双向板弯矩配筋计算

合集下载

双向板楼板配筋计算书

双向板楼板配筋计算书

双向板楼板配筋计算书双向板楼板配筋计算书一、给定参数:1. 设计荷载:q = 5 kN/m22. 矩形平面图:3m × 3m,板厚200 mm3. 抗剪强度设计值:fcr = 25 MPa4. 混凝土强度设计值:fck = 25 MPa5. 钢筋强度设计值:fyk = 400 MPa6. 控制配筋率:ρmin = 0.16‰,ρmax = 3.2‰7. 负偏差:δs = 0.108. 接头系数:μ = 1.09. 面积转换系数:As/As' = 1.0二、按照《建筑结构设计规范》GB50010-2010的规定进行处理,具体计算如下:1. 根据日常的经验,斜对角方向的板的配筋率更高,次之为水平方向,最低为竖直方向。

为了满足最小配筋率,经验法则是先计算斜对角方向的配筋量。

2. 按照标准的计算步骤,可以首先计算板的弯矩系数,然后计算标准配筋率ρs,进而计算出最小配筋量和最多配筋量。

3. 对板进行合理配筋,需要按照以下步骤:先计算出最小配筋量和最大配筋量,然后计算不同斜率方向的配筋量,最终对所有筋进行布置,每个筋的直径和间距都应该符合标准的规定。

4. 最后,需要根据标准指导的方法进行验算,检查板在工作状态下弯矩和剪力的情况,以确保板的安全性和稳定性。

具体计算过程如下:1. 弯矩系数的计算:αx = 0.116 × 103 (n/mm3)αy = 0.116 × 103 (n/mm3)2. 最小配筋量的计算:Asmin = ρmin × b × h = 0.16 × 3000 × 200 = 96000 mm2/m3. 最多配筋量的计算:Asmax = ρmax × b × h = 3.2 × 3000 × 200 = 1920000 mm2/m 4. 斜对角方向的配筋计算:4.1 计算弯矩的大小:Mx = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm My = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm 4.2 计算弯矩对应的最小配筋率和钢筋面积:ρsx = δs × fcr / (αx × fck) = 0.0077Asx = ρsx × b × h = 46200 mm2/mρsy = δs × fcr / (αy × fck) = 0.0077Asy = ρsy × b × h = 46200 mm2/m4.3 计算弯矩对应的最大配筋率和钢筋面积:ρmx = 0.95 × μ × fcr / (αx × fck) = 0.0430 Asmx = ρmx × b × h = 258000 mm2/mρmy = 0.95 × μ × fcr / (αy × fck) = 0.0430 Asmy = ρmy × b × h = 258000 mm2/m5. 水平方向的配筋计算:5.1 计算弯矩的大小:Mx = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm My = 05.2 计算水平方向的最小配筋率和钢筋面积:ρsx = δs × fcr / (αx × fck) = 0.0077Asx = ρsx × b × h = 46200 mm2/m5.3 计算水平方向的最大配筋率和钢筋面积:ρmx = 0.95 × μ × fcr / (αx × fck) = 0.0430 Asmx = ρmx × b × h = 258000 mm2/m6. 竖直方向的配筋计算:6.1 计算弯矩的大小:Mx = 0My = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm 6.2 计算竖直方向的最小配筋率和钢筋面积:ρsy = δs × fcr / (αy × fck) = 0.0077Asy = ρsy × b × h = 46200 mm2/m6.3 计算竖直方向的最大配筋率和钢筋面积:ρmy = 0.95 × μ × fcr / (αy × fck) = 0.0430Asmy = ρm y × b × h = 258000 mm2/m7. 布置钢筋:根据上述计算结果,可以得到板的双向配筋情况:7.1 斜对角方向的钢筋:间距:s = 2000 mm / (3 + 1) = 500 mm直径:d = √(As / (0.785 × π)) = √(258000 / (0.785 × π)) = 20 mm 横向主筋:π20/500纵向主筋:π20/5007.2 水平方向的钢筋:间距:s = 2000 mm / (3 + 1) = 500 mm直径:d = √(As / (0.785 × π)) = √(258000 / (0.785 × π)) = 20 mm 横向主筋:π20/500纵向箍筋:π10/1507.3 竖直方向的钢筋:间距:s = 2000 mm / (3 + 1) = 500 mm直径:d = √(As / (0.785 × π)) = √(258000 / (0.785 × π)) = 20 mm 横向箍筋:π10/1508. 验算:8.1 在斜对角方向进行验算:钢筋面积:Asx = Asy = 258000 mm2/m最小钢筋面积:Asmin = 96000 mm2/mAsx / Asmin = Asy / Asmin = 2.69 > 1.258.2 在水平方向进行验算:钢筋面积:Asx = 258000 mm2/mAsy = 0最小钢筋面积:Asmin = 96000 mm2/mAsx / Asmin = 2.69 > 1.258.3 在竖直方向进行验算:钢筋面积:Asx = 0Asy = 258000 mm2/m最小钢筋面积:Asmin = 96000 mm2/mAsy / Asmin = 2.69 > 1.25以上步骤都符合规范的要求,因此整个设计方案得以通过验算。

2.4板配筋计算

2.4板配筋计算

2.4 板配筋计算2.4.1 楼板厚度的确定房间楼板短跨方向最大为6000mm ,梁、板用C25混凝土,柱用C30混凝土 ,1111h ~~6000120~150********L mm ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,则取板厚t=120mm 。

2.4.2 荷载计算恒荷载标准值:客房、过道、其余的房间:25mm 水磨石面层 20.02525=0.625kN/m ⨯ 30mm 水泥砂浆找平层 20.0320=0.60kN/m ⨯ 120mm 现浇混凝土楼板 20.1225=3kN/m ⨯ 20mm 厚石灰砂浆抹底 20.0217=0.34kN/m ⨯ 恒荷载标准值: 合计:24.6kN/m 卫生间、厨房:20mm 防滑地砖 20.0222=0.44kN/m ⨯ 30mm 水泥砂浆找平层 20.0320=0.60kN/m ⨯ 120mm 现浇混凝土楼板 20.1225=3kN/m ⨯恒荷载标准值: 合计:24.04N/m k 活荷载标准值:根据规范卫生间取2k q 2.5/kN m =,其它的地方取2k q 2.0/kN m =,由于4.6 2.3 2.82k k g q ==< 则是活载起控制作用。

2.4.3 内力计算按弹性方法进行内力计算,双向板恒活载设计值计算计算结果见表1;板弯矩计算计算结果见表2 ,板配筋计算计算结果见表3,板跨中配筋计算见表4。

板支座配筋计算见表5.现浇板的配筋(板上、下钢筋,板厚尺寸)尽量用二级钢包括直径φ10(目前供货较少)的二级钢,直径≥12的受力钢筋,除吊钩外,不得采用一级钢。

钢筋宜大直径大间距,但间距不大于200,间距尽量用200。

(一般跨度小于6.6米的板的裂缝均可满足要求)。

跨度小于2米的板上部钢筋不必断开。

板上下钢筋间距宜相等,直径可不同,但钢筋直径类型也不宜过多。

顶层及考虑抗裂时板上筋可不断,或50%连通,较大处附加钢筋,拉通筋均应按受拉搭接钢筋。

双向板钢筋计算例题

双向板钢筋计算例题

双向板钢筋计算例题问题描述某建筑工地要进行一个双向板的钢筋计算,该双向板的尺寸为3m × 3m,并且厚度为200mm。

设计师要求在该板上设置双向钢筋以增强板材的强度和稳定性。

你作为结构工程师负责进行钢筋计算和设计。

计算步骤步骤一:计算板的负荷首先,我们需要计算板的负荷。

根据建筑设计师提供的信息,该板的重量为1000kg/m3,即板的体积密度为1000kg/m3。

可以通过以下公式计算板的负荷:负荷 = 体积 × 密度在我们的例子中,板的尺寸为3m × 3m × 0.2m,所以板的体积为3m × 3m × 0.2m = 1.8m^3。

将板的体积代入计算公式,我们可以得到板的负荷:负荷 = 1.8m^3 × 1000kg/m^3 = 1800kg所以该板的负荷为1800kg。

步骤二:计算板的弯矩接下来,我们要计算板的弯矩。

由于板是双向的,所以我们需要计算两个方向的弯矩。

对于单一加载情况下,我们可以使用以下公式计算弯矩:弯矩 = 负荷 × 距离在我们的例子中,板的负荷为1800kg,并且板的尺寸为3m × 3m,所以距离为1.5m。

将负荷和距离代入计算公式,我们可以得到弯矩:弯矩 = 1800kg × 1.5m = 2700kg·m所以,在单一加载情况下,该板在两个方向的弯矩均为2700kg·m。

步骤三:计算钢筋的截面面积接下来,我们要计算钢筋的截面面积。

钢筋的截面面积决定了其承载能力。

根据结构设计师的要求,我们使用直径为10mm的钢筋。

钢筋的截面面积可以通过以下公式计算:截面面积= π × (直径/2)^2将钢筋直径代入计算公式,我们可以得到钢筋的截面面积:截面面积= π × (10mm/2)^2 ≈ 78.5mm^2所以钢筋的截面面积为78.5mm^2。

步骤四:计算钢筋的数量最后,我们要计算钢筋的数量。

双向板配筋讲解

双向板配筋讲解

1. 荷载设计值活荷载标准值为2KN/m2,取γQ=1.4。

q=1.4x2=2.8KN/m。

2恒荷载标准值为3.76KN/m2,设计值为g=3.76×1.2=4.51KN/m。

2 合计 p=g+q=7.31KN/m2. 按弹性理论计算在求各区格板跨内正弯矩时,按恒荷载均布及活荷载棋盘式布置计算,取荷载’2 g=g+q/2=5.91KN/m’2 q=q/2=1.4KN/m‘’在g作用下,各内支座可视作固定,某些区格板跨内最大正弯矩不在板的中心点处,在q作用下,各区格板四边均可视作简支,跨内最大弯矩则在中心点处。

计算弯矩时,考虑混凝土的泊松比u=0.2(查《混凝土结构设计规范》(GB50010-2010)第4.1.5条),在求各中间支座最大弯矩(绝对值)时,按恒载及活载均布各区格板计算,取荷载2 P=g+q=7.3KN/m3. A区格板计算(1)计算跨度中间跨:l0x=1.1ln=1.1x(3.95-0.275)=4.04m>lc=3.95ml0y=1.1ln=1.1x(4.00-0.25)=4.13m>lc=4.0ml0x/l0y=3.95/4=0.99(2)跨中弯矩A区格板是中间部位区格板,在g+q/2作用下,按四边固定板计算;在q/2作用下按四边简支计算。

A区格弯矩系数查《混凝土结构设计》附表8,结果如下表所示:2UUUMX=MX1+MX2=(mx1+0.2my1)(g+q/2)l0x+(mx2+0.2my2)(q/2)l0x22=(0.0180+0.2⨯0.0175)⨯5.91⨯3.952+(0.0376+0.2⨯0.0367)⨯1.4⨯3.952=2.96KN.m/mMy=My1+My2UUU=(my1+0.2mx1)(g+q/2)l0x+(my2+0.2mx2)(q/2)l0x22=(0.0175+0.2⨯0.0180)⨯5.91⨯3.952+(0.0367+0.2⨯0.0376)⨯1.4⨯3.952=2.91KN.m/m(3)支座弯矩a支座:MX=mx(g+q)l0x=-0.0520⨯7.3⨯3.952=-5.92KN.m/m a'2b支座:My=my(g+q)l0x=-0.0516⨯7.3⨯3.952=-5.66KN.m/m(4)配筋计算 a'2截面有效高度:跨中截面h0x=120-20=100mm(短跨方向)h0y=120-30=90mm(长跨方向)支座截面h0=h0x=100mm对A区格板四周与梁整体连接,整块板内存在穹顶作用,使板内弯矩大大减小,故弯矩值乘以折减系数0.8,由跨中正弯矩配筋计算 As=mfy=300N/mm2 0.95fyh0,MXASX=0.8⨯=0.8⨯2.96⨯106/(300⨯0.95⨯100)=84mm20.95h0fyASy=0.8⨯MyUU0.95h0fy=0.8⨯2.91⨯106/(300⨯0.95⨯90)=91mm2(5)支座配筋计算a支座:Asy=m2=5.92⨯106/(300⨯0.95⨯100)=208mm 0.95fyh0b支座配筋见B、C区格板计算,因为相邻区格板分别求得的同一支座负弯矩不相等时,取绝对值的较大值作为该支座的最大负弯矩。

一双向板按弹性理论的计算方法

一双向板按弹性理论的计算方法

(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。

在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。

板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的跨度(m)。

显示更多隐藏2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。

当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。

图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。

为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。

在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。

因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。

在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。

因此,每个区格均可按四边简支的单跨双向板计算。

将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。

(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。

这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。

单向、双向板配筋全图

单向、双向板配筋全图

要点二
楼板跨度
楼板的跨度是指楼板两对边之间的距离,根据跨度的不同 ,楼板的厚度也会有所不同。一般来说,单向板跨度在 2.5-3.0m之间,双向板跨度在3.0-4.0m之间。
钢筋的直径和间距要求
钢筋直径
根据楼板的跨度和荷载的不同,钢筋的直径 也有所不同。一般来说,单向板的主筋直径 在8-12mm之间,双向板的主筋直径在1016mm之间。
单向、双向板配筋全 图
目录
CONTENTS
• 单向板配筋图解 • 双向板配筋图解 • 配筋计算方法 • 钢筋混凝土楼板的构造要求 • 实际工程中的单向、双向板配筋示例
01 单向板配筋图解
板顶筋
总结词
板顶筋是单向板中位于板顶面的钢筋,主要承受板顶面的负弯矩。
详细描述
板顶筋通常采用直径较小的钢筋,如直径为8-12mm的钢筋,以节约成本。在 单向板中,板顶筋通常垂直于长跨方向布置,以承受负弯矩产生的拉力。
板底筋
总结词
板底筋是单向板中位于板底面的钢筋,主要承受板底面的正 弯矩。
详细描述
板底筋通常采用直径较大的钢筋,如直径为12-18mm的钢筋 ,以提高承载能力。在单向板中,板底筋通常垂直于短跨方 向布置,以承受正弯矩产生的压力。
悬挑板配筋
总结词
悬挑板是一种特殊类型的单向板,其配筋方式与普通单向板有所不同。
大跨度结构的单向、双向板配筋
总结词:特殊设计
详细描述:大跨度结构的楼板需要承受较大的荷载和变形,因此需要进行特殊设计。单向板和双向板 的配筋都需要根据具体情况进行计算和配置,以确保结构的安全性和稳定性。
感谢您的观看
THANKS
详细描述
极限状态设计法根据结构的两个极限状态: 承载能力极限状态和正常使用极限状态,分 别计算出板所需的钢筋面积。该方法考虑了 结构的可靠性和安全性,适用于各种类型的 板。

双向板按弹性理论的计算方法

双向板按弹性理论的计算方法

(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。

在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。

板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2{M=αmp(g+p)l x2 αmp为单向连续板(αmb为连续梁)考虑塑性内力重分布的弯矩系数。

}式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的计算跨度(m)。

2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。

当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。

图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。

为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。

在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。

因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。

在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。

因此,每个区格均可按四边简支的单跨双向板计算。

将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。

(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。

(整理)(一)双向板按弹性理论的计算方法.

(整理)(一)双向板按弹性理论的计算方法.

(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。

在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。

板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的跨度(m)。

显示更多隐藏2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。

当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。

图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。

为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。

在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。

因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。

在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。

因此,每个区格均可按四边简支的单跨双向板计算。

将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。

(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。

这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lx /Ly=0.967741935
跨中弯矩系数 Mx
0.041Mx u =
0.2629125
(未调整)
Ly u =
0.233415
二Lx /Ly=0.96774194
跨中弯矩系数 Mx 0.0198弯矩Mx u
=0.1269675(未调整)
弯矩My u
=
0.110295
支座弯矩系数Mx
0.055
支座弯矩系数 My 0.0528弯矩Mx u
=
0.3526875(未调整)
弯矩My u
=
0.33858
按四边固计算跨中和支座弯矩:
1. 跨 中 弯 矩:
2. 支座弯矩:
q′=g+0.5p=0.5925t/M 2q〞=±0.5p=0.12
t/M 2
Mx u =0.105584(未调整)My u =0.09172跨中Mx=0.120869
跨中My=
0.10932
Mx u =
0.04428(未调整)
My u =0.03931跨中Mx=0.050832
跨中
u
0.04669

b f b'f
挠度验算
2. 支座弯矩: (本方法所求支座弯矩与按四边固计算的支座弯矩相在q′作用下:在q〞作用下:三1. 跨 中 弯 矩 :
S (mm )
S C 按《静力手册》连 续 板 实 用 计 算 方 法
17.84314ρ=
γf =
2Mx=0.301813My=
MS=0.579045MI =
B I =B I =
3挠度系数0.00663
求构件的短期刚度B S
(b f -b)h f /b/h 0=
长 期 挠 度 验 算:
q =g+ρ0p=
q = g+ p =
B S =(0.025+0.28αE ρ)(1+0.55γf '+0.12γf )E C
对应于荷载的长期组合:
挠度验算:
短 期 挠 度 验 算:对应于荷载的短期组合:S /
θ=
求构件的长期刚度B L
αE =E S /E C =M S ×B S /(M I (θ-1)+M S )
受拉钢筋
翼缘高 f
(mm 2 )
四边固计算的支座弯矩相同:)
0.007634
ρ'=
0γ'f =
0.2772320.534765
1.1E+131.1E+13
0.65f=0.02mm
0.55
f=0.02758mm
(b'f -b)h'f /b/h 0=
T形截面受拉T形截面受压翼)(1+0.55γf '+0.12γf )E C bh 03=
B S /θ=
2.14165E+13
S ×B S /(M I (
θ-1)+M S )=
矩 系 数。

相关文档
最新文档