2017-2018上海宝山区数学一模试卷与答案
2018年上海宝山区初三一模数学试卷答案
是
.
/04
目录
选择题(每题4分,满分24分). 填空题(每题4分,满分48分). 解答题.
学生版
答案 解析
教师版
答案版
2018/12/04
3 S 4
过 作 交 D DK//BE F E的延长线于点K,交AC 于点H ,连接AK、C K.
∵ 、 , EK//BD BE//DK
正方形边长为x.
∵正方形EF GH ,
∴ , GH //BC
∴ , △AGH ∽ △ABC
∴ , AM
GH
=
AD
BC
∴ , 6 − x
x
=
6
10
∴ , 15 x=
4
∴正方形的边长为 15 .
4
12. 如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i =
.
答案
1 : 2.4
∴ . F C = AK
故以AD、BE、C F为边的Δ,即为△ADK.
S△ADK= S△ADK+ S△EHK+ S△AEK
= S△AOC+ S△EF A
. 1
1
3
= S+ S= S
2
4
4
编辑
18. 如图,点M 是正方形ABCD的边BC 的中点,联结AM,将BM沿某一过M 的直线翻折,使B落在AM上的E处,将线段AE
3⃗ b=
2a⃗
−
⃗ b
2
2
2
2
11. 如图,在锐角△ABC 中,BC = 、 10 BC 上的高AD = 6,正方形EFGH的顶点E、F在BC 边上,G、H 分别在AC 、AB边
2018宝山区中考数学一模
宝山区2017-2018学年第一学期期末考试(一模)九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.符号A tan表示…………………………………………………… ( )A .∠A 的正弦;B .∠A 的余弦;C .∠A 的正切;D .∠A 的余切. 2.如图△ABC 中∠C=90°,如果CD ⊥AB 于D ,那么………( )A .AB CD 21=; B .AD BD 21=; C .BD AD CD⋅=2; D .AB BD AD ⋅=2.3.已知a 、b 为非零向量,下列判断错误的是……… ( )A .如果b a 2=,那么a ∥b ;B .如果b a =,那么b a =或b a -=;C .0的方向不确定,大小为0;D .如果e 为单位向量且e a 2=,那么2=a .4.二次函数322++=x x y 的图像的开口方向为…………………………………… ( )A . 向上;B . 向下;C .向左;D .向右.5.如果从某一高处甲看低处乙的俯角为︒30,那么从乙处看甲处,甲在乙的…… ( )A .俯角︒30方向;B .俯角︒60方向;C .仰角︒30方向;D .仰角︒60方向.CABD第2题6.如图,如果把抛物线2x y =沿直线x y =向上方平移22个单位后,其顶点在直线x y =上的A 处,那么平移后的抛物线解析式是……………………………( )A .22)22(2++=x yB .2)2(2++=x y C .22)22(2+-=x y D .2)2(2+-=x y 二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. 已知b a32=,那么=b a : ▲ .8.如果两个相似三角形的周长比为1:4,那么它们的某一对对应角的角平分线之比为 ▲ . 9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当 ▲ 时,△ADE ∽△ABC 其中D 、E 分别对应B 、C .(填一个条件) 10.计算:b b a 23)54(21+-= ▲ . 11.如图,在锐角△ABC 中,BC=10,BC 上的高AD=6,正方形EFGH 的顶点E 、F 在BC 边上,G 、H 分别在AC 、AB 边上,则此正方形的边长为 ▲ .12. 如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度=i ▲ .13. 如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则=∠CAF tan ▲ .14.抛物线3)4(52+-=x y 的顶点坐标是 ▲ . 15.二次函数=y 3)1(22+--x 的图像与y 轴的交点坐标是是__▲__.16.如果点A(0,2)和点B(4,2)都在二次函数c bx x y ++=2的图像上,那么此抛物线在直线▲ 的部分是上升的.(填具体某直线的某侧) 17.如图,点D 、E 、F 分别为△ABC 三边的中点, 如果△ABC第13题第11题第9题第6题的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是 ▲ .18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处, 如果E 在旋转过程中曾经交AB 于G ,当EF=BG 时,旋转角∠EAF 的度数是 ▲三、(本大题共7题,第19--22题每题10分;第23、24题每题12分;第25题14分;满分78分)19. (本题满分10分) 计算:10)60(tan 30sin 45cos 60sin -+︒+︒-︒︒π20.(本题满分10分,每小题各5分)如图,AB ∥CD ∥EF ,而且线段AB 、CD 、EF 的长度分别 为5、3、2. (1)求AC :CE 的值;(2)如果AE 记作a ,BF 记作b ,求CD (用a 、b 表示). 21.(本题满分10分)已知在港口A 的南偏东75?方向有一礁石B ,轮船从港口出发,沿正东北方向(北偏东45?方向)前行10里到达C 后测得礁石B 在其南偏西15?处,求轮船行驶过程中离礁石B 的最近距离.22.(本题满分10分,每小题各5分)第18题第21题第17题ACN N如图,在直角坐标系中,已知直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点,C 点的坐标为(-2,0).(1)求经过A ,B ,C 三点的抛物线的解析式; (2)如果M 为抛物线的顶点,联结AM 、BM ,求四边形AOBM 的面积.23.(本题满分12分,每小题各6分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:CGEGAC AE =; (2)若AH 平分∠BAC ,交 BF 于H ,求证:BH 是HG 和HF 的比例中项.24.(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式b x a≤≤的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当nx m ≤≤时,有n y m ≤≤,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数4+-=x y ,当1=x 时,3=y ;当3=x 时,1=y ,即当31≤≤x 时,恒有31≤≤y ,所以说函数4+-=x y 是闭区间[1,3]上的“闭函数”,同理函数x y =也是闭区间[1,3]上的“闭函数”.(1)反比例函数x y 2018=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”,求k 和t 的值;第23题GE ABCFDH第22题(3)如果(2)所述的二次函数的图像交y 轴于C 点,A 为此二次函数图像的顶点,B 为直线1=x上的一点,当△ABC 为直角三角形时,写出点B 的坐标.25. (本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1) 求sin ∠ABC ; (2) 求∠BAC 的度数;(3) 设BF=x ,CH=y ,求y 与x 的函数关系式及其定义域.宝山区2018中考数学一模参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2.C ; 3. B ; 4.A ; 5. C ; 6. D. 二、填空题(本大题共12题,每题4分,满分48分)7.3:2; 8.1:4; 9.B ADE ∠=∠等; 10.b a -2; 11.415; 12.1:2.4; 13.31; 14.(4,3); 15.23-; 16.2=x 右侧; 17.S 43; 18. 36?.三、简答题(本大题共7题,第19--22题每题10分;第23、24题每题12分.第25题14分;满分78分)第25题xy–1–2–3–4123456–1–2–3–41234567O19.解:原式=131212223++- …………………………………………6分=213)12(3-++=213236-+. …………………10(3+1)分20.解:过E 作EG ∥BF 分别交AB 、CD 于G 、H ,………………………1分∵AB ∥CD ∥EF , AB=5、CD=3、EF=2,∴ BG=DH=EF=2, …………………………2分在△EAG 中,CH ∥AG ,CH=3-2=1,AG=5-2=3…………………………3分∴31==AG CH EA EC , ∴AC :CE=2:1 …………………………5分 ∵BF AE EG AE AG -=+=,AG CD =, …………………………9分∴b a CD -= …………………………10分21. 解:联结AB 、BC ,∵B 在A 南偏东75?方向,C 在A 北偏东45?方向,B 在C 南偏西15?方向,AC =10里∴∠CAB =45?+(90?-75?)=60?, ∠ACB =45?-15?=30? …………4分∴∠ABC =90?过B 作BH ⊥AC 于H ……………………6分∴ACB ACB AC BCA BC BH ∠⋅∠⋅=∠⋅=sin cos sin ……………………8分=212310⨯⨯=325, ……………………10分∴轮船行驶过程中离礁石B 的最近距离为325. 22.解:∵直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点,∴A (0,4),B (8,0), ……………………2分设过A 、B 、C (-2,0)的抛物线为:)8)(2(-+=x x a y将A (0,4)代入得:41-=a, ……………………4分过A ,B ,C 三点的抛物线的解析式为:423412++-=x x y …………5分经配方得:425)3(412+--=x y ……………………6分抛物线的顶点M )425,3( ……………………7分 过M 作MH ⊥x 轴于H , ……………………8分四边形AOBM 的面积=梯形AOHM 的面积+△MHB 的面积………………9分=5425213)4254(21⨯⨯+⨯+=31……………………10分 23. (1)∵ DE 是△ABC 的中位线,∴AE =CE ,DE ∥BC 且DE=21BC , …………………………2分 ∵CF ∥AB ,∴1==CEAEDE EF ,即EF=DE ,…………………………4分 ∴BC EF CG EG BC DE AC AE ==, ∴CGEGAC AE =…………………………6分 (2)∵AB=AC ,AH 平分∠BAC∴∠ ABC =∠ACB ,AH 是BC 的垂直平分线 …………………………7分 联结CH ,CH =BH .∴∠HBC =HCB , ∠ABH =ACH …………………………8分∵CF ∥AB ,∴∠CFG =∠ABH ∠CFG =∠HCG ………………………9分 ∵∠FHC =∠CHG ∴△ FHC ∽△CHG …………………………10分 ∴HGCH HC FH =∴HG FH CH ⋅=2 ∴HG FH BH ⋅=2………11分 ∴BH 是HG 和HF 的比例中项. …………………………12分24. (1)∵xy2018=在20181≤≤x 时,y 随着x 增大而减小…………1分 ∵当1=x 时,2018=y ;当2018=x 时,1=y即当20181≤≤x 时有20181≤≤y , ……………………3分∴反比例函数xy 2018=是闭区间[1,2018]上的“闭函数”………4分 (2) ∵易知二次函数k x x y +-=42的开口向上,对称轴是直线2=x ,∴当t x ≤≤2 时,y 随着x 增大而增大. ……………………5分∵二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”, ∴24)2(=-=k f , ∴6=k , ……………………6分t t t t f =+-=64)(2 ∴2=t (舍去),3=t ,………………8分即642+-=x x y 是闭区间[]3,2上的“闭函数”. (3) ∵2)2(6422+-=+-=x x x y , ∴此二次函数图像的顶点A (2,2),和y 轴的交点C (0,6).…………9分设B (1,y ),分类讨论当∠C =90?时根据AB 2=AC 2+BC 2得:B )213,1(1 当∠A =90?时,同理易得:B )23,1(2 当∠B =90?时,同理易得:B )54,1(3+,B )54,1(4- …………12分综上所述:当△ABC 为直角三角形时,点B 的坐标分别为B )213,1(1、B )23,1(2、B )54,1(3+,B )54,1(4-.25.解:(1)过A 作AL ⊥BC 于L ,∵等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25, ∴根据等腰梯形的对称性易得:BL=9,CL=16 在直角△ABL 中根据勾股定理易得:AL=12 ∴ABC ∠sin =541512==AB AL (2)∵34912==AL BL ,341216==BL CL ∴BLCL ALBL=,90=∠=∠CLA ALB ? ……………………………4分 ∴△ALB ∽△CLA , ∴∠ABL=∠CAL ……………………………5分 ∵∠ABL+∠BAL=90? ∴∠CAL+∠BAL=90?,即∠BAC=90?……6分(3)∵腰AB 上E 满足AE :BE =1:2, ∴AE=5,BE=10F 为BC 一动点,∠FEG =∠B ,EG 交射线 BC 于G ,直线EG 交射线CA 于H .分类讨论:当G 在F 右侧时当G 在BC 上时,我们只要考虑如图情况 (不需要考虑H 在下方) 过E 作EM ⊥BC 于M , ∵∠HEA=∠BEG=∠BEF+∠FEG ∵∠EFM=∠BEF+∠B∴∠HEA=∠B ∵∠EMF=∠HAE=90?,∴△EMF ∽△HAE ∴HAAEEM FM = ………7分 ∵FM=BM-BF=x -6, EM=8, AH=CH-AC=20-yBCA DHEM F G∴xxx y --=-+=62016064020 ……………………………8分 其中60 x ≤ ……………………………9分当G 在BC 的延长线上时,(如图) 同理易知:∠HEA=∠EFN△ENF ∽△HAE HA AEEN NF =61602064020--=--=x x x y …10分 其中128 x ≤ ……………11分即:616020--=x x y(其中60 x ≤或128 x ≤)当G 在F 左侧时, 易知:△AEH ∽△UEG ∴UEUGAE AH = BG UG 54=, UE=BG 5310-同理易知:△BEF ∽△EGF ∴GF BF EF ⋅=2……………12分∴GF=x x BF FM EM 2222)6(8-+=+,BG=x x GF BF 10012-=-, )25325(150********≤≤++=x x x y ……………14分HGBC A DEF N A DBCH E G FU M。
2018年上海市宝山区初三数学一模及参考答案
九年级中考数学(模拟一) 2018年宝山区初三一模一、选择题(本大题共6题,每题4分,满分24分)1、符号表示()、的正弦、的余弦、的正切、的余切2、如图,在中,,如果于,那么()、、、、、如果,那么、如果,那么或、的方向不确定,大小为、如果为单位向量且,那么4、二次函数的图像的开口方向为()、向上、向下、向左、向右5、如果从某一高处甲看低处乙的俯角为,那么从乙处看甲处,甲在乙的()、俯角方向、俯角方向、仰角方向、仰角方向6、如图,如果把抛物线沿直线向上平移个单位后,其顶点在直线上的处,那么平移后的抛物线解析式为()、、、、二、填空题(本大题共12题,每题4分,满分48分)7、已知,那么8、如果两个相似三角形的周长之比,那么它们的某一对对应角的角平分线之比为9、如图,、为的边、上的点,当时,其中、分别对应、(填一个条件)10、计算:11、如图,在锐角中,,上的高,正方形的顶点、在边上,、分别在、边上,则此正方形的边长为12、如果一个滚筒沿斜坡向下滚动米后,其垂直高度下降了米,那么该斜坡的坡度13、如图,四边形、、都是正方形,则2018年宝山区初三一模参考答案一、选择题123456二、填空题789101112131415161718右侧三、解答题19、20、(1)(2)21、22、(1)(2)23、(1)略(2)略24、(1)是(2),(3)或或或25、(1)(2)(3)(或)或()。
2017高考上海各区数学一模(含答案)
上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市崇明县2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 复数(2)i i +的虚部为 2. 设函数2log ,0()4,0xx x f x x >⎧=⎨≤⎩,则((1))f f -=3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2xP x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞=6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为8. 若21(2)nx x+*()n N ∈的二项展开式中的第9项是常数项,则n =9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =;③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y += 16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求: (1)异面直线11B C 与1AC 所成角的大小; (2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与 点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数;(1)当1a b ==时,证明:()f x 不是奇函数; (2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4.34 5. 4 6. 187. 75π 8. 12 9. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题 17.(1)5arccos10;(2)33;18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29;20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =;当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;上海市金山区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若集合2{|20}M x x x =-<,{|||1}N x x =>,则MN =2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z =3. 如果5sin 13α=-,且α为第四象限角,则tan α的值是 4. 函数cos sin ()sin cos x xf x x x=的最小正周期是5. 函数()2x f x m =+的反函数为1()y f x -=,且1()y f x -=的图像过点(5,2)Q ,那么m =6. 点(1,0)到双曲线2214x y -=的渐近线的距离是 7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示) 9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示 的圆的圆心轨迹方程是 (结果化为普通方程) 10. 若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有的数从小到大排列成的数列, 即14a =,210a =,312a =,428a =,530a =,636a =,,将数列{}n a 中各项按 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是41012283036⋅⋅⋅二. 选择题(本大题共4题,每题5分,共20分)13. 给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于平面α上 无数条直线”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分也不必要 14. 已知x 、y R ∈,且0x y >>,则( ) A.110x y-> B. 11()()022x y -<C. 22log log 0x y +>D. sin sin 0x y -> 15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点;(1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥P AFD -的体积;18. 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;19. 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短轴长的2倍,直 线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;20. 已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =,x R ∈; (1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x R ∈恒成立,求实数k 的范围; (3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅- 将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;21. 数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个(1)i i b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和; (3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由;参考答案一. 填空题1. (1,2)2. 12i -3. 512-4. π5. 16. 557. 4 8. 48 9. 20x y -= 10. 2 11. 324 12. ②③④二. 选择题13. A 14. B 15. A 16. C三. 解答题 17.(1)310arccos 10;(2)43;18.(1)2211()sin sin()sin(2)33366f x x x x ππ=+=+-,(0,)3x π∈; (2)递增区间(0,]6π,6x π=;19.(1)2212x y +=;(2)(2,0)-; 20.(1)0b =,1a =;(2)1[,8]2;(3)min 4M =;21.(1)n b n =;(2)201822033134+;(3)不存在;上海市虹口区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,4,6,8}A =,{|2,}B x x k k A ==∈,则A B =2. 已知21zi i=+-,则复数z 的虚部为 3. 设函数()sin cos f x x x =-,且()1f a =,则sin 2a =4. 已知二元一次方程111222a xb yc a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是5. 数列{}n a 是首项为1,公差为2的等差数列,n S 是它前n 项和,则2lim n n nSa →∞=6. 已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的 条件(填“充 分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)7. 若双曲线2221y x b-=的一个焦点到其渐近线距离为22,则该双曲线焦距等于8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 9. 一个底面半径为2的圆柱被与其底面所成角是60°的平 面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是二. 选择题(本大题共4题,每题5分,共20分)13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( ) A. 若m ∥α,m 、n 不平行,则n 与α不平行 B. 若m ∥α,m 、n 不垂直,则n 与α不垂直 C. 若m α⊥,m 、n 不平行,则n 与α不垂直 D. 若m α⊥,m 、n 不垂直,则n 与α不平行14. 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱锥P ABC -中,已知底面等边三角形的边长为6,侧棱长为4; (1)求证:PA BC ⊥;(2)求此三棱锥的全面积和体积;18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处; (1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);19. 已知二次函数2()4f x ax x c =-+的值域为[0,)+∞; (1)判断此函数的奇偶性,并说明理由;(2)判断此函数在2[,)a+∞的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域;20. 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;21. 已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ;参考答案一. 填空题1. {2,4,8}2. 13. 04. 21x y =⎧⎨=⎩ 5. 146. 充分非必要7. 68. 29. 43 10. 6011. 22或42 12. [5,)+∞二. 选择题13. A 14. B 15. C 16. C三. 解答题17.(1)略;(2)9793S =+,63V =; 18.(1)291;(2)东偏北41.8︒, 6.4v =海里/小时; 19.(1)非奇非偶函数;(2)单调递增;(3)当02a <<,()0g a =;当2a ≥,4()4g a a a=+-;值域[0,)+∞; 20.(1)22143x y +=;(2)12;(3)2;21.(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;上海市闵行区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 方程lg(34)1x +=的解x = 2. 若关于x 的不等式0x ax b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A BC D -,12AA =,E 为 棱1CC 的中点,则三棱锥1D ADE -的体积为 7. 从单词“shadow ”中任意选取4个不同的字母排成一排, 则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅取值范围是 10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足 1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要 14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒, (1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小; (用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2An A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m=⋅(万元),m 表示污水流量,铺设管道的费用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用? (2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂 的距离为x 千米,求联合建厂的总费用y 与x 的函数关系 式,并求y 的取值范围;20. 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距 为25,点P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 的中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围; (3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤); (1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列, 点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;上海市松江区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =2. 已知a 、b R ∈,i 是虚数单位,若2a i bi +=-,则2()a bi +=3. 已知函数()1x f x a =-的图像经过(1,1)点,则1(3)f -=4. 不等式|1|0x x ->的解集为5. 已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为6. 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道,在由2名中国运动员和6 名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为 7. 按下图所示的程序框图运算:若输入17x =,则输出的x 值是8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y 是曲线22:1259x y C +=上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF +的最大值为11. 已知函数243,13()28,3xx x x f x x ⎧-+-≤≤⎪=⎨->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212lim n n na a -→∞=二. 选择题(本大题共4题,每题5分,共20分) 13. 已知a 、b R ∈,则“0ab >”是“2b aa b+>”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 如图,在棱长为1的正方体1111ABCD A BC D -中,点P 在截面1A DB 上,则线段AP 的最小值为( ) A.13 B. 12 C. 33 D. 2215. 若矩阵11122122a a a a ⎛⎫⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈,且111221220a a a a =,则这样的互不相等的矩阵共有( )A. 2个B. 6个C. 8个D. 10个 16. 解不等式11()022xx -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数 及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++> 的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在正四棱锥P ABCD -中,PA AB a ==,E 是棱PC 的中点; (1)求证:PC BD ⊥;(2)求直线BE 与PA 所成角的余弦值;18. 已知函数21()21x xa f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;19. 松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”, 兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求:(1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)20. 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;21. 如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H 型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时, 试判断数列{}n c 是否为“H 型数列”,并说明理由;参考答案一. 填空题1. {1}2. 34i -3. 24. (0,1)(1,)+∞5. π6.147. 143 8. 11 9. 17π 10. 10 11. 3(0,)312. 12-二. 选择题13. B 14. C 15. D 16. A三. 解答题 17.(1)略;(2)33; 18.(1)1a =-,偶函数;1a =,奇函数;a R ∈且1a ≠±,非奇非偶函数; (2)[2,3];19.(1)18.9米;(2)6.9°;20.(1)2213y x -=;(2)3;(3)(1,0)-; 21.(1)1(,0)(,)2-∞+∞;(2)不存在;(3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;上海市浦东新区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知U R =,集合{|421}A x x x =-≥+,则U C A =2. 三阶行列式351236724---中元素5-的代数余子式的值为 3. 8(1)2x -的二项展开式中含2x 项的系数是4. 已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6. 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02xx m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是 边BC 、CD 上的两个动点,且2MN =,则AM AN ⋅的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13. 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+C. cos(2)3y x π=-D. cos(2)6y x π=-14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( ) A. 关于y 轴对称 B. 关于原点对称 C. 关于直线0x y +=对称 D. 关于直线0x y -=对称 15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则213a a a >D. 若10a <,则2123()()0a a a a --> 16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在长方体1111ABCD A BC D -中(如图),11AD AA ==,2AB =,点E 是棱AB 中点; (1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角 形的四面体成为鳖臑,试问四面体1DCDE 是 否为鳖臑?并说明理由;18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ; (1)若3B π=,7b =,△ABC 的面积332S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;。
2017年上海市宝山区中考一模(即期末)数学试题及答案
上海市宝山区初三一模数学试卷一. 选择题(24分)1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,AC =,下列判断正确的是( )A. 30A ∠=︒;B. 45A ∠=︒;C. cot 2A =; D.tan 2A =;2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误的是( ) A. AD AEDB EC =; B. AD DE DB BC=; C. AD AEAB AC=; D.AD DEAB BC=;3. 如果在两个圆中有两条相等的弦,那么( ) A. 这两条弦所对的圆心角相等; B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c,下列命题中是假命题的是( ) A. 如果2a b = ,那么a ∥b ; B. 如果2a b =-,那么a ∥b;C. 如果||||a b =,那么a ∥b ; D. 如果2a b = ,2b c = ,那么a ∥c;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系 为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D.二. 填空题(48分)7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ;8. 两个相似三角形的相似比为2:3,则它们的面积比为 ;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ;10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为 ;11. 在△ABC 中,cot A =cos B =C ∠= ; 12. B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C 和A 之间的距离为 千米;13. 抛物线2(3)4y x =--+的对称轴是 ; 14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ;16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE = ;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =AB 的长为 ;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;三. 解答题(78分) 19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒;20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC相交于E ,设AB a = ,AD b = ,试用a 、b 表示AN ,AE;(直接写出结果)21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式以及该抛物线的顶点坐标;22. 如图,D为等边△ABC边BC上一点,DE⊥AB于E,若BD CD=,DE=:2:1AE;23. 如图,P为O的直径MN上一点,过P作弦AC、BD使∠=∠,求证:APM BPM=;PA PB24. 如图,正方形ABCD中,(1)E为边BC的中点,AE的垂直平分线分别交AB、AE、CD;于G、F、H,求GFFH(2)E的位置改动为边BC上一点,且BE k=,其他条件不变,EC求GF的值;FH25. (1)数学小组的单思稿同学认为形如的抛物线2=++,系数a、b、c一旦y ax bx c确定,抛物线的形状、大小、位置就不会变化,所以称数a、b、c为抛物线2=++y ax bx c的特征数,记作{,,}C-的抛物线a b c;请求出与y轴交于点(0,3)22y x x k=-+在单同学眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成2=++的顶点式,因此坚持称()y a x m ka、m、k为抛物线的特征数,记作{,,}a m k;请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同组的董和谐将上述抛物线表述成:特征数为{,,}u v w的抛物线沿平行于某轴方向平移某单位后的图像,即此时的特征数{,,}u v w无论按单思稿同学还是按尤恪星同学的理解做出的结果是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系XOY中,上述(1)中的抛物线与x轴交于A、B两点(A在B的左边),请直接写出△ABC的重心坐标;26. 如图在△==,AC=D为边AB上一AB BCABC中,10动点(D和A、B不重合),过D作DE∥BC交AC于E,并以DE为边向BC一侧作正方形DEFG,设AD x,(1)请用x的代数式表示正方形DEFG的面积,并求出当边FG 落在BC边上时的x的值;(2)设正方形DEFG与△ABC重合部分的面积为y,求y关于x的函数及其定义域;(3)点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;。
宝山区2017届高考数学一模试卷 含解析
2017年上海市宝山区高考数学一模试卷一。
填空题(本大题共12题,1-6每题4分,7—12每题5分,共54分)1.= .2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A ∩∁U B= .3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z= .6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a= .12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二。
选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1"是“复数(a﹣1)(a+2)+(a+3)i为纯虚数"的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k ⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域",如果点(t,t+1)位于“﹣1⊕3型带状区域",那么,函数y=|f(t)|的最大值为( )A.B.3 C. D.2三。
上海市宝山区2017届高考数学一模试卷Word版含解析.pdf
2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩?U B=.3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z=.6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a=.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()13.设a∈R,则“a=1”A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λSk>0恒成立,求实数λ的最大值;(3)若整数集合A1?A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=2.【考点】极限及其运算.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩?U B={﹣1,0,1} .【考点】交、并、补集的混合运算.【分析】根据补集与交集的定义,写出?U B与A∩?U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以?U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩?U B={﹣1,0,1}故答案为:{﹣1,0,1}.3.不等式的解集为(﹣2,﹣1).【考点】其他不等式的解法.【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).4.椭圆(θ为参数)的焦距为6.【考点】椭圆的参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.5.设复数z满足(i为虚数单位),则z=1+i.【考点】复数代数形式的混合运算.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.6.若函数的最小正周期为aπ,则实数a的值为1.【考点】三角函数的周期性及其求法.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f﹣1(x)=2x ﹣1..【考点】反函数.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.8.已知向量,,则在的方向上的投影为.【考点】平面向量数量积的运算.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】旋转体(圆柱、圆锥、圆台).【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.11.设常数a>0,若的二项展开式中x5的系数为144,则a=2.【考点】二项式系数的性质.【分析】利用通项公式T r+1=(r=0,1,2,…,9).令9﹣2r=5,解得r,即可得出.【解答】解:T r+1==(r=0,1,2,…,9).令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【考点】排列、组合及简单计数问题.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.110【考点】分层抽样方法.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选C.15.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】相互独立事件的概率乘法公式.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.16.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f (t)|的最大值为()A.B.3 C.D.2【考点】函数的最值及其几何意义.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═(|t|﹣1)2+≤,故选:C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC?h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】椭圆的简单性质.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=?=?=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【考点】数列与不等式的综合.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n ≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.(2)y n+1﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)与等比数列的求和公式即可得出y n.代入不等式,化简即可得出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n+1﹣y n=x n=,且y1=2,∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n ∈N均成立,求实数x的取值集合.【考点】对数函数的图象与性质.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即,∴,n∈N.解得:<x<,n∈N.又∵2+x>0,即x>﹣2,∴≥﹣2,n∈N.解得:k,∵k∈Z,∴k≥0.故得任意n∈N均成立,实数x的取值集合为(,),k∈N,n ∈N.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λSk>0恒成立,求实数λ的最大值;(3)若整数集合A1?A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】双曲线的简单性质.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λSk >0恒成立,?>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3?﹣m=n2,∴S m+S n﹣λSk>0恒成立,?>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n?F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n?F n=(﹣1)n+2?F n+2+(﹣1)n+1?F n+1,故A是自生集;②对于任意n≥2,对于任一正整数t∈[1,F2n+1﹣1],存在集合Ar一个有限子集{a1,a2,…,a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,则n=k+1时,只须对任何整数m∈[F2k+1,F2k+3]讨论,若m<F2k+2,则m=F2k+2+,∈(﹣F2k+1,0),故=﹣F2k+1+m′,m′∈[1,F2k+1),由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1的元素的和.因为m=F2k+2﹣F2k+1+m′=(﹣1)2k+2?F2k+2+(﹣1)2k+1?F2k+1+m′,所以m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.若m=F2k+2,则结论显然成立.若F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.。
上海市宝山区2018年中考数学一模试题及答案
2018年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=24.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).10.(4分)计算:(4)=.11.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是.15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是.16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线的部分是上升的.(填具体某直线的某侧)17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.23.(12分)如图,△ABC中,AB=AC,过点C作CF∥AB交△ABC的中位线DE 的延长线于F,联结BF,交AC于点G.(1)求证:;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.2018年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切【解答】解:符号tanA表示∠A的正切.故选:C.2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB【解答】解:∵△ABC中∠C=90°,CD⊥AB于D,∴∠CDB=∠ADC,∠B=∠ACD,∴△CDB∽△ACD,∴,即CD2=AD•BD,故选:C.3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=2【解答】解:A、如果=2,那么∥,正确;B、如果||=||,没法判断与的关系;故错误.C、的方向不确定,大小为0,正确;D、如果为单位向量且=2,那么||=2,正确;故选:B.4.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右【解答】解:∵二次函数y=x2+2x+3中a=1>0,∴二次函数y=x2+2x+3的图象的开口向上,故选:A.5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向【解答】解:如图所示:∵甲处看乙处为俯角30°,∴乙处看甲处为:仰角为30°.故选:C.6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2【解答】解:如图,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=2,∴OB=AB=2×=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x﹣2)2+2.故选:D.二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=3:2.【解答】解:两边都除以2b,得a:b=3:2,故答案为:3:2.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为1:4.【解答】解:∵两个相似三角形的周长之比1:4,∴它们的相似比是1:4,∴它们的某一对对应角的角平分线之比为1:4.故答案为:1:4.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当∠ADE=∠B时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【解答】解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.10.(4分)计算:(4)=2.【解答】解:(4)=2﹣+=2﹣故答案为211.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.【解答】解:设正方形EFGH的边长为x,则HG=HE=QK=x,∵HG∥BC,∴,且AK=AQ﹣x,又∵AQ=6,BC=10,∴,解得x=,故答案为:12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=1:2.4.【解答】解:如图,根据题意知AB=13米、AC=5米,则BC===12(米),∴斜坡的坡度i=tanB===1:2.4,故答案为:1:2.4.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.【解答】解:连接AG,设正方形的边长为a,AC=,∵,,∴,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=,故答案为:14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是(4,3).【解答】解:∵y=5(x﹣4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).【解答】解:当x=0时,y=﹣(x﹣1)2+=﹣×(0﹣1)2+=﹣.∴二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).故答案为:(0,﹣).16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线x=2右侧的部分是上升的.(填具体某直线的某侧)【解答】解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴,解得:,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为:x=2右侧.17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是S.【解答】解:如图所示,延长AD至G,使得DG=AD,连接BG,CG,则△ACD ≌△GBD,△ABD≌△GCD,四边形ABGC为平行四边形,∴四边形ABGC的面积=2S,取BG的中点H,连接CH,FH,则BH∥CE,BH=CE,故四边形BHCE是平行四边形,∴BE=CH,由题可得,FH是△ABG的中位线,∴FH=AG=AD,∴△CFH即为以AD、BE、CF为边的三角形,∵△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF的面积=S,∴△CFH的面积=2S﹣S﹣S﹣S=S,故答案为:S.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是36°.【解答】解:设BM=a,则AB=2a,∴Rt△ABM中,AM=a,由题可得,EM=BM=a,∴AE=(﹣1)a=AG=AF,∴BG=AB﹣AG=(3﹣)a,又∵EF=BG,∴,∴△AEF为黄金三角形,即∠EAF=36°,故答案为:36°三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.【解答】解:原式=+=+﹣.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).【解答】解:(1)过点E作EH∥BF交CD,AB于G,H,∴CG=1,AH=3,∴=,∴=2;(2)===,且AH∥CD,AH=CD,∴=.21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.【解答】解:如图,在Rt△ABC中,∠BAC=60°,∠ACB=30°,AC=10,∴AB=AC=5,过B作BD⊥AC于D,则Rt△ABD中,BD=sin60°×AB=×5=(里),∴轮船行驶过程中离礁石B的最近距离为里.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.【解答】解:(1)当x=0时,y=x+4=4,则A(0,4),当y=0时,x+4=0,解得x=8,则B(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把A (0,4)代入得a•2•(﹣8)=4,解得x=﹣, ∴抛物线解析式为y=﹣(x +2)(x ﹣8), 即y=﹣x 2+x +4; (2)∵y=﹣(x ﹣3)2+,∴M (3,),作MD ⊥x 轴于D ,如图,四边形AOBM 的面积=S 梯形AODM +S △BDM =×(4+)×3+×5×=31.23.(12分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:;(2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.【解答】证明:(1)∵CF ∥AB ,DE 是中位线, ∴四边形BCFD 是平行四边形,∴DE=EF,∴,即;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴,∴HC2=HG•HF,∵BH=HC,∴BH2=HG•HF,即BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.【解答】解:(1)∵k=2018,∴当1≤x≤2018时,y随x的增大而减小.∴当x=1时,y=2018,x=2018时,y=1.∴1≤y≤2108.∴反比例函数y=是闭区间[1,2018]上的“闭函数”.(2)∵x=﹣=2,a=1>0,∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.,解得k=6,t=3,t=﹣2,因为t>2,∴t=2舍去,∴t=3.(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(2,2),C(0,6)设B(1,t),由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,①当∠ABC=90°时,AB2+BC2=AC2,即(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,B(1,4+),(1,4﹣);②当∠BAC=90°是,AB2+AC2=BC2,即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,化简,得8t=12,解得t=,B(1,),③当∠ACB=90°时,AC2+CB2=AB2,即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,化简,得2t=13,解得t=,B(1,),综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.【解答】解:(1)如图1,过点A作AP⊥BC于P,∵四边形ABCD是等腰梯形,∴BP=(BC﹣AD)=9,在Rt△ABP中,根据勾股定理得,AP=12,∴sin∠ABC===;(2)如图1,在Rt△ACP中,CP=BC﹣BP=16,根据勾股定理得,AC2=AP2+CP2=144+256=400,∵AB=15,BC=25,∴AB2+AC2=225+400=625=252=BC2,∴△ABC是直角三角形,∴∠BAC=90°;(3)过点E作EM⊥BC于M,∵AB=15,AE:BE=1:2,∴AE=5,BE=10,在Rt△BEM中,sin∠ABC=,∴EM=8,BM=6,CM=BC﹣BM=25﹣6=19,当点G和点C重合时,如图4,在Rt△EMC中,CE==∵∠B=∠EFC,∠BCE=∠ECF,∴△BCE∽△ECF,∴=,∴,∴x=8,当EG∥AC时,如图5,∴∠ACB=∠EGB,∵∠B+∠ACB=90°,∴∠FEG+∠EGB=90°,∴EF⊥BC,即:点F和点M重合,∴BF=BM=6,∴当6≤x≤8时,EG和AC的延长线相交,不符合题意,Ⅰ、当点G在BC的延长线上时,如图2,∴FM=BF﹣BM=x﹣6,由(1)知,AC=20,∴AH=AC﹣CH=20﹣y∵∠FEG=∠B∴∠EFG=180°﹣∠G﹣∠FEG=180°﹣∠G﹣∠B,∵∠BEG=180°﹣∠G﹣∠B,∴∠EFG=∠BEG,∴∠EFM=∠AEH,∵∠EMF=∠HAE=90°,∴△EFM∽△HEA,∴,∴,∴y=20﹣(8<x<25),Ⅱ、当点G在边BC上时,如图3,∴FM=BM﹣BF=6﹣x,AH=CH﹣AC=y﹣20,∵同①的方法得,∠EFG=∠BEG,∵∠AEH=∠BEG,∴∠AEH=∠EFG,∵∠EAH=∠FME,∴△AEH∽△MFE,∴,∴,∴y=20+=20﹣(0<x<6).∴y=20﹣(8<x<25).。
2017上海宝山初三数学一模
九年级中考数学(模拟一) 2017宝山一模(满分150分,考试时间100分钟)考生注意:1.本试卷含四个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知∠A=30°,下列判断正确的是……………………………………………………()A.; B.; C. A=; D..2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为…()A.; B.; C.; D..3.二次函数的定义域为………………………………………………()A.; B.为一切实数; C.; D.为一切实数.4.已知非零向量、之间满足,下列判断正确的是………………………()A.的模为3; B.与的模之比为;C.与平行且方向相同; D.与平行且方向相反.二.填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,那么= ▲.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为▲.10.如图△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则= ▲.11.计算: = ▲.13.二次函数向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是▲.14.如果点A(1,2)和点B(3,2)都在抛物线的图像上,那么抛物线的对称轴是直线▲.15.已知A(2,y1)、B(3,y2)是抛物线的图像上两点,则y1__▲__y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度升高了5米,则该斜坡的坡度▲.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如的抛物线的形状、大小、开口方向、位置等特征的系数、、称为该抛物线的特征数,记作:特征数.(请你求)在研究活动中被记作特征数为的抛物线的顶点坐标是▲.18.如图,D为直角△ABC的斜边AB上一点, DE⊥AB交AC于E,如果△AED沿DE翻折,A 恰好与B重合,联结CD交BE于F,如果AC=8,,那么CF:DF = ▲.三、(本大题共7题,第19--22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:21.如图, AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的处窗口观察AB 大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.如图,点E是正方形ABCD对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G..(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求∠BEF的值.(1)求时,的面积关于t的函数解析式;(2) 求出线段BC、BE、ED的长度;(3) 当为多少秒时,以B、P、Q为顶点的三角形和相似;(4) 如图(3) 过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2016学年第一学期期末考试九年级数学参考答案(评分细则)一、选择题:(本大题共6题,每题4分,满分24分)1. A; 2. C; 3. B; 4.D; 5. A; 6. C.7.; 8.1:16; 9.AC; 10.; 11.; 12.8; 13.; 14.; 15.; 16.;17.; 18..19.解:原式= ……………………6分= ……………………8分=. …………………10分20.解:(1)在△ABC 中,∵DE∥BC,∴…………3分(2)∵,, =,∴……………………………………8分∴……………………………………10分设过A、B、C抛物线的表达式为:………………………6分将(0,6)代入,∴抛物线的表达式为…………………8分当或时,的函数值大于的函数值。
2017届上海市宝山区中考一模数学试卷(带解析)
试卷第1页,共20页绝密★启用前2017届上海市宝山区中考一模数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:91分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限【答案】C 【解析】试题分析:根据抛物线的顶点在第四象限,得出n <0,m <0,即可得出一次函数y=mx+n 的图象经过二、三、四象限.试卷第2页,共20页故选C .考点:1、二次函数的图象;2、一次函数的性质2、如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A .南偏西30°方向B .南偏西60°方向C .南偏东30°方向D .南偏东60°方向【答案】A 【解析】试题分析:根据题意正确画出图形,可得∠1=30°,由从甲船看乙船,乙船在甲船的北偏东30°方向,可知从乙船看甲船,甲船在乙船的南偏西30°方向. 故选:A .考点:方向角3、已知非零向量、之间满足=﹣3,下列判断正确的是( ) A .的模为3B .与的模之比为﹣3:1C .与平行且方向相同D .与平行且方向相反【答案】D 【解析】试题分析:根据向量的长度和方向,可得 A 、由=﹣3,得||=3||,故A 错误;B 、由=﹣3,得||=3||,||:||=3:1,故B 错误;试卷第3页,共20页C 、由=﹣3,得=﹣3方向相反,故C 错误;D 、由=﹣3,得=﹣3平行且方向相反,故D 正确; 故选:D . 考点:平面向量4、二次函数y=x 2+2x+3的定义域为( ) A .x >0B .x 为一切实数C .y >2D .y 为一切实数【答案】B 【解析】试题分析:根据二次函数y=x 2+2x+3的定义域为x 为一切实数, 故选B考点:二次函数的定义5、如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB=1,那么AC 的长度为( )A .B .C .D .【答案】C 【解析】试题分析:根据黄金比值由C 是线段AB 的黄金分割点C ,AC >CB ,可得AC=AB=,故选:C .考点:黄金分割6、已知∠A=30°,下列判断正确的是( )A .sinA=B .cosA=C .tanA=D .cotA=【答案】A 【解析】试题分析:根据特殊角的三角函数值,由∠A=30°,可知sinA=,cosA=,tanA=,试卷第4页,共20页cotA=,故选:A .考点:特殊角的三角函数值试卷第5页,共20页第II 卷(非选择题)二、填空题(题型注释)7、如图,D 为直角△ABC 的斜边AB 上一点,DE ⊥AB 交AC 于E ,如果△AED 沿DE翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果AC=8,tanA=,那么CF :DF═ .【答案】6:5 【解析】试题分析:先根据DE ⊥AB ,tanA═,AC═8,求得BC=4,CE=3,BD=2,DE=,再过点C 作CG ⊥BE 于G ,作DH ⊥BE 于H ,根据面积法求得CG=和DH=2,最后根据△CFG ∽△DFH ,得到.考点:1、翻折变换(折叠问题);2、解直角三角形8、数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax 2+bx+c 的抛物线的形状、大小、开口方向、位置等特征的系数a 、b 、c 称为该抛物线的特征数,记作:特征数{a 、b 、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为 .【答案】(2,﹣1)试卷第6页,共20页【解析】试题分析:由条件:特征数为{1、﹣4、3},可求得抛物线解析式y=x 2﹣4x+3=(x ﹣2)2﹣1,求得顶点式可求得抛物线顶点坐标为(2,﹣1).考点:1、二次函数的性质;2、二次函数的图象9、如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i= .【答案】1:2.4 【解析】试题分析:设在一个斜坡上前进13米,水平高度升高了5米,此时水平距离为x 米,根据勾股定理,得x 2+52=132,解得:x=12,故该斜坡坡度i=5:12=1:2.4. 考点:解直角三角形的应用-坡度坡角问题 10、已知A (2,y 1)、B (3,y 2)是抛物线y=﹣(x ﹣1)2+的图象上两点,则y 1 y 2.(填不等号)【答案】> 【解析】试题分析:由题意得:抛物线的对称轴是:直线x=1,再由a=﹣<0,可知当x >1时,y 随x 的增大而减小,然后由2<3,得到y 1>y 2. 考点:二次函数图象上点的坐标特征11、如果点A (1,2)和点B (3,2)都在抛物线y=ax 2+bx+c 的图象上,那么抛物线y=ax 2+bx+c 的对称轴是直线 .【答案】x=2 【解析】试题分析:根据函数值相等的点到抛物线对称轴的距离相等,可由点A (1,2)和点B(3,2)都在抛物线y=ax 2+bx+c 的图象上,得到其对称轴为x==2.考点:二次函数的性质12、二次函数y=5(x ﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是 .【答案】y=5(x ﹣2)2+2试卷第7页,共20页【解析】试题分析:按照“左加右减,上加下减”的规律,可由y=5(x ﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度得y=5(x ﹣4+2)2+3﹣1,即y=5(x ﹣2)2+2. 考点:二次函数图象与几何变换13、如图,G 为△ABC 的重心,如果AB=AC=13,BC=10,那么AG 的长为 .【答案】8 【解析】试题分析:延长AG 交BC 于D ,根据重心的概念得到∠BAD=∠CAD ,根据等腰三角形的性质求出BD=BC=5,由勾股定理得,AD==12,再由G 为△ABC的重心,可得AG=AD=8.考点:1、三角形的重心;2、等腰三角形的性质;3、勾股定理 14、计算:2(+3)﹣5= .【答案】2+ 【解析】试题分析:可根据向量的加法法则进行计算,可得2(+3)﹣5=2+6﹣5=2+,考点:平面向量试卷第8页,共20页15、如图,△ABC 中,∠C =90°,若CD ⊥AB 于点D ,且BD =4,AD =9,则tanA =_________.【答案】【解析】试题分析:先证明△BDC ∽△CDA ,利用相似三角形的性质得到CD 2=BD•AD ,求出CD=6,然后根据锐角三角函数的定义即可求出tanA .考点:解直角三角形16、如图,D 为△ABC 的边AB 上一点,如果∠ACD=∠ABC 时,那么图中 是AD 和AB 的比例中项.【答案】AC 【解析】试题分析:根据两角分别相等的两个三角形相似,可得△ACD ∽△ABC 的关系,根据相似三角形的性质,可得,可知AC 是AD 和AB 的比例中项.考点:比例线段17、如果两个相似三角形的相似比为1:4,那么它们的面积比为 .【答案】1:16 【解析】试题分析:根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得它们的面积比为1:16. 考点:相似三角形的性质试卷第9页,共20页18、已知2a=3b ,则= .【答案】【解析】试题分析:根据比例的基本性质:两外项之积等于两内项之积.可直接得到=.考点:比例的性质三、计算题(题型注释)19、计算:﹣cos30°+(1-sin45°)0.【答案】【解析】试题分析:利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果.试题解析:﹣cos30°+(1-sin45°)0===.考点:1、实数的运算;2、零指数幂;3、特殊角的三角函数值四、解答题(题型注释)试卷第10页,共20页20、如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 以1cm/秒的速度沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动到点C 时停止.设P 、Q 同时出发t 秒时,△BPQ 的面积为ycm 2.已知y 与t 的函数关系图象如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ 的面积y 关于t 的函数解析式; (2)求出线段BC 、BE 、ED 的长度;(3)当t 为多少秒时,以B 、P 、Q 为顶点的三角形和△ABE 相似;(4)如图(3)过E 作EF ⊥BC 于F ,△BEF 绕点B 按顺时针方向旋转一定角度,如果△BEF 中E 、F 的对应点H 、I 恰好和射线BE 、CD 的交点G 在一条直线,求此时C 、I 两点之间的距离.【答案】(1)y=t 2(2)4(3)t=14.5s (4)IC=【解析】试题分析:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt △ABE 中,AB===8,如图1中,作PM ⊥BC 于M .由△ABE ∽△MPB ,得,求出PM ,根据△BPQ 的面积y=•BQ•PM 计算即可问题.(2)观察图象(1)(2),即可解决问题.(3)分三种情形讨论①P 在BE 上,②P 在DE 上,③P 在CD 上,分别求解即可. (4)由∠BIH=∠BCG=90°,推出B 、I 、C 、G 四点共圆,推出∠BGH=∠BCI ,由△GBH ∽△CBI ,可得 ,由此只要求出GH 即可解决问题.试题解析:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6试卷第11页,共20页在Rt △ABE 中,AB===8,如图1中,作PM ⊥BC 于M .∵△ABE ∽△MPB ,∴,∴,∴PM=t ,当0<t≤5时,△BPQ 的面积y=•BQ•PM=•2t•t=t 2.(2)由(1)可知BC=BE=10,ED=4. (3)①当P 在BE 上时, ∵BQ=2PB ,∴只有∠BPQ=90°,才有可能B 、P 、Q 为顶点的三角形和△ABE 相似, ∴∠BQP=30°,这个显然不可能,∴当点P 在BE 上时,不存在△PQB 与△ABE 相似. ②当点P 在ED 上时,观察图象可知,不存在△. ③当点P 在DC 上时,设PC=a ,当时,∴,∴a=,此时t=10+4+(8﹣)=14.5,∴t=14.5s 时,△PQB 与△ABE 相似. (4)如图3中,设EG=m ,GH=n ,试卷第12页,共20页∵DE ∥BC ,∴,∴,∴m=,在Rt △BIG 中,∵BG 2=BI 2+GI 2,∴()2=62+(8+n )2,∴n=﹣8+8或﹣8﹣8(舍弃),∵∠BIH=∠BCG=90°, ∴B 、I 、C 、G 四点共圆, ∴∠BGH=∠BCI , ∵∠GBF=∠HBI , ∴∠GBH=∠CBI , ∴△GBH ∽△CBI ,∴,∴,∴IC=.考点:二次函数综合题试卷第13页,共20页21、如图,二次函数y=ax 2﹣x+2(a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).(1)求抛物线与直线AC 的函数解析式;(2)若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E 的坐标.【答案】(1) (2)S=﹣m 2﹣4m+4(﹣4<m <0)(3)(﹣3,2)、(,﹣2)、(,﹣2)【解析】试题分析:(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(2)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系; (3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.试题解析:(1)∵A (﹣4,0)在二次函数y=ax 2﹣x+2(a≠0)的图象上,∴0=16a+6+2,解得a=﹣,试卷第14页,共20页∴抛物线的函数解析式为y=﹣x 2﹣x+2;∴点C 的坐标为(0,2),设直线AC 的解析式为y=kx+b ,则,解得,∴直线AC 的函数解析式为:;(2)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣m 2﹣m+2),过点D 作DH ⊥x 轴于点H ,则DH=﹣m 2﹣m+2,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=(m+4)×(﹣m 2﹣m+2)+(﹣m 2﹣m+2+2)×(﹣m ),化简,得S=﹣m 2﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等, ∴|y E |=|y C |=2, ∴y E =±2.当y E =2时,解方程﹣x 2﹣x+2=2得,x 1=0,x 2=﹣3,∴点E 的坐标为(﹣3,2);当y E =﹣2时,解方程﹣x 2﹣x+2=﹣2得,x 1=,x 2=,试卷第15页,共20页∴点E 的坐标为(,﹣2)或(,﹣2);②若AC 为平行四边形的一条对角线,则CE ∥AF , ∴y E =y C =2,∴点E 的坐标为(﹣3,2).综上所述,满足条件的点E 的坐标为(﹣3,2)、(,﹣2)、(,﹣2).考点:1、二次函数综合题;2、解一元二次方程-公式法;3、平行四边形的性质 22、如图,点E 是正方形ABCD 的对角线AC 上的一个动点(不与A 、C 重合),作EF ⊥AC 交边BC 于点F ,联结AF 、BE 交于点G . (1)求证:△CAF ∽△CBE ;(2)若AE :EC=2:1,求tan ∠BEF 的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)利用AA 证明△CEF ∽△CAB ,再列出比例式利用SAS 证明△CAF ∽△CBE(2)证出∴∠BAF=∠BEF ,设EC=1,则EF=1,FC=,AC=3,由勾股定理得出AB=BC=AC=,得出BF=BC ﹣FC=,由三角函数即可得出结果.试卷第16页,共20页试题解析:(1)证明:∵四边形ABCD 是正方形, ∴∠ABC=90°, ∵EF ⊥AC ,∴∠FEC=90°=∠ABC , 又∵∠FCE=∠ACB , ∴△CEF ∽△CAB ,∴,又∵∠ACF=∠BCE , ∴△CAF ∽△CBE ; (2)∵△CAF ∽△CBE , ∴∠CAF=∠CBE , ∵∠BAC=∠BCA=45°, ∴∠BAF=∠BEF , 设EC=1,则EF=1,FC=,∵AE :EC=2:1, ∴AC=3,∴AB=BC=AC=,∴BF=BC ﹣FC=,∴.考点:1、相似三角形的判定与性质;2、正方形的性质;3、解直角三角形23、直线l :y=﹣x+6交y 轴于点A ,与x 轴交于点B ,过A 、B 两点的抛物线m 与x轴的另一个交点为C ,(C 在B 的左边),如果BC=5,求抛物线m 的解析式,并根据函数图象指出当m 的函数值大于0的函数值时x 的取值范围.【答案】x <3或x >8 【解析】试题分析:先根据函数的解析式求出A 、B 两点的坐标,再求出点C 的坐标,利用待定试卷第17页,共20页系数法求出抛物线m 的解析式,画出其图象,利用数形结合即可求解.试题解析:∵y=﹣x+6交y 轴于点A ,与x 轴交于点B ,∴x=0时,y=6, ∴A (0,6), y=0时,x=8, ∴B (8,0),∵过A 、B 两点的抛物线m 与x 轴的另一个交点为C ,(C 在B 的左边),BC=5, ∴C (3,0).设抛物线m 的解析式为y=a (x ﹣3)(x ﹣8),将A (0,6)代入,得24a=6,解得a=,∴抛物线m 的解析式为y=(x ﹣3)(x ﹣8),即y=x 2﹣x+6;函数图象如右:当抛物线m 的函数值大于0时,x 的取值范围是x <3或x >8.考点:1、二次函数与不等式(组);2、待定系数法求二次函数解析式;3、抛物线与x 轴的交点试卷第18页,共20页24、如图,AB 、CD 分别表示两幢相距36米的大楼,高兴同学站在CD 大楼的P 处窗口观察AB 大楼的底部B 点的俯角为45°,观察AB 大楼的顶部A 点的仰角为30°,求大楼AB 的高.【答案】【解析】试题分析:过点P 作AB 的垂线,垂足为E ,根据题意可得出四边形PDBE 是矩形,再由∠EPB=45°可知BE=PE=36m ,由AE=PE•tan30°得出AE 的长,进而可得出结论.试题解析:如图,过点P 作AB 的垂线,垂足为E , ∵PD ⊥AB ,DB ⊥AB , ∴四边形PDBE 是矩形, ∵BD=36m ,∠EPB=45°, ∴BE=PE=36m ,∴AE=PE•tan30°=36×=12(m ),∴AB=12+36(m ).答:建筑物AB 的高为米.考点:解直角三角形的应用-仰角俯角问题25、如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且DE=BC .(1)如果AC=6,求CE 的长;试卷第19页,共20页(2)设,,求向量(用向量、表示).【答案】(1)2(2)【解析】试题分析:(1)根据相似三角形的判定与性质,可得AE 的长,根据线段的和差,可得答案;(2)根据相似三角形的判定与性质,可得AE ,AD 的长,根据向量的减法运算,可得答案.试题解析:(1)由DE ∥BC ,得△ADE ∽△ABC ,.又DE=BC 且AC=6,得AE=AC=4,CE=AC ﹣AE=6﹣4=2;(2)如图,由DE ∥BC ,得△ADE ∽△ABC ,.又AC=6且DE=BC ,得AE=AC ,AD=AB .试卷第20页,共20页,.=.考点:平面向量。
2017宝山数学一模卷及详解
2017年上海市宝山区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED 沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P 处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m 与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值进行判断即可【解答】解:∵∠A=30°,∴sinA=,cosA=,tanA=,cotA=,故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵C是线段AB的黄金分割点C,AC>CB,∴AC=AB=,故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数【考点】二次函数的定义.【分析】找出二次函数的定义域即可.【解答】解:二次函数y=x2+2x+3的定义域为x为一切实数,故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反【考点】*平面向量.【分析】根据向量的长度和方向,可得答案.【解答】解:A、由=﹣3,得||=3||,故A错误;B、由=﹣3,得||=3||,||:||=3:1,故B错误;C、由=﹣3,得=﹣3方向相反,故C错误;D、由=﹣3,得=﹣3平行且方向相反,故D正确;故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向【考点】方向角.【分析】根据题意正确画出图形进而分析得出从乙船看甲船的方向.【解答】解:如图所示:可得∠1=30°,∵从甲船看乙船,乙船在甲船的北偏东30°方向,∴从乙船看甲船,甲船在乙船的南偏西30°方向.故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.【考点】比例的性质.【分析】根据比例的基本性质:两外项之积等于两内项之积.可直接得到的结果.【解答】解:∵2a=3b,∴=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.【考点】相似三角形的性质.【分析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得.【解答】解:∵两个相似三角形的相似比为1:4,∴它们的面积比为1:16.故答案为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB的比例中项.【考点】比例线段.【分析】根据两角分别相等的两个三角形相似,可得△ACD∽△ABC的关系,根据相似三角形的性质,可得答案.【解答】解:在△ACD与△ABC中,∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC,∴=,∴AC是AD和AB的比例中项.故答案为AC.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.【考点】解直角三角形.【分析】先证明△BDC∽△CDA,利用相似三角形的性质求出CD的长度,然后根据锐角三角函数的定义即可求出tanA的值.【解答】解:∵∠BCD+∠DCA=∠DCA+∠A=90°,∴∠BCD=∠A,∵CD⊥AB,∴∠BDC=∠CDA=90°,∴△BDC∽△CDA,∴CD2=BD•AD,∴CD=6,∴tanA==故答案为:11.计算:2(+3)﹣5=2+.【考点】*平面向量.【分析】可根据向量的加法法则进行计算,可得答案.【解答】解:2(+3)﹣5=2+6﹣5=2+,故答案为:2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】延长AG交BC于D,根据重心的概念得到∠BAD=∠CAD,根据等腰三角形的性质求出BD,根据勾股定理和重心的性质计算即可.【解答】解:延长AG交BC于D,∵G为△ABC的重心,∴∠BAD=∠CAD,∵AB=AC,∴BD=BC=5,AD⊥BC,由勾股定理得,AD==12,∵G为△ABC的重心,∴AG=AD=8,故答案为:8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律求解即可.【解答】解:y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度得y=5(x﹣4+2)2+3﹣1,即y=5(x﹣2)2+2.故答案为y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线x=2.【考点】二次函数的性质.【分析】根据函数值相等的点到抛物线对称轴的距离相等可求得其对称轴.【解答】解:∵点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,∴其对称轴为x==2故答案为:x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)【考点】二次函数图象上点的坐标特征.【分析】先确定其对称轴,利用增减性进行判断;也可以将A、B两点的坐标分别代入求出纵坐标,再进行判断.【解答】解:由题意得:抛物线的对称轴是:直线x=1,∵﹣<0,∴当x>1时,y随x的增大而减小,∵2<3,∴y1>y2,故答案为:>.16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:2.4.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据在一个斜坡上前进5米,水平高度升高了1米,可以计算出此时的水平距离,水平高度与水平距离的比值即为坡度,从而可以解答本题.【解答】解:设在一个斜坡上前进13米,水平高度升高了5米,此时水平距离为x米,根据勾股定理,得x2+52=132,解得:x=12,故该斜坡坡度i=5:12=1:2.4.故答案为:1:2.4.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).【考点】二次函数的性质;二次函数的图象.【分析】由条件可求得抛物线解析式,化为顶点式可求得答案.【解答】解:∵特征数为{1、﹣4、3},∴抛物线解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线顶点坐标为(2,﹣1),故答案为:(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED 沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.【考点】翻折变换(折叠问题);解直角三角形.【分析】先根据DE⊥AB,tanA═,AC═8,求得BC=4,CE=3,BD=2,DE=,再过点C作CG⊥BE于G,作DH⊥BE于H,根据面积法求得CG和DH的长,最后根据△CFG∽△DFH,得到===即可.【解答】解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).【考点】*平面向量.【分析】(1)根据相似三角形的判定与性质,可得AE的长,根据线段的和差,可得答案;(2)根据相似三角形的判定与性质,可得AE,AD的长,根据向量的减法运算,可得答案.【解答】解:(1)由DE∥BC,得△ADE∽△ABC,=.又DE=BC且AC=6,得AE=AC=4,CE=AC﹣AE=6﹣4=2;(2)如图,由DE∥BC,得△ADE∽△ABC,=.又AC=6且DE=BC,得AE=AC,AD=AB.==,==.=﹣=﹣.21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P 处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.【考点】解直角三角形的应用-仰角俯角问题.【分析】过点P作AB 的垂线,垂足为E,根据题意可得出四边形PDBE是矩形,再由∠EPB=45°可知BE=PE=36m,由AE=PE•tan30°得出AE的长,进而可得出结论.【解答】解:如图,过点P作AB 的垂线,垂足为E,∵PD⊥AB,DB⊥AB,∴四边形PDBE是矩形,∵BD=36m,∠EPB=45°,∴BE=PE=36m,∴AE=PE•tan30°=36×=12(m),∴AB=12+36(m).答:建筑物AB的高为米.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m 与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.【考点】二次函数与不等式(组);待定系数法求二次函数解析式;抛物线与x 轴的交点.【分析】先根据函数的解析式求出A、B两点的坐标,再求出点C的坐标,利用待定系数法求出抛物线m的解析式,画出其图象,利用数形结合即可求解.【解答】解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a=,∴抛物线m的解析式为y=(x﹣3)(x﹣8),即y=x2﹣x+6;函数图象如右:当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.【考点】相似三角形的判定与性质;正方形的性质;解直角三角形.【分析】(1)利用AA证明△CEF∽△CAB,再列出比例式利用SAS证明△CAF∽△CBE(2)证出∴∠BAF=∠BEF,设EC=1,则EF=1,FC=,AC=3,由勾股定理得出AB=BC=AC=,得出BF=BC﹣FC=,由三角函数即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,∵EF⊥AC,∴∠FEC=90°=∠ABC,又∵∠FCE=∠ACB,∴△CEF∽△CAB,∴,又∵∠ACF=∠BCE,∴△CAF∽△CBE;(2)∵△CAF∽△CBE,∴∠CAF=∠CBE,∵∠BAC=∠BCA=45°,∴∠BAF=∠BEF,设EC=1,则EF=1,FC=,∵AE:EC=2:1,∴AC=3,∴AB=BC=AC=,∴BF=BC﹣FC=,∴.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.【考点】二次函数综合题;解一元二次方程-公式法;平行四边形的性质.【分析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(2)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【解答】解:(1)∵A(﹣4,0)在二次函数y=ax2﹣x+2(a≠0)的图象上,∴0=16a+6+2,解得a=﹣,∴抛物线的函数解析式为y=﹣x2﹣x+2;∴点C的坐标为(0,2),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(2)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m2﹣m+2),过点D作DH⊥x轴于点H,则DH=﹣m2﹣m+2,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m2﹣m+2)+(﹣m2﹣m+2+2)×(﹣m),化简,得S=﹣m2﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=2,∴y E=±2.当y E=2时,解方程﹣x2﹣x+2=2得,x1=0,x2=﹣3,∴点E的坐标为(﹣3,2);当y E=﹣2时,解方程﹣x2﹣x+2=﹣2得,x1=,x2=,∴点E的坐标为(,﹣2)或(,﹣2);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=2,∴点E的坐标为(﹣3,2).综上所述,满足条件的点E的坐标为(﹣3,2)、(,﹣2)、(,﹣2).25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.【考点】二次函数综合题.【分析】(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.由△ABE∽△MPB,得=,求出PM,根据△BPQ的面积y=•BQ•PM计算即可问题.(2)观察图象(1)(2),即可解决问题.(3)分三种情形讨论①P在BE上,②P在DE上,③P在CD上,分别求解即可.(4)由∠BIH=∠BCG=90°,推出B、I、C、G四点共圆,推出∠BGH=∠BCI,由△GBH∽△CBI,可得=,由此只要求出GH即可解决问题.【解答】解:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.∵△ABE∽△MPB,∴=,∴=,∴PM=t,当0<t≤5时,△BPQ的面积y=•BQ•PM=•2t•t=t2.(2)由(1)可知BC=BE=10,ED=4.(3)①当P在BE上时,∵BQ=2PB,∴只有∠BPQ=90°,才有可能B、P、Q为顶点的三角形和△ABE相似,∴∠BQP=30°,这个显然不可能,∴当点P在BE上时,不存在△PQB与△ABE相似.②当点P在ED上时,观察图象可知,不存在△.③当点P在DC上时,设PC=a,当=时,∴=,∴a=,此时t=10+4+(8﹣)=14.5,∴t=14.5s时,△PQB与△ABE相似.(4)如图3中,设EG=m,GH=n,∵DE∥BC,∴=,∴=,∴m=,在Rt△BIG中,∵BG2=BI2+GI2,∴()2=62+(8+n)2,∴n=﹣8+8或﹣8﹣8(舍弃),∵∠BIH=∠BCG=90°,∴B、I、C、G四点共圆,∴∠BGH=∠BCI,∵∠GBF=∠HBI,∴∠GBH=∠CBI,∴△GBH∽△CBI,∴=,∴=,∴IC=﹣.2017年1月20日。
上海市宝山区2017届高考数学一模试卷-Word版含解析
上海市宝山区2017届高考数学一模试卷-Word版含解析2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.= .2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁B= .U3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z= .6.若函数的最小正周期为aπ,则实数a的值为.x图象上,则f(x)的反函数为.7.若点(8,4)在函数f(x)=1+loga8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a= .12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3 C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).4.椭圆(θ为参数)的焦距为 6 .【考点】椭圆的参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.5.设复数z满足(i为虚数单位),则z= 1+i .【考点】复数代数形式的混合运算.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.6.若函数的最小正周期为aπ,则实数a的值为 1 .【考点】三角函数的周期性及其求法.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.x图象上,则f(x)的反函数为f﹣1(x)7.若点(8,4)在函数f(x)=1+loga=2x﹣1..【考点】反函数.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.x图象过点(8,4),【解答】解:函数f(x)=1+loga可得:4=1+log8,a解得:a=2.x∴f(x)=y=1+log2则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.8.已知向量,,则在的方向上的投影为.【考点】平面向量数量积的运算.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】旋转体(圆柱、圆锥、圆台).【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,==18π.S侧故答案为18π.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.11.设常数a>0,若的二项展开式中x5的系数为144,则a= 2 .【考点】二项式系数的性质.=(r=0,1,2,…,9).令9﹣2r=5,解得【分析】利用通项公式Tr+1r,即可得出.==(r=0,1,2,…,9).【解答】解:Tr+1令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为 6 .【考点】排列、组合及简单计数问题.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.110【考点】分层抽样方法.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为: =108,故选C.15.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】相互独立事件的概率乘法公式.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P (MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.16.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3 C.D.2【考点】函数的最值及其几何意义.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f (t )|=|t 2+t+f (0)|=|f (2)+f (﹣2)+f (0)|≤|t (t+2)|+|t (t ﹣2)|+|4﹣t 2|=|t|(t+2)+|t|(2﹣t )+(4﹣t 2)═(|t|﹣1)2+≤,故选:C .三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC ﹣A 1B 1C 1的底面积为,侧面积为36;(1)求正三棱柱ABC ﹣A 1B 1C 1的体积;(2)求异面直线A 1C 与AB 所成的角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)设正三棱柱ABC ﹣A 1B 1C 1的底面边长为a ,高为h ,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC ﹣A 1B 1C 1的体积.(2)由AB ∥A 1B 1,知∠B 1A 1C 是异面直线A 1C 与AB 所成的角(或所成角的补角),由此能求出异面直线A 1C 与AB 所成的角.【解答】解:(1)设正三棱柱ABC ﹣A 1B 1C 1的底面边长为a ,高为h ,则,解得a=3,h=4,∴正三棱柱ABC ﹣A 1B 1C 1的体积V=S △ABC •h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】椭圆的简单性质.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=•=•=,由丨AB丨=, =,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.19.设数列{xn }的前n项和为Sn,且4xn﹣Sn﹣3=0(n∈N*);(1)求数列{xn}的通项公式;(2)若数列{yn }满足yn+1﹣yn=xn(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【考点】数列与不等式的综合.【分析】(1)由4xn ﹣Sn﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n≥2时,由Sn =4xn﹣3,可得xn=Sn﹣Sn﹣1,利用等比数列的通项公式即可得出.(2)yn+1﹣yn=xn=,且y1=2,利用yn=y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn﹣1)与等比数列的求和公式即可得出yn.代入不等式,化简即可得出.【解答】解:(1)∵4xn ﹣Sn﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由Sn =4xn﹣3,∴xn=Sn﹣Sn﹣1=4xn﹣3﹣(4xn﹣1﹣3),∴xn=,∴数列{xn},是等比数列,公比为.∴xn=.(2)yn+1﹣yn=xn=,且y1=2,∴yn =y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴yn=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.【考点】对数函数的图象与性质.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即,∴,n∈N.解得:<x<,n∈N.又∵2+x>0,即x>﹣2,∴≥﹣2,n∈N.解得:k,∵k∈Z,∴k≥0.故得任意n∈N均成立,实数x的取值集合为(,),k∈N,n ∈N.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为an,如果A={a1,a2,…,an},B=,设A+B中的所有元素之和为Sn,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式Sm +Sn﹣λSk>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】双曲线的简单性质.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得an =,Sn=n2,则Sm+Sn﹣λSk>0恒成立,⇔>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N *的基底集,结合已知中“自生集”和“N *的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a ∈A ,b ∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n ≥2时表示双曲线,故a n =2=,∴a 1+a 2+a 3+…+a n =,∵B=,∴A+B 中的所有元素之和为S n =3(a 1+a 2+a 3+…+a n )+n ()=3•﹣m=n 2,∴S m +S n ﹣λS k >0恒成立,⇔>λ恒成立,∵m+n=3k ,且m ≠n ,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N *的基底集,理由如下:设整数集合A={x|x=(﹣1)n •F n ,n ∈N *,n ≥2},其中{F n }为斐波那契数列,即F 1=F 2=1,F n+2=F n +F n+1,n ∈N *,下证:整数集合A 既是自生集又是N *的基底集,①由F n =F n+2﹣F n+1得:(﹣1)n •F n =(﹣1)n+2•F n+2+(﹣1)n+1•F n+1,故A 是自生集;②对于任意n ≥2,对于任一正整数t ∈[1,F 2n+1﹣1],存在集合Ar 一个有限子集{a 1,a 2,…,a m },使得t=a1+a2+…+am,(|ai<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,则n=k+1时,只须对任何整数m∈[F2k+1,F2k+3]讨论,若m<F2k+2,则m=F2k+2+,∈(﹣F2k+1,0),故=﹣F2k+1+m′,m′∈[1,F2k+1),由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1的元素的和.因为m=F2k+2﹣F2k+1+m′=(﹣1)2k+2•F2k+2+(﹣1)2k+1•F2k+1+m′,所以m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.若m=F2k+2,则结论显然成立.若F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.。
宝山区中考数学一模
宝山区2017-2018学年第一学期期末考试(一模)九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.符号A tan 表示…………………………………………………… ( ) A .∠A 的正弦; B .∠A 的余弦; C .∠A 的正切; D .∠A 的余切. 2.如图△ABC 中∠C=90°,如果CD ⊥AB 于D ,那么………( )A .AB CD 21=; B .AD BD 21=;C .BD AD CD ⋅=2; D .AB BD AD ⋅=2.3.已知a 、b 为非零向量,下列判断错误的是……… ( )A .如果b a 2=,那么a ∥b ;B .如果b a =,那么b a =或b a -=;C .0的方向不确定,大小为0;D .如果e 为单位向量且e a 2=,那么2=a . 4.二次函数322++=x x y 的图像的开口方向为…………………………………… ( ) A . 向上; B . 向下; C .向左; D .向右.5.如果从某一高处甲看低处乙的俯角为︒30,那么从乙处看甲处,甲在乙的…… ( ) A .俯角︒30方向; B .俯角︒60方向; C .仰角︒30方向; D .仰角︒60方向.6.如图,如果把抛物线2x y =沿直线x y =向上方平移22个单位后,其顶点在直线x y =上的A 处,那么平移后的抛物线解析式 是……………………………( )A .22)22(2++=x y B .2)2(2++=x y CABD 第2题C .22)22(2+-=x yD .2)2(2+-=x y 二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. 已知b a 32=,那么=b a : ▲ .8.如果两个相似三角形的周长比为1:4,那么它们的某一对对应角的角平分线之比为 ▲ . 9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当 ▲ 时,△ADE ∽△ABC 其中D 、E 分别对应B 、C .(填一个条件) 10.计算:b b a 23)54(21+-= ▲ . 11.如图,在锐角△ABC 中,BC=10,BC 上的高AD=6,正方形EFGH 的顶点E 、F 在BC 边上,G 、H 分别在AC 、AB 边上,则此正方形的边长为 ▲ .12. 如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度=i ▲ .13. 如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则=∠CAF tan ▲ . 14.抛物线3)4(52+-=x y 的顶点坐标是 ▲ .15.二次函数=y 3)1(22+--x 的图像与y 轴的交点坐标是是__▲__.16.如果点A(0,2)和点B(4,2)都在二次函数c bx x y ++=2的图像上,那么此抛物线在直线 ▲ 的部分是上升的.(填具体某直线的某侧)17.如图,点D 、E 、F 分别为△ABC 三边的中点, 如果△ABC 的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是 ▲ .第13题第11题 第9题第18题第6题ABDC FGEHABCD EHE GF CBAD GABCDEF第17题18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻 折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处, 如果E 在旋转过程中曾经交AB 于G ,当EF=BG 时,旋转角∠EAF 的度数是 ▲ 三、(本大题共7题,第19--22题每题10分;第23、24题每题12分;第25题14分;满分78分)19. (本题满分10分) 计算:10)60(tan 30sin 45cos 60sin -+︒+︒-︒︒π20.(本题满分10分,每小题各5分)如图,AB ∥CD ∥EF ,而且线段AB 、CD 、EF 的长度分别 为5、3、2.(1)求AC :CE 的值;(2)如果AE 记作a ,BF 记作b ,求CD (用a 、b 表示).21.(本题满分10分)已知在港口A 的南偏东75?方向有一礁石B ,轮船从港口出发,沿正东北方向(北偏东45?方向)前行10里到达C 后测得礁石B 在其南偏西15?处,求轮船行驶过程中离礁石B 的最近距离.BEAFCDACNN22.(本题满分10分,每小题各5分)如图,在直角坐标系中,已知直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点,C 点的坐标为(-2,0).(1)求经过A ,B ,C 三点的抛物线的解析式; (2)如果M 为抛物线的顶点,联结AM 、BM ,求四边形AOBM 的面积.23.(本题满分12分,每小题各6分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:CGEGAC AE =; (2)若AH 平分∠BAC ,交 BF 于H ,求证:BH 是HG 和HF 的比例中项.第23题第21题G E ABCFDH第22题24.(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式b x a ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当n x m ≤≤时,有n y m ≤≤,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数4+-=x y ,当1=x 时,3=y ;当3=x 时,1=y ,即当31≤≤x 时,恒有31≤≤y ,所以说函数4+-=x y 是闭区间[1,3]上的“闭函数”,同理函数x y =也是闭区间[1,3]上的“闭函数”.(1)反比例函数x y 2018=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”,求k 和t 的值; (3)如果(2)所述的二次函数的图像交y 轴于C 点, A 为此二次函数图像的顶点,B 为直线1=x 上的一点,当△ABC 为直角三角形时,写出点B 的坐标.xy–1–2–3–4123456–1–2–3–41234567O25. (本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H .(1) 求sin ∠ABC ; (2) 求∠BAC 的度数;(3) 设BF=x ,CH=y ,求y 与x 的函数关系式及其定义域.ECDA B第25题宝山区2018中考数学一模参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2.C ; 3. B ; 4.A ; 5. C ; 6. D. 二、填空题(本大题共12题,每题4分,满分48分)7.3:2; 8.1:4; 9.B ADE ∠=∠等; 10.b a -2; 11.415; 12.1:; 13.31; 14.(4,3); 15.23-; 16.2=x 右侧; 17.S 43; 18. 36?.三、简答题(本大题共7题,第19--22题每题10分;第23、24题每题12分.第25题14分;满分78分)19.解:原式=131212223++- …………………………………………6分=213)12(3-++=213236-+. …………………10(3+1)分20.解:过E 作EG ∥BF 分别交AB 、CD 于G 、H ,………………………1分∵AB ∥CD ∥EF , AB=5、CD=3、EF=2,∴ BG=DH=EF=2, …………………………2分 在△EAG 中,CH ∥AG ,CH=3-2=1,AG=5-2=3…………………………3分 ∴31==AG CH EA EC , ∴AC :CE=2:1 …………………………5分 ∵BF AE EG AE AG -=+=,AG CD =, …………………………9分∴b a CD -= …………………………10分 21. 解:联结AB 、BC ,∵B 在A 南偏东75?方向,C 在A 北偏东45?方向,B 在C 南偏西15?方向,AC =10里 ∴∠CAB =45?+(90?-75?)=60?, ∠ACB =45?-15?=30? …………4分 ∴∠ABC =90?过B 作BH ⊥AC 于H ……………………6分 ∴ACB ACB AC BCA BC BH ∠⋅∠⋅=∠⋅=sin cos sin ……………………8分=212310⨯⨯=325, ……………………10分 ∴轮船行驶过程中离礁石B 的最近距离为325. 22.解:∵直线421+-=x y 与y 轴交于A 点,与x 轴交于B 点, ∴A (0,4),B (8,0), ……………………2分 设过A 、B 、C (-2,0)的抛物线为:)8)(2(-+=x x a y将A (0,4)代入得:41-=a , ……………………4分 过A ,B ,C 三点的抛物线的解析式为:423412++-=x x y …………5分 经配方得:425)3(412+--=x y ……………………6分 抛物线的顶点M )425,3( ……………………7分 过M 作MH ⊥x 轴于H , ……………………8分 四边形AOBM 的面积=梯形AOHM 的面积+△MHB 的面积………………9分 =5425213)4254(21⨯⨯+⨯+=31……………………10分 23. (1)∵ DE 是△ABC 的中位线,∴AE =CE ,DE ∥BC 且DE=21BC , …………………………2分 ∵CF ∥AB ,∴1==CEAEDE EF ,即EF=DE ,…………………………4分 ∴BC EF CG EG BC DE AC AE ==, ∴CGEG AC AE =…………………………6分 (2)∵AB=AC ,AH 平分∠BAC∴∠ ABC =∠ACB ,AH 是BC 的垂直平分线 …………………………7分 联结CH ,CH =BH .∴∠HBC =HCB , ∠ABH =ACH …………………………8分 ∵CF ∥AB ,∴∠CFG =∠ABH ∠CFG =∠HCG ………………………9分 ∵∠FHC =∠CHG ∴△ FHC ∽△CHG …………………………10分∴HGCH HC FH = ∴HG FH CH ⋅=2 ∴HG FH BH ⋅=2………11分 ∴BH 是HG 和HF 的比例中项. …………………………12分24. (1)∵xy 2018=在20181≤≤x 时,y 随着x 增大而减小…………1分 ∵当1=x 时,2018=y ;当2018=x 时,1=y即当20181≤≤x 时有20181≤≤y , ……………………3分 ∴反比例函数xy 2018=是闭区间[1,2018]上的“闭函数”………4分 (2) ∵易知二次函数k x x y +-=42的开口向上,对称轴是直线2=x , ∴当t x ≤≤2 时,y 随着x 增大而增大. ……………………5分∵二次函数k x x y +-=42是闭区间[2,t ]上的“闭函数”, ∴24)2(=-=k f , ∴6=k , ……………………6分t t t t f =+-=64)(2 ∴2=t (舍去),3=t ,………………8分即642+-=x x y 是闭区间[]3,2上的“闭函数”.(3) ∵2)2(6422+-=+-=x x x y ,∴此二次函数图像的顶点A (2,2),和y 轴的交点C (0,6).…………9分设B (1,y ),分类讨论当∠C =90?时根据AB 2=AC 2+BC 2得:B )213,1(1 当∠A =90?时,同理易得:B )23,1(2当∠B =90?时,同理易得:B )54,1(3+,B )54,1(4- …………12分 综上所述:当△ABC 为直角三角形时,点B 的坐标分别为B )213,1(1、B )23,1(2、B )54,1(3+,B )54,1(4-.25.解:(1)过A 作AL ⊥BC 于L ,∵等腰梯形ABCD 中,AD ∥BC ,AD =7,AB=CD =15,BC =25, ∴根据等腰梯形的对称性易得:BL=9,CL=16 在直角△ABL 中根据勾股定理易得:AL=12 ∴ABC ∠sin =541512==AB AL (2)∵34912==AL BL,341216==BL CL ∴BLCL ALBL=,90=∠=∠CLA ALB ? ……………………………4分∴△ALB ∽△CLA , ∴∠ABL=∠CAL ……………………………5分 ∵∠ABL+∠BAL=90? ∴∠CAL+∠BAL=90?,即∠BAC=90?……6分(3)∵腰AB 上E 满足AE :BE =1:2, ∴AE=5,BE=10F 为BC 一动点,∠FEG =∠B ,EG 交射线 BC 于G ,直线EG 交射线CA 于H . 分类讨论:当G 在F 右侧时当G 在BC 上时,我们只要考虑如图情况 (不需要考虑H 在下方) 过E 作EM ⊥BC 于M ,∵∠HEA=∠BEG=∠BEF+∠FEG ∵∠EFM=∠BEF+∠B∴∠HEA=∠B∵∠EMF=∠HAE=90?,∴△EMF ∽△HAE ∴HAAEEM FM =………7分 ∵FM=BM-BF=x -6, EM=8, AH=CH-AC=20-y∴xxx y --=-+=62016064020 ……………………………8分 其中60πx ≤ ……………………………9分当G 在BC 的延长线上时,(如图) 同理易知:∠HEA=∠EFN△ENF ∽△HAE HAAEEN NF =61602064020--=--=x x x y …10分 其中128πx ≤ ……………11分即:616020--=x x y (其中60πx ≤或128πx ≤)当G 在F 左侧时,易知:△AEH ∽△UEG ∴UEUGAE AH =BG UG 54=, UE=BG 5310-同理易知:△BEF ∽△EGF ∴GF BF EF ⋅=2……………12分∴GF=xx BF FM EM 2222)6(8-+=+,BG=x x GF BF 10012-=-,)25325(150********≤≤++=x x x y ……………14分BCADHEM F G HGB CADEFN A DBCH E G FU M。
∥3套精选试卷∥上海市宝山区2017-2018中考数学第一次联考试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π- 【答案】D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 2.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1- 【答案】D【解析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-,所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125【答案】B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.4.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°【答案】B【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.5.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【答案】B【解析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.6.-4的绝对值是()A .4B .14C .-4D .14- 【答案】A 【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.7.估算9153+÷的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D 【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间.故选D .【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.8.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.9.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C 5D 25 【答案】A【解析】分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可.详解:连接AC ,由网格特点和勾股定理可知, AC=2,22,10AB BC ==, AC 2+AB 2=10,BC 2=10,∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∴tan ∠ABC=21222AC AB ==. 点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解题的关键.10.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .【答案】D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D .【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.二、填空题(本题包括8个小题)11.若a+b=5,ab=3,则a 2+b 2=_____.【答案】1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.12.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.【答案】3或1【解析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.13.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.【答案】231.【解析】据题意求得A0A1=4,A0A1=23,A0A3=1,A0A4=23,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=3A0A3=1,A0A4=23A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为3 1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.14.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.【答案】41 400【解析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】 本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.15.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg【答案】20【解析】设函数表达式为y=kx+b 把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg16.若正六边形的边长为2,则此正六边形的边心距为______.【答案】3.【解析】连接OA 、OB ,根据正六边形的性质求出∠AOB ,得出等边三角形OAB ,求出OA 、AM 的长,根据勾股定理求出即可.【详解】连接OA 、OB 、OC 、OD 、OE 、OF ,∵正六边形ABCDEF ,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF ,∴∠AOB=60°,OA=OB ,∴△AOB 是等边三角形,∴OA=OB=AB=2,∵AB ⊥OM ,∴AM=BM=1,在△OAM 中,由勾股定理得:317.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 18.若|a|=20160,则a=___________.【答案】±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1.三、解答题(本题包括8个小题)19.如图,一次函数y=﹣x+4的图象与反比例函数y=(k 为常数,且k≠0)的图象交于A (1,a ),B (3,b )两点.求反比例函数的表达式在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标求△PAB 的面积.【答案】(1)反比例函数的表达式y=,(2)点P 坐标(,0), (3)S △PAB = 1.1.【解析】(1)把点A (1,a )代入一次函数中可得到A 点坐标,再把A 点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D 关于x 轴的对称点D ,连接AD 交x 轴于点P ,此时PA+PB 的值最小.由B 可知D 点坐标,再由待定系数法求出直线AD 的解析式,即可得到点P 的坐标;(3)由S △PAB =S △ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=kx,得k=3,∴反比例函数的表达式y=3x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=1,∴直线AD的解析式为y=﹣2x+1,令y=0,得x=52,∴点P坐标(52,0),(3)S△PAB=S△ABD﹣S△PBD=12×2×2﹣12×2×12=2﹣12=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.20.今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.【答案】(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200 xy=⎧⎨=⎩,答:A种树苗的单价为200元,B种树苗的单价为300元.(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30︒,∠CBD=60︒.求AB的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.【答案】(1)24.2米(2) 超速,理由见解析【解析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CD ADtan30︒=21213?33==,在Rt△BDC中,CD21BD73tan603===︒,∴AB=AD-BD=213?73=14314 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.22.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.【答案】(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:13(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.23.一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【答案】(1)12(2)16【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12.(2)用表格列出所有可能的结果:第二次第一次红球1 红球2 白球黑球红球1 (红球1,红球2)(红球1,白球)(红球1,黑球)红球2 (红球2,红球1)(红球2,白球)(红球2,黑球)白球(白球,红球1)(白球,红球2)(白球,黑球)黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.考点:概率统计24.如图,在Rt⊿ABC中,90ACB∠=,CD AB⊥于D,,AC20BC15==.⑴.求AB的长;⑵.求CD的长.【答案】(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).∵在Rt⊿ABC中,90ACB∠=,20,15AC BC==.∴2222201525AB AC BC =+=+=,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=,∴20×15=25CD.∴12CD =.25.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a = ___ ;b =____ 请计算扇形统计图中B 组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3,45;(2)108︒;(3)16【解析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:16. 考点:1、频数分布表,2、扇形统计图,3、概率26.甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲a7 7 1.2乙7 b8 c(1)求a,b,c的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【答案】(1)a=7,b=7.5,c=4.2;(2)见解析.【解析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断 【答案】B【解析】比较OP 与半径的大小即可判断.【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B .【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<. 2.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根【答案】D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.3.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm2【答案】C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.4【答案】B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C3D3【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN ,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB ,再根据直角三角形解答.【详解】如图,过点P 作PE ⊥OA 于点E ,∵OP 是∠AOB 的平分线,∴PE =PM ,∵PN ∥OB ,∴∠POM =∠OPN ,∴∠PNE =∠PON+∠OPN =∠PON+∠POM =∠AOB =45°, ∴PM PN =2. 故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6.函数y=ax 2+1与a y x=(a≠0)在同一平面直角坐标系中的图象可能是( ) A . B . C . D .【答案】B【解析】试题分析:分a >0和a <0两种情况讨论:当a >0时,y=ax 2+1开口向上,顶点坐标为(0,1);a y x=位于第一、三象限,没有选项图象符合; 当a <0时,y=ax 2+1开口向下,顶点坐标为(0,1);a y x =位于第二、四象限,B 选项图象符合. 故选B .考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.7.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( )A .3B .6C .12D .5 【答案】C【解析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦即可得到答案.【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦=3, 则()()()()22222123122222222n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×3=12,故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.8.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】B【解析】分析:直接利用2<7<3,进而得出答案.详解:∵2<7<3,∴3<7+1<4,故选B .点睛:此题主要考查了估算无理数的大小,正确得出7的取值范围是解题关键.9.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°【答案】C 【解析】分析:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.10.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..二、填空题(本题包括8个小题)11.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.【答案】1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.12.若x2+kx+81是完全平方式,则k的值应是________.【答案】±1【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案为±1.考点:完全平方式.13.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点.一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A .点MB .点NC .点PD .点Q【答案】D【解析】D .试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M ,AM 最小,与图2不符,可排除A.若微型记录仪位于图1中的点N ,由于AN=BM ,即甲虫从A 到B 时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P ,由于甲虫从A 到OP 与圆弧的交点时甲虫与微型记录仪之间的距离y 逐渐减小;甲虫从OP 与圆弧的交点到A 时甲虫与微型记录仪之间的距离y 逐渐增大,即y 与t 的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D .考点:1.动点问题的函数图象分析;2.排他法的应用.142x +有意义,则x 的取值范围是_____. 【答案】x≥﹣2且x≠1. 2x +20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.15.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m 的值为___________.【答案】3【解析】设过点A (2,0)和点B (0,2)的直线的解析式为:y kx b =+,则202k b b +=⎧⎨=⎩,解得:12k b =-⎧⎨=⎩ ,∴直线AB 的解析式为:2y x =-+,∵点C (-1,m )在直线AB 上,∴(1)2m --+=,即3m =.故答案为3.点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.16.若一个多边形的内角和是900º,则这个多边形是 边形.【答案】七【解析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.17.写出一个大于3且小于4的无理数:___________.【答案】如10π,等,答案不唯一.【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16都是完全平方数,10,11,12,,15都是无理数.18.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.【答案】x≥1【解析】把y=2代入y=x+1,得x=1,∴点P 的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n 相应的函数值,因而不等式x+1≥mx+n 的解集是:x≥1,故答案为x≥1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.三、解答题(本题包括8个小题)19.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .求证:△ADE ≌△CBF ;若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.【答案】(1)证明见解析(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形;证明见解析;【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS ,ASA ,SSS )来证明全等;(2)先由菱形的性质得出AE=BE=DE ,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD 是矩形.【详解】解:()1证明:∵四边形ABCD 是平行四边形,∴4C ∠=∠,AD CB =,AB CD =.∵点E 、F 分别是AB 、CD 的中点, ∴12AE AB =,12CF CD =. ∴AE CF =.在AED 和CBF 中,AD CB DAE C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADE CBF SAS ≅.()2解:当四边形BEDF 是菱形时,四边形AGBD 是矩形.证明:∵四边形ABCD 是平行四边形,∴//AD BC .。
上海市宝山区2018年中考数学一模试卷(解析版)
2018年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1. 符号tanA表示()A. ∠A的正弦B. ∠A的余弦C. ∠A的正切D. ∠A的余切【答案】C【解析】分析:根据锐角三角形的符号所表示的意义可得:tan表示的正切.详解:符号tanA表示∠A的正切.故选:C.点睛:考查了锐角三角函数的定义:在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2. 如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A. CD=ABB. BD=ADC. CD2=AD•BDD. AD2=BD•AB【答案】C【解析】分析:利用相似三角形的判定得出△CDB∽△ACD,进而利用相似三角形的性质判断即可.详解:∵△ABC中∠C=90°,CD⊥AB于D,∴∠CDB=∠ADC,∠B=∠ACD,∴△CDB∽△ACD,∴,即CD2=AD•BD,故选:C.点睛:考查了相似三角形的判定和性质,解题关键是利用相似三角形的判定得出△CDB∽△ACD.3. 已知、为非零向量,下列判断错误的是()A. 如果=2,那么∥B. 如果||=||,那么=或=﹣C. 的方向不确定,大小为0D. 如果为单位向量且=2,那么||=2【答案】B【解析】分析:根据单位向量、平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.详解:A、如果=2,那么∥,正确;B、如果||=||,没法判断与的关系;故错误.C、的方向不确定,大小为0,正确;D、如果为单位向量且=2,那么||=2,正确;故选:B.点睛:考查了平面向量的知识,注意熟记定义是解此题的关键.4. 二次函数y=x2+2x+3的图象的开口方向为()A. 向上B. 向下C. 向左D. 向右【答案】A【解析】分析:根据二次函数y=ax2+bx+c(a≠0,a 、b、c为常数)中的系数与函数图象间的关系(其中a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下)解答.详解:∵二次函数y=x2+2x+3中a=1>0,∴二次函数y=x2+2x+3的图象的开口向上,故选:A.点睛:熟记二次函数y=ax2+bx+c(a≠0,a 、b、c为常数)中的系数与函数图象间的关系:其中a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下.5. 如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A. 俯角30°方向B. 俯角60°方向C. 仰角30°方向D. 仰角60°方向【答案】C【解析】分析:根据仰角以及俯角的定义,画出图形进而分析,求出即可.详解:如图所示:∵甲处看乙处为俯角30°,∴乙处看甲处为:仰角为30°.故选:C.点睛:考查了仰角以及俯角的定义,仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角,正确理解它们的定义是解题关键.6. 如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A. y=(x+2)2+2B. y=(x+2)2+2C. y=(x﹣2)2+2D. y=(x﹣2)2+2【答案】D【解析】分析:过点A作AB⊥x轴于B,求出OB、AB,然后写出点A的坐标,再利用顶点式解析式写出即可.详解:如图所示,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=2,∴OB=AB=2×=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x﹣2)2+2.故选:D.点睛:考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,解此类题目,利用顶点的变化求解更简便.二、填空题(每小题4分,共48分)7. 如果2a=3b,那么a:b=_____.【答案】3:2【解析】分析:根据比例的基本性质:两内项之积等于两外项之积.把2a当做比例的外项,3b当做比例的内项写出比例即可.详解:根据比例的基本性质,2a=3b可以写出比例为:a:b=3:2.故答案为:3,2.点睛:考查用比例的基本性质写比例,解题关键是根据比例的基本性质(两内项之积等于两外项之积),把2a 当做比例的外项,3b当做比例的内项,再写出比例.8. 如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为_____.【答案】1:4【解析】分析:根据相似三角形周长的比等于相似比求出相似比,再根据对应角平分线的比等于相似比解答.详解:∵两个相似三角形的周长之比1:4,∴它们的相似比是1:4,∴它们的某一对对应角的角平分线之比为1:4.故答案为:1:4.点睛:考查对相似三角形性质的理解:请理解和熟记以下知识点:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.9. 如图,D、E为△ABC的边AC、AB上的点,当_____时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【答案】∠ADE=∠B详解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.点睛:考查了相似三角形的判定:解题关键是运用相似三角形的判(两组对应角相等的两个三角形相似).10. 计算:(4-5)+=_____.【答案】【解析】分析:先根据乘法分配律去括号后,再进行加减运算.详解:(4-5)+=2﹣+=2﹣故答案为:2﹣.点睛:考查了向量的计算,实数的运算法则也适用向量的运算.11. 如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为_____.【答案】【解析】分析:设正方形EFGH的边长为x,根据相似三角形的判定和性质得出方程解答即可.详解:设正方形EFGH的边长为x,则HG=HE=QK=x,∵HG∥BC,∴,且AK=AQ﹣x,又∵AQ=6,BC=10,∴,解得x=,故答案为:.点睛:主要考查平行线分线段成比例的性质,掌握平行线分线段中的线段对应成比例是解题的关键.12. 如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=_____.【答案】1:2.4【解析】分析:根据题意建立图形,利用勾股定理求得另一直角边的长度,再根据坡度的概念求解可得.详解:如图,根据题意知AB=13米、AC=5米,则BC=(米),∴斜坡的坡度i=tanB==1:2.4,故答案为:1:2.4.点睛:主要考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握勾股定理及坡度的概念.13. 如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=_____.【答案】..............................详解:如图所示:连接AG,设正方形的边长为a,AC=,∵,∴,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=,故答案为: .点睛:主要运用了两边对应成比例、夹角相等两三角形相似的判定和相似三角形对应角相等的性质,求出两三角形的对应边的比值相等是解本题的关键.14. 抛物线y=5(x﹣4)2+3的顶点坐标是_____.【答案】(4,3)【解析】抛物线y=5(x﹣4)2+3,∴顶点坐标是(4,3)15. 二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是_____.【答案】(0,)【解析】分析:把x=0代入函数解析式中,求得y的值,则可求得与y轴交点坐标.详解:当x=0时,y=﹣(x﹣1)2+=﹣×(0﹣1)2+=﹣.∴二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).故答案为:(0,﹣).点睛:求函数与坐标轴交点坐标问题可以转换成求代数式值和解方程问题:具体如下:当求函数与y轴交点坐标,则把x=0代入函数解析式中,求得y的值即可;当求函数与x轴交点坐标,则把y=0代入函数解析式中,解方程,求得x的值即可.16. 如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线_____的部分是上升的.(填具体某直线的某侧)【答案】x=2右侧【解析】分析:利用待定系数法,把点A、B的坐标代入解析式,根据待定系数法求得解析式,利用配方法把二次函数解析式的一般式写成顶点式,求出抛物线对称轴,然后根据二次函数的性质即可求得答案.详解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴,解得:,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为:x=2右侧.点睛:考查了二次函数图象上点坐标特征、二次函数的性质,熟练掌握二次函数的性质是解题的关键.17. 如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是_____.【答案】【解析】分析:延长AD至G,使得DG=AD,连接BG,CG,取BG的中点H,连接CH,FH,依据三角形中线、中位线的性质以及平行四边形的性质,即可得到△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF 的面积=S,进而得出△CFH的面积=2S﹣S﹣S﹣S=S.详解:如图所示,延长AD至G,使得DG=AD,连接BG,CG,则△ACD≌△GBD,△ABD≌△GCD,四边形ABGC为平行四边形,∴四边形ABGC的面积=2S,取BG的中点H,连接CH,FH,则BH∥CE,BH=CE,故四边形BHCE是平行四边形,∴BE=CH,由题可得,FH是△ABG的中位线,∴FH=AG=AD,∴△CFH即为以AD、BE、CF为边的三角形,∵△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF的面积=S,∴△CFH的面积=2S﹣S﹣S﹣S=S,故答案为:S.点睛:主要考查了三角形的重心的运用,三角形的重心是三角形三边中线的交点.解决问题的关键是作辅助线构造平行四边形以及以AD、BE、CF为边的三角形,利用基本图形的性质求解.18. 如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E 处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是_____.【答案】36°【解析】分析:设BM=a,则AB=2a,依据题意得到,进而得出△AEF为黄金三角形,即可得到∠EAF=36°.详解:设BM=a,则AB=2a,∴Rt△ABM中,AM=a,由题可得,EM=BM=a,∴AE=(﹣1)a=AG=AF,∴BG=AB﹣AG=(3﹣)a,又∵EF=BG,∴,∴△AEF为黄金三角形,即∠EAF=36°,故答案为:36°点睛:主要考查了正方形的性质以及旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19. 计算:+(tan60°+π0)﹣1.【答案】【解析】分析:将特殊角的三角函数值代入后,再按实数运算顺序和法则求解;详解:+(tan60°+π0)﹣1==点睛:考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值,具体如下表:20. 如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).【答案】(1)2(2)【解析】分析:(1)根据平行线分线段成比例定理列出比例式,计算即可;(2)表示出,利用AH∥CD,AH=CD,可得结果.详解:(1)过点E作EH∥BF交CD,AB于G,H,如图所示:∴CG=1,AH=3,∴,∴;(2),且AH∥CD,AH=CD,∴.点睛:考查的是平行线分线段成比例定理和向量的运算,灵活运用定理、找准对应关系是解题的关键.21. 已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.【答案】里【解析】分析:根据题意,得到点B的位置,利用30度所对的直角边等于斜边的一半求出AB的长,进而得到轮船行驶过程中离礁石B的最近距离为里.详解:如图,在Rt△ABC中,∠BAC=60°,∠ACB=30°,AC=10,∴AB=AC=5,过B作BD⊥AC于D,则Rt△ABD中,BD=sin60°×AB=×5=(里),∴轮船行驶过程中离礁石B的最近距离为里.点睛:考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关22. 如图,在直角坐标系中,已知直线y=-x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.【答案】(1)y=-(2)31【解析】分析:(1)先利用一次函数解析式确定A(0,4),B(8,0),再设交点式y=a(x+2)(x-8),然后把A点坐标代入求出a即可得到抛物线解析式;(2)先利用配方法得到y=-(x-3)2+,则M(3,),作MD⊥x轴于D,如图,然后根据梯形面积公式和三角形面积公式,利用四边形AOBM的面积=S梯形AODM+S△BDM进行计算即可.详解:(1)当x=0时,y=-x+4=4,则A(0,4),当y=0时,-x+4=0,解得x=8,则B(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把A(0,4)代入得a•2•(﹣8)=4,解得x=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)∵y=﹣(x﹣3)2+,∴M(3,),作MD⊥x轴于D,如图,四边形AOBM的面积=S梯形AODM+S△BDM=×(4+)×3+×5×点睛:考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.23. 如图,△ABC中,AB=AC,过点C作CF∥AB交△ABC的中位线DE的延长线于F,联结BF,交AC于点G.(1)求证:;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.【答案】证明见解析【解析】分析:(1)根据平行四边形的判定得出四边形BCFD是平行四边形,进而利用相似比解答即可;(2)根据全等三角形的判定得出△ABH≌△ACH,进而利用全等三角形的性质证明△GHC∽△C HF,再根据相似三角形的性质证明即可.详解:(1)∵CF∥AB,DE是中位线,∴四边形BCFD是平行四边形,∴DE=EF,∴,即;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴,∴HC2=HG•HF,∵BH=HC,∴BH2=HG•HF,即BH是HG和HF的比例中项.点睛:主要考查相似三角形的判定与性质,熟练掌握三角形相似判定方法(两组对应角相等的两个三角相似)是解题的关键.24. 设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.【答案】(1)反比例函数y=是闭区间[1,2018]上的“闭函数”(2)t=3(3)当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,)【解析】分析:(1)由k>0可知反比例函数y=在闭区间[1,2016]上y随x的增大而减小,然后将x=1,x=2018别代入反比例解析式的解析式,从而可求得y的范围,于是可做出判断;(2)先求得二次函数的对称轴为x=1,a=1>0,根据二次函数的性质可知y=x2-4x+k在闭区间[2,t]上y随x的增大而增大,然后将x=2,y=k-4,x=t,y=t2-4t+k分别代入二次函数的解析式,从而可求得k的值;(3)根据勾股定理的逆定理,可得方程,根据解方程,可得答案.详解:(1)∵k=2018,∴当1≤x≤2018时,y随x的增大而减小.∴当x=1时,y=2018,x=2018时,y=1.∴1≤y≤2108.∴反比例函数y=是闭区间[1,2018]上的“闭函数”.(2)∵x=﹣=2,a=1>0,∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.,解得k=6,t=3,t=﹣2,因为t>2,∴t=2舍去,∴t=3.(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(2,2),C(0,6)设B(1,t),由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,①当∠ABC=90°时,AB2+BC2=AC2,即(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,B(1,4+),(1,4﹣);②当∠BAC=90°是,AB2+AC2=BC2,即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,化简,得8t=12,解得t=,B(1,),③当∠ACB=90°时,AC2+CB2=AB2,即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,化简,得2t=13,解得t=,B(1,),综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).点睛:二次函数综合题型:解(1)的关键是利用闭函数的定义,解(2)的关键是利用闭函数的定义得出方程组,解(3)的关键是利用勾股定理的逆定理得出方程,要分类讨论,以防遗漏.25. 如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E为腰AB上一点且AE:BE=1:2,F为BC 一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.【答案】(1)sin∠ABC=;(2)∠BAC=90°;(3)y=20﹣(8<x<25)【解析】分析:(1)先求出BP=9,再根据勾股定理得,AP=12,即可得出结论,(2)先求出CP=16,再根据勾股定理得,AC2=400,进而判断出△ABC是直角三角形,即可得出结论;(3)先求出AE=5,BE=10,进而求出EM=8,BM=6,再分两种情况讨论,Ⅰ、当点G在BC的延长线上时,判断出△EFM∽△HEA,得出,即可得出结论;Ⅱ、当点G在边BC上时,同Ⅰ的方法即可得出结论.详解:(1)如图1,过点A作AP⊥BC于P,∵四边形ABCD是等腰梯形,∴BP=(BC﹣AD)=9,在Rt△ABP中,根据勾股定理得,AP=12,∴sin∠ABC=;(2)如图1,在Rt△ACP中,CP=BC﹣BP=16,根据勾股定理得,AC2=AP2+CP2=144+256=400,∵AB=15,BC=25,∴AB2+AC2=225+400=625=252=BC2,∴△ABC是直角三角形,∴∠BAC=90°;(3)过点E作EM⊥BC于M,∵AB=15,AE:BE=1:2,∴AE=5,BE=10,在Rt△BEM中,sin∠ABC=,∴EM=8,BM=6,CM=BC﹣BM=25﹣6=19,当点G和点C重合时,如图4,在Rt△EMC中,CE=∵∠B=∠EFC,∠BCE=∠ECF,∴△BCE∽△ECF,∴,∴,∴x=8,当EG∥AC时,如图5,∴∠ACB=∠EGB,∵∠B+∠ACB=90°,∴∠FEG+∠EGB=90°,∴EF⊥BC,即:点F和点M重合,∴BF=BM=6,∴当6≤x≤8时,EG和AC的延长线相交,不符合题意,Ⅰ、当点G在BC的延长线上时,如图2,∴FM=BF﹣BM=x﹣6,由(1)知,AC=20,∴AH=AC﹣CH=20﹣y∵∠FEG=∠B∴∠EFG=180°﹣∠G﹣∠FEG=180°﹣∠G﹣∠B,∵∠BEG=180°﹣∠G﹣∠B,∴∠EFG=∠BEG,∴∠EFM=∠AEH,∵∠EMF=∠HAE=90°,∴△EFM∽△HEA,∴,∴,∴y=20﹣(8<x<25),Ⅱ、当点G在边BC上时,如图3,∴FM=BM﹣BF=6﹣x,AH=CH﹣AC=y﹣20,∵同①的方法得,∠EFG=∠BEG,∵∠AEH=∠BEG,∴∠AEH=∠EFG,∵∠EAH=∠FME,∴△AEH∽△MFE,∴,∴,∴y=20+=20﹣(0<x<6).∴y=20﹣(8<x<25).点睛:四边形综合题:主要考查了等腰梯形的性质、勾股定理、锐角三角形函数、直角三角形的判定和性质和相似三角形的判定和性质,解本题的关键是判断出△AEH∽△MFE.。