F ED CBA∴∠A BC=∠C= 80°,∵BD 平分∠B. ∴∠1=∠2= 40°,∠BDC= 60°,.在BA 边上取点E ,使BE=BC=2,连接DE ,. ………………………3分 则△DEB ≌△DBC ,∴∠BED=∠C= 80°, ∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF=DB ,连接FE ,…………………………4分 则△BDE ≌△FDE ,∴∠5=∠1= 40°,BE=EF=2, ∵∠A =20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分. 26.(本小题满分5分) 解:阅读材料(1)△ADC ≌△A ′DC ;………………………………………………………………1分 (2)BC =AC +AD .……………………………………………………………………2分解决问题如图,在AB 上截取AE =AD ,连接CE . ∵ AC 平分∠BAD , ∴ ∠DAC =∠EAC . 又 ∵AC =AC , ∴△ADC ≌△AEC . ………………………3分 ∴AE =AD =9,CE=CD =10=BC . 过点C 作CF ⊥AB 于点F .∴ EF =BF .设EF =BF =x .在Rt △CFB 中,∠CFB =90°,由勾股定理得CF 2=CB 2-BF 2=102-x 2. 在Rt △CFA 中,∠CFA =90°,由勾股定理得CF 2=AC 2-AF 2=172-(9+x )2. ∴ 102-x 2=172-(9+x )2,解得x =6.……………………………………………………………………………4分 ∴ AB =AE +EF +FB =9+6+6=21.∴AB 的长为21.…………………………………………………………………5分26.解:AD 的长为6. ………………………………...1分解决问题:如图,延长AB 与DC 相交于点E . ∵135ABC BCD ∠=∠=︒, ∴︒=∠=∠45ECB EBC .∴CE BE =,︒=∠90E . …………………. ………………….2分 设x CE BE ==,则x BC 2=,x AE +=9,3DE x =+.在Rt △ADE 中,︒=∠90E ,∵21tan =A , ∴21=AE DE . D C F E B A即2193=++x x .……………..3分 ∴3=x .经检验3=x 是所列方程的解,且符合题意.∴23=BC ,12=AE ,6=DE . ……………. ………..4分 ∴56=AD . ……………………………………………… ...5分26. (1)…………………………..(1分)21=AG AB ………………………………………………..(2分)(2)根据题意得,''36C AB CAB ∠=∠=︒,AB’= n ABα=∠'CAC∵四边形ABB 'C '为平行四边形,∴1''===AC AB C B ,'AC ∥'BB , ∴'''36C AB AB B ∠=∠=︒,, ∵AB =AC ,∠BAC =36°, ∴72ABC ACB ∠=∠=︒,∴''72CAC B AB α=∠=∠=︒,……………………………..(3分) ∵∠BAC =36°,∴'36B AC ∠=︒,∴''36B AC AB C ∠=∠=︒, ∴1'==C B AC∵B B ∠=∠,'36BAC AB B ∠=∠=︒,∴△ABC ∽△'B BA , ∴'AB BCBB AB=, ∴解得251'+=BB (舍负), …………………..(4分)∵1n >,∴n =. ………………………………………..(5分)26.解:45. …………………………………………………1分画图见图6. ………………………………………3分 45.…………………………………………………5分图②p。
2015年各区一模27题及答案
2015年各区中考数学一模试题第27题 1海淀2东城3西城4朝阳5丰台6石景山7昌平 8顺义9通州10大兴11怀柔12密云13平谷 14延庆15房山16燕山17门头沟解答题(本题共22分,第27题7分,第28题7分,第29题8分) 海淀一模27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.东城一模27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.西城一模27 已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.朝阳一模27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1的一个交点记为A ,与M 2的一个交点记为B ,点A 的横坐标是-3.(1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .①当点C 的横坐标为2时,直线n x y +=恰好经过正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的取值范围(直接写出结果).丰台一模27.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.石景山一模27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于(3,0)A ,B 两点.(1)求抛物线的表达式及点B 的坐标;(2)当23x -<<时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点(4,2)C 的直线(0)y kx b k =+≠与图象M在第三象限内有两个公共点,结合图象求b 的取值范围.顺义一模27.在平面直角坐标系xOy 中,抛物线21212y ax x a =+-+与y 轴交于C 点,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为-1.(1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为'P ,求点'P 的坐标; (3)将抛物线在A ,B 两点之间的部分(包括A , B 两点),先向下平移3个单位,再向左平移m (0m >)个单位,平移后的图象记为图象G ,若图象G 与直线'PP 无交点,求m 的取值范围.通州一模27.二次函数2(0)y ax bx c a =++≠的图象与一次函数1y x b =+k 的图象交于)10(,A 、B 两点,(1,0)C 为二次函数图象的顶点.(1)求二次函数2(0)y ax bx c a =++≠的表达式;(2)在所给的平面直角坐标系中画出二次函数2(0)y ax bx c a =++≠的图象和一次函数1y x b =+k 的图象;(3)把(1)中的二次函数2(0)y ax bx c a =++≠的图象平移后得到新的二次函数4444123123321213xOy22(0,)y ax bx c m a m =+++≠为常数的图象,.定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为1y 或2y ,如果1y ≠2y ,函数f 的函数值等于1y 、2y 中的较小值;如果1y =2y ,函数f 的函数值等于1y (或2y ).” 当新函数f 的图象与x 轴有三个交点时,直接写出m 的取值范围.大兴一模27.已知抛物线222y x x k =++-与x 轴有两个不同的交点.(1) 求k 的取值范围;(2)若k 为正整数,且该抛物线与x 轴的交点都是整数点,求k 的值.(3)如果反比例函数my x=的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足1<0x <2,请直接写出m 的取值范围.怀柔一模27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a 为正整数. (1)求a 的值.(2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m 2+1个单位,当 -2≤x≤1时,二次函数有最小值-3,求实数m 的值.23.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区,两地区与该农机租赁公司商定每天的租赁价格见下表:每台甲型收割机的租金 每台甲型收割机的租金 A 地区 1800 1600 B 地区16001200(1)派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元)求x 与y 间的函数关系时,并写出x 的取值范围;(2)若使农机租菱公司这50台联合收割机一天的租金总额比低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议。
2014-2015学年北京市密云县初三第一学期期末数学试题(含答案)
密云县2014-2015学年度第一学期期末2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+-D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B的值等于A .34 B . 34C .45D . 35ABCDCBA 6. 如图,AB 是O 的直径,CD 、是圆上两点,70CBA ∠=︒,则D ∠的度数为 A .10︒ B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是 A .相离 B .相交 C .相切 D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为DCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标;(2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.ABBAPEOD CBA 16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
2014-2015学年北京市密云县初三第一学期期末数学试题(含答案)
密云县2014-2015学年度第一学期期末2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+-D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒,8AC =,6BC =,则sinB 的值等于A .34 B . 34C .45D . 35ABCDCBA 6. 如图,AB 是O 的直径,CD 、是圆上两点,70CBA ∠=︒,则D ∠的度数为 A .10︒ B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是 A .相离 B .相交 C .相切 D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为DCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标;(2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.ABBAPEOD CBA 16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
等腰三角形的性质
1.(2015•台湾)如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()2.(2015•昆山市二模)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()3.(2015•德州模拟)一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()•AG×AM DN=4.(2015•潍坊校级一模)已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为()得5.(2015•宝应县校级模拟)已知等腰三角形的一边长为5,另两边的长是方程x2﹣6x+m=0的两根,则此等腰三角形的周长为()6.(2015•徐州一模)如果等腰三角形的底角为50°,那么它的顶角为()7.(2015•大渡口区模拟)在等腰△ABC中,AB=AC,其周长为16cm,则AB边的取值范围是()∴8.(2015•武汉模拟)如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()9.(2015•海宁市模拟)已知等腰三角形的腰长为2,底边长不可能的是()10.(2015•苏州一模)若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()二.解答题(共20小题)11.(2015•应城市二模)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.12.(2015•徐州模拟)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC,DE∥AB.证明:(1)AE=DC;(2)四边形ADCE为矩形.13.(2015•密云县一模)已知如图,A(3,0),B(0,4),C为x轴上一点.(1)画出等腰三角形ABC;(2)求出C点的坐标.是顶点时,.14.(2015春•滕州市校级期中)已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.15.(2015春•兴化市月考)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,(1)证明:∠APO+∠DCO=30°;(2)判断△OPC的形状,并说明理由.BAD=∠BAC=。
【初中数学】北京市各区县2015年中考一模数学试题集(共15套) 通用4
东城区2014—2015学年第二学期初三综合练习(一) 数学试题 2015.5学校 班级 姓名 考号一律填涂或书写在答题卡上一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是 A .2- B .12-C .12D .22.2015年元旦期间,北京各大公园接待游客达245 000万人次。
其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯ B .52.4510⨯C .62.4510⨯ D .60.24510⨯ 3.一个几何体的三视图如图所示,则这个几何体是 A .圆柱 B .球 C .圆锥 D . 棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的 中位数和众数分别是5. 在六张卡片上分别写有π,, 1.5,3,0,3-,从中任意抽取一张,卡片上的数为无理数的概率是6.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒ 7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的延长线于点D ,连接OC ,AC . 若50D ∠=︒,则A ∠的度数是A. 20︒ B .25︒C .40︒D .50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为 A. 43.5 B. 50 C. 56 D. 589. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是A.B.2C.D.410. 如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=︒,点A 与点D 重合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my -= . 12 .13. 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围 是 .14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表 单位: 元/立方米某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费 元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.图1 图216.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1AO 为 边做正方形111AOC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 . 三、解答题(本题共30分,每小题5分)17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.求证:DC AB ∥.18. 计算:()1136043-⎛⎫--︒+-+- ⎪⎝⎭π.19.解不等式组:()2131,5 4.2x x x x --⎧⎪⎨-+⎪⎩><20.先化简,再求值:222442111a a a a a a -+-+÷+--,其中1a =. 21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?F(1)求反比例函数的解析式; (2)求△BOD 的面积. 四、解答题(本题共20分,每小题5分)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,共调查 名学生; (2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数; (4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB 的延长线交于点E .(1)求证:12∠=∠;(2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值.图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b≥时,{}min a b b =,;当a b <时, {}min a b a =,.如:{}m i n 122-=-,,{}min 121-=-,. (1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.东城区2014-2015学年第二学期初三综合练习(一)数学试题参考答案及评分标准 2015.517. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.36043134415-⎛⎫-︒+-+- ⎪⎝⎭=-+=-解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<, …………2分 1x -由②得,>, …………4分所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+20.解:分当1a =时,2=原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分根据题意,列方程得:200=120(25)x x -,…………3分 解得: 15x =. …………5分 答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E . ∵CE x ⊥轴,AB x ⊥轴,()4,2A -, ∴CE AB ∥,()4,0B -. ∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线ky x=经过点C , ∴2k =-.∴反比例函数的解析式为2y x=-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上, ∴点D 的纵坐标为12. …………4分∴BOD S △11141222OB BD =⋅⋅=⨯⨯=.…………5分 四、解答题(本题共20分,每小题5分) 23.(1)证明:∵DE BC ∥,CE AB ∥,∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线,∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分 (2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得AB =. ∵1122AB CF AC BC ⋅=⋅,∴AC BC CF x AB ⋅==.∵12CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生; (2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名); 补全条形图如图; …………3分 (3)二胡部分所对应的圆心角的度数为:60200×360°=108°; …………4分 (4)1500×30200=225(名). …………5分答:1500名学生中估计最喜欢古琴的学生人数为225. 25.(1)证明:连结OD ,如图.∵DE 为⊙O 的切线,OD 为半径, ∴OD DE ⊥.∴90ODE ∠=︒,即290ODC ∠+∠=︒.26. 解:(1)AF =BE ; …………1分(2)AF BE=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒,∴AC BD ⊥,60ABO ∠=︒.∴90FAO AFO ∠+∠=︒.∵AG BE ⊥,∴90EAG BEA ∠+∠=︒.∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分∴AF AO BE OB= . ∵60ABO ∠=︒,AC BD ⊥,∴tan 60AO OB=︒=.∴AF BE = …………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B , ∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分28.解:(1) 当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,B D A A '⊥仍然成立;------------3分(3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒. ∵BC BC '=,∴BCC BC C ''∠=∠.∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠.在AEC △和A FC ''△中,90,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△. 图2图1∴AE A F '=.在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△.∴AD A D '=.∵AB A B '=,∴'ABA △为等腰三角形.∴BD A A '⊥------------7分29.解:(1)∵20x ≥,∴2x -1≥-1.∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-, ∴13k --≥. ∴2k -≥. ┉┉5分(337m -≤≤. ┉┉8分。
2014-2015学年北京市密云县初三第一学期期末数学试题(含答案)
AC 4 16 , PD = ,求 O 的半径. = AB 5 3
A
O
B
22. 阅读下面材料: 小明遇到下面一个问题: 如图 1 所示, AD 是 ABC 的角平分线, AB = m, AC = n ,求
BD 的值. DC
小明发现,分别过 B , C 作直线 AD 的垂线,垂足分别为 E , F .通过推理计算,可以
C
r = 2 ………………………………………………..1 分 OE = DE − OB = 1 ………………………………………2 分 连结 OB.
A
E O
B
在 Rt OEB 中, EB = OB 2 − OE 2 = 3 …………………….3 分
CD 是⊙ O 的直径, AB 是⊙ O 的弦, CD 是⊙ O 的直径,
C
A
30° 10m
B 60° D
y 5 4 3 2 1 O
19. 在平面直角坐标系 xOy 中,一次函数 y = − x + b 和函数
4 y = ( x 0) 都经过 A(1, m) . x
(1)求 m 值和一次函数的解析式;
4 (2)点 B 在函数 y = ( x 0) 的图象上, x
且位于直线 y = − x + b 下方.若点 B 的 横纵坐标都为整数,直接写出点 B 的坐标. 20. 在
D. mn = 12
2. 如图,△ ABC 中, DE ∥ BC , 则 AC 的长是 A. 2cm C. 6cm
3. 如图,⊙ O 是 ABC 的外接圆, A = 50 ,则 BOC 的度数为 A. 40 C. 80 B. 50 D. 100
A
B O
C
4. 将抛物线 y = 2 x 向右平移 1 个单位,再向上平移 3 个单位,得到的抛物线是
2014-2015学年北京市密云县初三第一学期期末数学试题(含答案)
密云县2014-2015学年度第一学期期末2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+-D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B的值等于A .34 B . 34C .45D . 35ABCDCBA 6. 如图,AB 是O 的直径,CD 、是圆上两点,70CBA ∠=︒,则D ∠的度数为 A .10︒ B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是 A .相离 B .相交 C .相切 D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为DCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标;(2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.ABBAPEOD CBA 16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
2015---2016密云初三数学试题参考答案
2015年密云区九年级上期末试卷数学参考答案和评分参考一、选择题(本题共30分,每小题3分,)1.B2.A3.C4.A5.A6.B7. C8. B9.B 10. D二、填空题(本题共18分,每小题3分)11. 1:4 12. 2(3)4y x =-- 13. 3π 14.21(0,)y x h =+=写对即可 15. 5.5cm 16. 垂径定理,等弧所对的弦相等、圆心角相等,四条边相等四个角相等的四边形是正方形。
三、解答题(本题共30分,每小题5分)17.解:原式==+-1…………………………………………………………4分=+-=311434 ……………………………………………………………5分 18.解:由圆周角定理可得:∠D =∠B ,………………………………………………1分 在△ADE 和△CBE 中,∠D=∠B∠AED=∠CEB AD=CB∴△ADE ≌△CBE (AAS ),…………………………………………………4分∴AE=CE .……………………………………………………………………5分19.解:∵∠A=∠A,∠ACD=∠ABC∴△ADC ∽△ACB .……………………………………………………………………1分 ∴=∴===∴=∴22232,61245分分分分AD AC AC AB AD AD AB AC AC 20. 解:设桥拱 AB 所在圆的圆心为O ,半径为R m ,连接OA ,OB ,过点O 作OC ⊥AB ,D 为垂足,与 AB 相交于点C.∴ AD = BD.∵ AB = 37.4,DC = 7.2,∴ AD =1/2AB =1/2×37.4 = 18.7,OD = OC - DC = R - 7.2 .在 Rt △OAD 中,由勾股定理,得OA 2 = AD 2 + OD 2 .即 R 2 = 18.7 2 + (R-7.2)2 .解这个方程,得R 27.9 (m ) .答:赵州桥的桥拱所在圆的半径约为27.9m21. 解:(1)把(-1,0),(0,-3)代入2y x bx c =++得: 1-b+c=0 c= -3 , ………………………………………………………………………………1分∴ b = -2c= -3 ………………………………………………………………………………2分∴223y x x =--……………………………………………………………………3分(2)2223(1)4y x x x =--=--…………………………………………………4分 ∴顶点坐标为(1,-4)。
北京市密云县2015届九年级(上)期末统一考试数学试卷(含答案)
OBCC密云县2014-2015学年度第一学期期末初三数学试卷 2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+-D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34B . 34C .45D . 356. 如图,AB 是O 的直径,C D 、是圆上两点,70CBA ∠=︒,则D ∠的度数为 A .10︒ B .20︒ C .70︒ D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x轴的位置关系是A .相离B .相交C .相切D .无法确定8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B→A→C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为AABDCBA DCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.E15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标; (2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒, 求DF 的长.17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,C D A B ⊥,垂足为E .1,3CE ED == ,求AB 长.DC18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
2014-2015学年北京市密云县初三第一学期期末数学试题(含答案)
CAOB密云县2014-2015学年度第一学期期末初三数学试卷 2015.1考生须知1.本试卷共6页,共四道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用2B 铅笔. 4.考试结束,请将本试卷和答题纸一并交回.一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+-D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34 B . 34C .45D . 35ABCDCBA 6. 如图,AB 是O 的直径,CD 、是圆上两点,70CBA ∠=︒,则D ∠的度数为 A .10︒ B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是 A .相离 B .相交 C .相切 D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为DCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标;(2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.ABBAPEOD CBA 16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
2015年初三一模数学试卷及答 案
2015年度初三毕业及统一练习数学 试 卷 2015.5学校 姓名 准考证号 考生须知 1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.如图,数轴上有A ,B ,C ,D 四个点,其中绝对值为2的数对应的点是A .点A 与点CB .点A 与点DC .点B 与点CD .点B 与点D2.南水北调工程是迄今为止世界上规模最大的调水工程. 2015年3月25日,记者从北京市南水北调办获悉,北京自来水厂每日利用南水约1 300 000立方米.将1 300 000用科学记数法表示应为 A .70.1310⨯ B .71.310⨯ C .61.310⨯ D .51310⨯3. 下面平面图形中能围成三棱柱的是A B C D4.如图,AB ∥CD ,AB 与EC 交于点F ,如果EA EF =,110C ∠=︒,那么E ∠等于A .30︒B .40︒C .70︒D .110︒5. 如图,数轴上表示的是某不等式组的解集,那么这个不等式组可能是A .23x x -⎧⎨⎩≥>B .23x x -⎧⎨⎩<≤C .23x x -⎧⎨⎩<≥D .23x x -⎧⎨⎩>≤6. 关于x 的一元二次方程2210mx x --=有两个实数根,那么字母m 的取值范围是A .1m ≥-B .1m >-C .10m m ≠≥-且D .10m m ≠>-且 7. 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频D CB A 021-2-1EA CB DF 频率0.251331224率,绘制了下边的折线图,那么符合这一结果的实验最有可能的是 A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” B .袋子中有1个红球和2个黄球,它们只有颜色上的区别, 从中随机地取出一个球是黄球C .掷一枚质地均匀的硬币,落地时结果是“正面向上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6 8. 代数式245x x -+的最小值是A .-1B .1C .2D .5 9. 为增强居民的节水意识,某市自2014年实施“阶梯水价”. 按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是 A .240立方米B .236立方米C .220立方米D .200立方米10.如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B 便随着向右滑行y 米,反映y 与x 变化关系的大致图象是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:2mx 2-4mx +2m = .12. 某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:一周在校的体育锻炼时间(小时)5 6 7 8 人数2562那么这15名学生这一周在校参加体育锻炼的时间的众数是 小时. 13.如图,A ,B ,C 三点都在⊙O 上,如果∠AOB =80°,那么∠ACB = °.14.请写出一个图象经过点(11-,),并且在第二象限内函数值随着自变量的增大而x (立方米)y (元)14609002601800NM BAOC增大的函数的表达式: .15.如图,O 为跷跷板AB 的中点,支柱OC 与地面MN 垂直,垂足为点C ,且OC =50cm ,当跷跷板的一端B 着地时,另一端A 离地面的高度为 cm.16.右图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口 A ,B ,C 的机动车辆数如图所示,图中 123,,x x x 分别表示该时段单位时间通过路段 AB ,BC ,CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则123,,x x x 的大小关系是 .(用“>”、“<”或“=”连接)三、解答题(本题共30分,每小题5分)17.已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF . 求证:∠B =∠E .18. 计算:0-112sin60(3.14π)12()2+--+.19.解分式方程: 112x x x -=-.20.如果21m m -=,求代数式21)(1)(1)2015m m m -++-+(的值.21.如图,一次函数122y x =+的图象与x 轴交于点B ,与反比例函数ky x=的图象的一个交点为A (2,m ). (1)求反比例函数的表达式;xAyOBCFDECBANMBCAO555035302030CB Ax 2x 1x 3(2)过点A作AC⊥x轴,垂足为点C,如果点P在反比例函数图象上,且△PBC的面积等于6,请直接写出点P的坐标.22.列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.四、解答题(本题共20分,每小题5分)23.如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)如果∠A=60 ,菱形ABCD的面积为38,求DF的长.24.根据某市统计局提供的2010~2014年该市地铁运营的相关数据,绘制的统计图表如下:2010~2014年某市地铁运营的日均客流量统计表2014年某市居民乘地铁出行距离情况统计图F EDCBA根据以上信息解答下列问题:(1)直接写出“2014年某市居民乘地铁出行距离情况统计图”中m 的值;(2)从2010年到2014年,该市地铁的日均客流量每年的增长率近似相等,估算2015年该市地铁运营的日均客流量约为____________万人次;(3)自2015年起,该市地铁运营实行了新票价:乘地铁5公里内(含5公里)收费2元,乘地铁5~15公里(含15公里)收费3元,乘地铁15公里以上收费4元.如果2015年该市居民乘地铁出行距离情况与2014年基本持平,估算2015年该市地铁运营平均每日票款收入约为____________万元.25.如图,⊙O 的直径AB 垂直于弦CD ,垂足为点E ,过点C 作⊙O 的切线,交AB 的延长线于点P ,联结PD .(1)判断直线PD 与⊙O 的位置关系,并加以证明;(2)联结CO 并延长交⊙O 于点F ,联结FP 交CD 于点G ,如果CF =10,4cos 5APC ∠=,求EG 的长.26.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍 的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.a b c cac bac b GO PABCD E F由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+. 所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请 你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到 , 整理,得 , 所以 .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.28.在△ABC 中,CA =CB ,CD 为AB 边的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G. (1)如果∠ACB =90°,①如图1,当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形; ②如图2,当点P 不与点A 重合时,求CFPE的值; 图1图24444123123321213xOy(2)如果∠CAB =a ,如图3,请直接写出CFPE的值.(用含a 的式子表示)29. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离为 ; (2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值是 ; (3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.图1图2图 34444123123321213xO y参考答案一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BCA B DC DB CA二、填空题(本题共18分,每小题3分)题号 11 12 13 1415 16答案22(1)m x -7401y x=- , 答案不唯一100312x x x >>三、解答题(本题共30分,每小题5分) 17.证明:∵BF =CE ,∴BC =EF .……1分 ∵AC ∥DF ,∴∠ACB =∠DFE .……2分 ∵AC =DF ,∴ △ACB ≌△DFE .……4分∴∠B =∠E .……5分 18.解:原式=3212322⨯+-+…4分 =33-....5分19.解:去分母得:2(2) 2.x x x x --=-…1分222 2.x x x x -+=-……2分2.x =-…….3分经检验,2x =-是原方程的解.…….4分所以,原方程的解是 2.x =-…….5分20. 解:原式=222112015m m m -++-+…1分=2222015m m -+……2分 =22()2015m m -+…….3分 ∵21m m -=, ∴原式=2017. …….5分21.(1)一次函数122y x =+的图象经过点A (2,m ), ∴3m =.∴点A 的坐标为(2,3). ………1分反比例函数ky x=的图象经过点A (2,3), ∴6k =………2分∴反比例函数的表达式为6.y x=……3分(2)(3,2)(3,2).P P --,………………5分22. 解:设新馆的展厅总面积为x 万平方米,原两馆大楼的展览面积为y 万平方米,根据题意列方程得:…1分4.2,30.4.x y x y =+=-⎧⎨⎩………3分 解得: 6.5,2.3.x y ==⎧⎨⎩ ………4分答:新馆的展厅总面积为6.5万平方米,原两馆大楼的展览面积为2.3万平方米. ………5分 23.(1)证明: ∵CE =CD ,CF =CB ,∴四边形DBEF 是平行四边形..…….1分 ∵四边形ABCD 是菱形, ∴CD =CB ..…….2分 ∴CE =CF ,∴BF =DE ,∴四边形DBEF 是矩形..…….3分23.(2)过点D 作DG ⊥BC 于点G ,∴∠DGC =90°. ∵四边形ABCD 是菱形,∠A =60︒,∴∠BCD =60°. 在Rt △CDG 中,cos ∠BCD =12CG CD =, ∴设CG =x ,则CD =BC =2x ,DG =3x . ∵菱形ABCD 的面积为38,∴83BC DG ⋅=.∴2383x x ⋅=,得2x =±(舍负),∴DG =23..……. 4分 ∵CF =CD ,∠BCD =60°,∴∠DFC =30°. ∴DF =2DG =43..…….5分24.(1)15;…1分(2)483;…2分(3)1593.9.…2分25.(1)PD 与⊙O 相切于点D ..……. 1分 证明:联结OD∵在⊙O 中,OD OC =,AB CD ⊥于点E , ∴12∠=∠. 又∵OP OP =,∴OCP ∆≌ODP ∆. ∴OCP ODP ∠=∠.又∵PC 切⊙O 于点C ,OC 为⊙O 半径, ∴OC PC ⊥..……. 2分∴090OCP ∠=.∴090ODP ∠=.∴OD PD ⊥于点D . ∴PD 与⊙O 相切于点D ..……. 3分 (2)作FM AB ⊥于点M .∵090OCP ∠=,CE OP ⊥于点E ,∴03490∠+∠=,0490APC ∠+∠=.∴3APC ∠=∠.∵4cos 5APC ∠=,∴Rt △OCE 中,4cos 35CE OC =∠=.∵10CF =,∴152OF OC CF ===.∴4CE =,3OE =..……. 4分 又∵FM AB ⊥,AB CD ⊥,∴090FMO CEO ∠=∠=.ABCDEFG M3421FE D CBAPO G5BCAxO yD x =1y =2x -2y =2x 2-4x -2-13-2-4∵51∠=∠,OF OC =,∴OFM ∆≌OCE ∆.∴4FM CE ==,3OM OE ==. ∵在Rt △OCE 中,4cos 5PC OP APC =∠=,设4,5PC k OP k ==,∴3OC k =. ∴35k =,53k =.∴253OP =.∴163PE OP OE =-=,343PM OP OM =+=. 又∵090FMO GEP ∠=∠=,∴FM ∥GE .∴PGE ∆∽PFM ∆.∴GE PE FM PM =,即1633443GE=.∴3217GE =..……. 5分26.22142ab b a c ⨯+-=(),.…….3分 22222ab b ab a c +-+=,.……. 4分 222a b c +=..……. 5分五、解答题27 . 解:(1)∵抛物线22y x mx n =++过点 A (-1,a ),B (3,a ), ∴抛物线的对称轴x =1..……. 1分 ∵抛物线最低点的纵坐标为-4 , ∴抛物线的顶点是(1,-4)..……. 2分 ∴抛物线的表达式是22(1)4y x =--, 即2242y x x =--..…3分把A (-1,a )代入抛物线表达式,求出4a =..……. 4分(2)∵抛物线顶点(1,4)C -关于y 轴的对称点为点D ,∴(1,4)D --.求出直线CD 的表达式为4y =-. .……. 5分求出直线BD 的表达式为22y x =-,当1x =时,0y =..……. 6分 所以40t -<≤..……. 7分28.(1)①作图.……. 1分ADE ∆(或PDE ∆).…….2分②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,.…….3分∴CPM CAB ∠=∠.∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF CG ⊥,∴∠PFC =∠PFN =90°.∵PF =PF ,∴PFC ∆≌PFN ∆.∴CF FN =..…….4分 由①得:PME ∆≌CMN ∆.∴PE CN =.∴12CF CF PE CN ==..…….5分 (2)1tan 2α..…….7分29. (1)4;.…….2分(2)①直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,设l 与,x y 轴的交点分别为,E F ,则1(,0)(0,1)2E F -,.∴52EF =..…….3分 ∵EOF MHE ∆∆∽∴MH ME OF EF =,即72152MH=.∴755MH =.∴点M 到直线21y x =+的距离为755..…….4分 ②135a =±..…….6分(3)3b =-或374b =..…….8分GF EBC(P )A DG F EC D A PBN MM 3—121H yOxEF y =2x +1。
2015年北京市密云县中考一模数学试卷(解析版)
8. (4 分)如图,将一张正方形纸片剪成四个小正方形,得到 4 个小正方形,成
第 1 页(共 23 页)
为第一次操作;然后,将其中一个正方形再剪成四个小正方形,共得到 7 个 小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形, 共得到 10 个小正方形,称为第三次操作;…,根据以上操作,若要得到 2014 个小正方形,则需要操作的次数是( )
A.669
B.670
C.671
D.672
二、填空题(本题共 16 分,每小题 4 分) 9. (4 分)若|m﹣3|+(n+2)2=0,则 m+2n 的值为 .
10. (4 分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1= 35°,那么∠2 是 度.
11. (4 分)二次函数 y=x2﹣2x+3 图象的顶点坐标为
4. (4 分)一个袋子中装有 6 个黑球 3 个白球,这些球除颜色外,形状、大小、 质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球, 摸到白球的概率为( A. B. ) C. D.
5. (4 分)初四•三班 5 位同学在“爱心捐助”捐款活动中,捐款如下(单位: 元) :8,6,16,4,16,那么这组数据的众数、中位数、平均数分别为( A.16,16,10 B.10,16,10 C.8,8,10 D.16,8,10 )
15. (5 分)已知 2a2﹣a=2,求
的值.
16. (5 分) 如图, 平行四边形 ABCD 中,AE⊥BD,CF⊥BD,垂足分别为 E、F, 求证:∠BAE=∠DCF.
17. (5 分)列方程和方程组解应用题: 某班有 40 名同学去看演出,购买甲、乙两种票共用去 370 元,其中甲种票每张 10 元,乙种票每张 8 元,求购买了甲、乙两种票各多少张? 18. (5 分) 已知: 如图, 在平面直角坐标系 xOy 中, 直线 AB 与 x 轴交于点 A (﹣ 2,0) ,与反比例函数在第一象限内的图象的交于点 B(2,n) ,连接 BO,若 S△AOB=4. (1)求该反比例函数的解析式和直线 AB 的解析式; (2)若直线 AB 与 y 轴的交点为 C,求△OCB 的面积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.( 5 分)列方程和方程组解应用题: 某班有 40 名同学去看演出,购买甲、乙两种票共用去 甲、乙两种票各多少张?
370 元,其中甲种票每张 10 元,乙种票每张 8 元,求购买了
18.(5 分)已知:如图,在平面直角坐标系 xOy 中,直线 AB 与 x 轴交于点 A(﹣ 2 ,0),与反比例函数在第一象限 内的图象的交于点 B( 2, n),连接 BO,若 S△AOB=4. ( 1)求该反比例函数的解析式和直线 AB 的解析式; ( 2)若直线 AB 与 y 轴的交点为 C,求△ OCB的面积.
3 / 15
AC 于点 N,交 BC的延长线于点 E,直线 CF交 EN 于点 F,且∠ ECF=∠ E. ( 1)证明: CF是⊙ O 的切线; ( 2)设⊙ O 的半径为 1,且 AC=CE,求 MO 的长.
21.( 5 分)刘明对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图 你根据图中提供的信息,解答下列问题:
.
1 / 15
10.( 4 分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠
1=35 °,那么∠ 2 是
度.
11.( 4 分)二次函数 y=x2﹣2x+3 图象的顶点坐标为
.
12.( 4 分)如图,一个空间几何体的主视图和左视图都是边长为
1 的正三角形,俯视图是一个圆,那么这个几何体
的侧面积是
)
A.140 °B. 130 °C. 120 °D. 110 °
7.(4 分)把代数式 mx2﹣ 6mx+9m 分解因式,下列结果中正确的是(
)
A. m( x+3) 2 B. m (x+3)( x﹣ 3) C.m ( x﹣ 4) 2 D. m( x﹣ 3)2
8.(4 分)如图,将一张正方形纸片剪成四个小正方形,得到
四、解答题(本题共 20 分,每小题 5 分) 19.( 5 分)已知如图, A( 3, 0), B( 0, 4),C 为 x 轴上一点. ( 1)画出等腰三角形 ABC; ( 2)求出 C 点的坐标.
20.( 5 分)如图, AB 是⊙ O 的直径,且点 C 为⊙ O 上的一点,∠ BAC=30°, M 是 OA 上一点,过 M 作 AB 的垂线交
43 050 000 亩.用科
3.(4 分)在函数 y=
中,自变量 x 的取值范围是(
)
A. x≥ 3 B. x> 3 C. x≤3 D. x< 3
4.(4 分)一个袋子中装有 6 个黑球 个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条
件下,随机地从这个袋子中摸出一个球,摸到白球的概率为(
4 个小正方形,成为第一次操作;然后,将其中一个
正方形再剪成四个小正方形, 共得到 7 个小正方形, 称为第二次操作; 再将其中的一个正方形再剪成四个小正方形,
共得到 10 个小正方形, 称为第三次操作; …,根据以上操作, 若要得到 2014 个小正方形, 则需要操作的次数是 ( )
A.669 B. 670 C. 671 D. 672 二、填空题(本题共 16 分,每小题 4 分) 9.(4 分)若 | m ﹣ 3|+ ( n+2) 2=0,则 m+2n 的值为
)
A.
B.
C.
D.
5.( 4 分)初四 ?三班 5 位同学在 “爱心捐助 ”捐款活动中,捐款如下(单位:元) : 8,6,16, 4,16,那么这组数据
的众数、中位数、平均数分别为(
)
A.16, 16, 10 B. 10, 16,10 C. 8,8 ,10 D. 16,8, 10
6.(4 分)如图,△ ABC 是⊙ O 的内接三角形,若∠ ABC=70°,则∠ AOC的度数等于(
.
三、解答题(本题共 30 分,每小题 5 分)
13.( 5 分)计算:
+ ﹣ 4cos30 °.
14.( 5 分)解不等式
,并将解集在数轴上表示出来.
15.( 5 分)已知 2a2﹣ a=2,求
的值.
16.( 5 分)如图,平行四边形 ABCD中, AE⊥BD,CF⊥ BD,垂足分别为 E、 F,求证:∠ BAE=∠ DCF.
4 / 15
数加法表示为 3+(﹣ 2) =1. 若坐标平面上的点作如下平移:沿 x 轴方向平移的数量为 a(向右为正,向左为负,平移 | a| 个单位),沿 y 轴方向 平移的数量为 b(向上为正, 向下为负, 平移 | b| 个单位),则把有序数对 { a,b} 叫做这一平移的 “平移量 ”;“平移量 ”{ a, b} 与 “平移量 ”{ c, d } 的加法运算法则为 { a, b}+{ c, d} ={ a+c, b+d} . 解决问题: ( 1)计算: { 3, 1}+{ 1 ,2} ; { 1,2}+{ 3, 1} ; ( 2)①动点 P 从坐标原点 O 出发,先按照 “平移量 ”{ 3, 1} 平移到 A,再按照 “平移量 ”{ 1,2} 平移到 B;若先把动点 P 按照 “平移量 ”{ 1,2} 平移到 C,再按照 “平移量 ”{ 3,1} 平移, 最后的位置还是点 B 吗?在图 1 中画出四边形 OABC. ②证明四边形 OABC是平行四边形. ( 3)如图 2,一艘船从码头 O 出发,先航行到湖心岛码头 P( 2,3),再从码头 P 航行到码头 Q(5 ,5),最后回到 出发点 O.请用 “平移量 ”加法算式表示它的航行过程.
2015 北京市密云县初三(一模)数
学
一、选择题(本题共 32 分,每小题 4 分)
1.(4 分)无理数﹣ 的相反数是(
)
A.﹣
B.
C.
D.﹣
2.( 4 分)据新华社 2010 年 2 月报道:受特大干旱天气影响,我国西南地区林地受灾面积达到
学记数法可表示为(
)
A.4.305 × 108 亩 B. 4.305 ×106 亩 C. 43.05× 107 亩 D. 4.305× 107 亩
1 和图 2.请
( 1)在图 1 中,将 “书画 ”部分的图形补充完整; ( 2)在图 2 中,求出 “球类 ”部分所对应的圆心角的度数,并分别写出爱好 生数的百分数.
“音乐 ”、“书画 ”、 “其他 ”的人数占本班学
22.( 5 分)类比学习:一动点沿着数轴向右平移
3 个单位,再向左平移 2 个单位,相当于向右平移 1 个单位.用实