2020-2021人教版高一数学《二次函数与一元二次不等式》知识梳理与例题详解

合集下载

高中 一元二次不等式及其解法 知识点+例题 全面

高中 一元二次不等式及其解法 知识点+例题 全面

辅导讲义――一元二次不等式及其解法教学内容1.一元二次不等式:只含有一个未知数,并且未知数最高次数是2的不等式. 2.二次函数、一元二次方程、一元二次不等式的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1或x >x 2}{x |x ≠x 1}{x |x ∈R }ax 2+bx +c <0 (a >0)的解集{x |x 1< x <x 2}∅ ∅[例1] 若不等式052>++c x ax 的解集是}2131{<<x x ,则a+c 的值为________.-7[巩固1] 已知不等式02<+-b x ax 的解集是}21{<<-x x ,则a ,b 的值为___________.a=1,b=-2[巩固2] 若关于x 的不等式0622<+-t x tx 的解集是),1(),(+∞-∞ a ,则a 的值为______.-3[例2] 若1)(2+-=ax x x f 有负值,则实数a 的取值范围是____________.),2()2,(+∞--∞[巩固1] 已知二次函数c bx ax x f ++=2)(的图象与直线25=y 有公共点,且不等式02>++c bx ax 的解是知识模块1三个“二次” 精典例题透析3121<<-x ,求a ,b ,c 的取值范围.[巩固2] 已知关于x 的不等式)(0222R a a ax x ∈≤++-的解集为M . (1)当M 为空集时,求实数a 的取值范围. (2)如果]4,1[⊆M ,求实数a 的取值范围.[例3] 关于x 的方程02=++c bx x 的两根分别为21-=x 和212-=x ,则关于x 的不等式02<+-c bx x 的解集是______________.)2,21([巩固1] 方程05)2(2=-+-+m x m x 的两根都大于2,则m 的取值范围是____________.]4,5(--[巩固] 若关于x 的不等式4502≤++≤ax x 恰好只有一个解,则实数.______=a 2±[例5] 若不等式02<--b ax x 的解集为}32{<<x x ,则.______=+b a 1-[巩固1] 若关于x 的不等式0322<+-a x x 的解集是)1,(m ,则实数.______=m 21[巩固2] 关于x 的不等式0)2)(1(>--x mx ,若此不等式的解集为}21{<<x mx,则m 的取值范围是__________. )0,(-∞[例6] 已知实数R a ∈,解关于x 的不等式.02)2(2<++-a x a x[巩固] 已知关于x 的不等式0232>+-x ax 的解集是}1{b x x x ><或, (1)求a ,b 的值;(2)解关于x 的不等式).(0)(2R c bc x b ac ax ∈<++-[例7] 若不等式02<--b ax x 的解集是)3,2(, (1)求a ,b 的值;(2)求不等式012>--ax bx 的解集.[巩固] 已知不等式0)32()(<-++b a x b a 的解为43->x ,解不等式.0)2()1(2)2(2>-+--+-a x b a x b a题型一:一元二次不等式的解法 [例] 求下列不等式的解集:(1)-x 2+8x -3>0; (2)ax 2-(a +1)x +1<0.解 (1)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不相等的实根x 1=4-13,x 2=4+13. 又二次函数y =-x 2+8x -3的图象开口向下, 所以原不等式的解集为{x |4-13<x <4+13}. (2)若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a)(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a <x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a.综上所述:当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a <x <1}.[巩固](1)若不等式ax 2+bx +2>0的解为-12<x <13,则不等式2x 2+bx +a <0的解集是________.(2)不等式x -12x +1≤0的解集是________.知识模块3经典题型11.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是_______________.答案 (-∞,-32)∪(12,+∞) 解析 f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12. 12.(2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a=_______.答案 52解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 13.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为______________.答案 [0,π6]∪[5π6,π] 解析 由题意,要使8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,需Δ=64sin 2α-32cos 2α≤0,化简得cos 2α≥12. 又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π, 解得0≤α≤π6或5π6≤α≤π. 14.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是________.答案 21解析 设f (x )=x 2-6x +a ,其是开口向上,对称轴是x =3的抛物线,图象如图所示.关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧ f (2)≤0,f (1)>0,即⎩⎪⎨⎪⎧f (2)=4-12+a ≤0,f (1)=1-6+a >0, 解得5<a ≤8.又a ∈Z ,所以a =6,7,8,则所有符合条件的a 的值之和是6+7+8=21.15.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以。

一元二次不等式知识点总结梳理PPT

一元二次不等式知识点总结梳理PPT
学习一元二次不等式与其他知识点的联系:如与函数、方程、数列等知识点的关联 。
了解一元二次不等式在实际问题中的应用:如物理、化学、经济等领域中的实际问 题。
关注一元二次不等式在高考中的命题趋势:了解历年高考中一元二次不等式的考查 形式和难度,为备考做好准备。
THANKS FOR WATCHING
感谢您的观看
构造函数
将实际问题中的存在性问题转化 为判断方程根的存在性及个数问
题。
利用判别式
利用一元二次方程的判别式,判 断方程根的存在性及个数。
解方程得解
若方程有解,则通过解方程得到 实际问题的解。
05
典型例题解析及易错点 剖析
典型例题解析
例题一
解析一元二次不等式 $x^2 4x + 3 > 0$ 的解法。
图像法
一元二次不等式的解集可以通过图像 法直观地表示出来。在平面直角坐标 系中,画出对应的一元二次函数图像 ,根据图像确定不等式的解集。
注意事项
在使用图像法解一元二次不等式时, 需要注意图像开口方向以及与x轴交点 的情况。
02
求解一元二次不等式方 法
配方法求解
01
02
03
配方思想
将一元二次不等式转化为 完全平方形式,便于求解 。
性质
一元二次不等式具有与一元二次 方程相似的性质,如判别式、解 集等。
判别式与解集关系
判别式
对于一元二次不等式ax²+bx+c>0或ax²+bx+c<0,其判别式Δ=b²-4ac。
解集关系
当Δ>0时,不等式有两个不相等的实根;当Δ=0时,不等式有两个相等的实根 ;当Δ<0时,不等式无实根。

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

2020-2021学年高中数学 第二章 一元二次函数、方程和不等式 2.3 二次函数与一元二次方程、

2020-2021学年高中数学 第二章 一元二次函数、方程和不等式 2.3 二次函数与一元二次方程、

2020-2021学年高中数学第二章一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式(2)学案(含解析)新人教A版必修第一册年级:姓名:2.3 二次函数与一元二次方程、不等式(2)内容标准学科素养1.会解简单的分式不等式.数学运算数学建模2.通过三个“二次间的关系”解简单一元二次不等式恒成立问题.3.能够从实际生活和生产中抽象出一元二次不等式的模型,并加以求解.授课提示:对应学生用书第27页[教材提炼]知识点一分式不等式的解法预习教材,思考问题不等式1x>1与x<1等价吗?1x>1的解集应是什么?知识梳理一般的分式不等式的同解变形法则(1)f xg x>0⇔f(x)·g(x)>0;(2)f xg x≤0⇔⎩⎨⎧f x·g x≤0,g x≠0;(3)f xg x≥a⇔f x-ag xg x≥0.知识点二一元二次不等式ax2+bx+c>0(a≠0)恒成立问题预习教材,思考问题(1)∀x∈R,x2-c>0,c取何值?(2)∀x∈R,ax2+1>0,a取何值?知识梳理一元二次不等式恒成立的情况:(1)ax2+bx+c>0(a≠0)恒成立⇔⎩⎨⎧a>0Δ<0;(2)ax 2+bx +c ≤0(a ≠0)恒成立⇔⎩⎨⎧a <0Δ≤0.[自主检测]1.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >4答案:A2. 不等式1x>1的解集为________.答案:{x |0<x <1}3.对∀x ∈R ,x 2-a >0恒成立,则a 的取值范围为________. 答案:a <04.要使x 2-4x +9有意义,则x 的取值集合为________. 答案:R授课提示:对应学生用书第28页探究一 解简单的分式不等式 [例1] 解不等式. (1)x +21-x <0; (2)x +1x -2≤2. [解析] (1)由x +21-x <0,得x +2x -1>0.此不等式等价于(x +2)(x -1)>0. ∴原不等式的解集为{x |x <-2或x >1}. (2)法一:移项,得x +1x -2-2≤0, 左边通分并化简,得-x +5x -2≤0,即x -5x -2≥0,它的同解不等式为⎩⎨⎧x -2x -5≥0,x -2≠0,∴x <2或x ≥5.原不等式的解集为{x |x <2或x ≥5}. 法二:原不等式可化为x -5x -2≥0. 此不等式等价于⎩⎨⎧x -5≥0,x -2>0,①或⎩⎨⎧x -5≤0,x -2<0.②解①,得x ≥5. 解②,得x <2.∴原不等式的解集为{x |x <2或x ≥5}.1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.解不等式(1)x 2-x -6x -1>0;(2)2x -13-4x>1. 解析:(1)原不等式等价于⇔⎩⎨⎧x 2-x -6>0x -1>0,或⎩⎨⎧x 2-x -6<0x -1<0.解得x >3或-2<x <1.∴原不等式的解集为{x |x >3,或-2<x <1}.(2)原不等式可化为2x -13-4x -1>0,即3x -24x -3<0,等价于(3x -2)(4x -3)<0.∴23<x <34. ∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |23<x <34.探究二 不等式恒成立问题[例2] [教材P 52例3拓展探究] (1)不等式x 2-2x +3>0的解集是什么?[解析] 由于x 2-2x +3=(x -1)2+2>0恒成立. ∴x ∈R .解集为R .(2)若不等式x 2+ax +3>0的解集为R ,求a 的范围. [解析] 设y =x 2+ax +3, 要使x 2+ax +3>0的解集为R∴Δ=a 2-4×3<0,解得-23<a <2 3.(3)若不等式ax 2+2ax +3>0的解集为R ,求a 的范围. [解析] 当a =0时,3>0,x ∈R . 当a >0时,Δ=4a 2-12a <0 ∴0<a <3.当a <0时,不成立. 综上,0≤a <3.对于一元二次型不等式恒成立,注意参数的讨论ax 2+bx +c >0,①a =0时,有c >0.②⎩⎨⎧ a >0,Δ<0.ax 2+bx +c <0,①a =0时,c <0.②⎩⎨⎧a <0,Δ<0.。

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

2020_2021学年新教材高中数学第二章一元二次函数方程和不等式2.3二次函数与一元二次方程不等

2020_2021学年新教材高中数学第二章一元二次函数方程和不等式2.3二次函数与一元二次方程不等
A.{x|0<x<2} B.{x|-2<x<1} C.{x|x<-2或x>1} D.{x|-1<x<2}
解析
∵x⊗(x-2)=x(x-2)+2x+x-2<0, ∴ x2+x-2<0 ,即(x-1)(x+2)<0,解得-2<x<1,故选B.
2.3 二次函数与一元二次方程、不等式
刷能力
8.已知2a+1<0,则关于x的不等式x2-4ax-5a2>0的解集是( A ) A.{x|x<5a或x>-a} B.{x|x>5a或x<-a} C.{x|-a<x<5a} D.{x|5a<x<-a}
刷能力
5.[陕西延安2020高二期中]关于x的不等式ax-b>0的解集是{x|x>-1}, 则关于x的不等式(bx+a)(x-3)>0的解集是( C )
A.{x|x<-1或x>3} B.{x|-1<x<3} C.{x|1<x<3} D.{x|x<1或x>3}
解析
由关于x的不等式ax-b>0的解集是{x|x>-1},可得a>0且
价销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,为了使这批台灯每天获得400 元以上(不含400元)的销售收入,则这批台灯的销售单价x(单位:元)的取值范围是( B )
A.{x|10<x<20}
B.{x|15≤x<20}
C.{x|15<x<20}
D.{x|10≤x<20}
解析
由题意可知x[30-2(x-15)]>400,则-2x2+60x-400>0,即x2-30x+200<0,∴(x-10)(x-20)<
2.3 二次函数与一元二次方程、不等式
刷基础
题型4 已知不等式的解集求参数值

高一数学人必修件时二次函数与一元二次方程不等式

高一数学人必修件时二次函数与一元二次方程不等式
轴上方或下方的部分。
案例分析:结合实际问题进行应用
在经济学中,二次函数可用于描述成本 与产量之间的关系。通过求解一元二次 方程或不等式,可以确定最佳产量和最
低成本。
在物理学中,二次函数可用描述自由 落体运动的位移与时间之间的关系。通 过求解一元二次方程或不等式,可以确
定物体落地的时间和位移。
在工程学中,二次函数可用于描述桥梁 的拱形结构。通过求解一元二次方程或 不等式,可以确定桥梁的最大承载力和
当$Delta > 0$时,方程有两个不相等的实根; 当$Delta = 0$时,方程有两个相等的实根;当 $Delta < 0$时,方程无实根。
根据判别式确定不等式解集
结合一元二次不等式的性质,根据判别式的情况 确定不等式的解集。
区间法求解一元二次不等式
确定区间端点
根据一元二次方程的根和 不等式性质,确定需要讨 论的区间端点。
如果方程能化成$(nx+m)^2=p$($p geq 0$)的形式,那么先移项,再开 平方。
配方法
将一元二次方程配成$(x+m)^2=n$的形式,再利用直接开平 方法求解的方法。
首先,把原方程化为一般形式,然后,将常数项移到方程的 右边,接下来在等式两边同时除以二次项系数,将二次项系 数化为1,再把等式左边配成一个完全平方式,最后利用直接 开平方法进行求解。
定义
形如$f(x) = ax^2 + bx + c$( $a neq 0$)的函数称为二次函数 。
图像特征
二次函数的图像是一条抛物线, 当$a > 0$时,抛物线开口向上; 当$a < 0$时,抛物线开口向下。
二次函数开口方向、对称轴和顶点
01

一元二次方程与一元二次不等式的解法分析及例题

一元二次方程与一元二次不等式的解法分析及例题

一元二次方程、二次函数与一元二次不等式总结分析及例题(一)一元二次方程的一般形式:()002≠=++a c bx ax 其中c b a ,,为常数,x 为未知数。

根的判别式:ac b 42-=∆ 一元二次方程根的个数与根的判别式的关系: 0<∆时,方程①无实根;0=∆时,方程①有且只有一个实根,或者说方程①有两个相等的实根;ab x 2-= 0>∆时,方程①有两个不相等的实根。

aacb b x 2422,1-±-=(二)二次函数的一般形式:形如()a b ac a b a y a c bx ax y 442x 0222-+⎪⎭⎫ ⎝⎛+==≠++= 其中c b a ,,为常数,x 为自变量。

顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b P 44,22,其中直线a bx 2-=为对称轴,1、(1)0<a 时,函数c bx ax y ++=2的图象开口向下,函数c bx ax y ++=2在abx 2-=取到最大值,即ab ac y 442max-=,对任意a b ac y R x 44,2-≤∈.(2)0>a 时,函数c bx ax y ++=2的图象开口向上,函数c bx ax y ++=2在abx 2-=取到最小值,即ab ac y 442min-=,对任意a b ac y R x 44,2-≥∈.2、二次函数()02≠++=a c bx ax y 与x 轴交点个数的判断:0<∆时,函数()02≠++=a c bx ax y 与x 轴无交点;0=∆时,函数()02≠++=a c bx ax y 与x 轴相切,有且只有一个交点; 0>∆时,函数()02≠++=a c bx ax y 与x 轴有两个交点。

3、二次函数图象的基本元素:开口方向(即首项系数a 的正负)、对称轴、∆.(三)一元二次不等式的概念:形如()002≠≠++a c bx ax 其中连接c bx ax ++2与0的不等号可以是><≥≤,,,或≠.(四)三个两次之间的关系一元二次方程、一元二次不等式、二次函数基本步骤:化正-----计算--------求根--------写解集(大于取两边,小于取中间)【典型例题】【类型一】一元二次方程()002≠=++a c bx ax 的解法【方法一】求根公式法步骤:①计算∆;②若0<∆,则方程无实根;若0≥∆,利用求根公式aacb b x 2422,1-±-=. 【例1】求解下列方程.(1)0442=-+x x (2)0122=-+x x【练习】解下列方程.(1)03522=-+x x (2)862=-x x【方法二】十字相乘法利用十字相乘法求解方程()002≠=++a c bx ax 的前提条件是:0≥∆,也就是保证方程()002≠=++a c bx ax 必须有实根.十字分解依据:对于方程()002≠=++a c bx ax 而言,c b a ,,均为整数。

二次函数与一元二次方程题型归纳

二次函数与一元二次方程题型归纳

二次函数与一元二次方程-重难点题型二次函数的图象【题型1 抛物线与x轴的交点】【例1】(2021•海珠区一模)已知二次函数y=﹣x2+bx+c的顶点为(1,5),那么关于x的一元二次方程﹣x2+bx+c﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【变式1-1】(2020秋•路南区期末)小明在解二次函数y=ax2+bx+c时,只抄对了a=1,b=4,求得图象过点(﹣1,0).他核对时,发现所抄的c比原来的c值大2,则抛物线与x轴交点的情况是()A.只有一个交点B.有两个交点C.没有交点D.不确定【变式1-2】(2021•铜仁市)已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a(x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1【变式1-3】(2020秋•长春期末)在平面直角坐标系中,若函数y=(k﹣2)x2﹣2kx+k的图象与坐标轴共有三个交点,则下列各数中可能的k值为()A.﹣1B.0C.1D.2【题型2 抛物线与x轴交点上的四点问题】【例2】(2021•碑林区校级模拟)已知抛物线y=(x﹣x1)(x﹣x2)+1(x1<x2),抛物线与x轴交于(m,0),(n,0)两点(m<n),则m,n,x1,x2的大小关系是()A.x1<m<n<x2B.m<x1<x2<n C.m<x1<n<x2D.x1<m<x2<n【变式2-1】(2021•上城区二模)已知二次函数y=ax2+bx+c(a>0)与x轴正半轴交于A(p,0)和B(q,0)两点(点A在点B的左边),方程x=ax2+bx+c(a>0)的解为x=m或x=n(m<n),则p,q,m,n的大小关系可能是()A.p<q<m<n B.m<n<p<q C.m<p<q<n D.p<m<n<q【变式2-2】(2021•娄底模拟)对于一个函数,自变量x取c时,函数值为0,则称c为这个函数的零点.若关于x的二次函数y=x2﹣6x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程﹣x2+6x﹣m﹣2=0有两个不相等的非零实数根x3和x4(x3<x4),则下列式子一定正确的是()A.0<x1x3<1B.x1x3>1C.0<x2x4<1D.x2x4>1【变式2-3】(2021•河南模拟)已知二次函数y=ax2+bx+c的图象经过(﹣4,0)与(2,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是4.若关于x的方程ax2+bx+c+n=0(0<n<m)也有两个整数根,则这两个整数根是()A.﹣2和0B.﹣4和2C.﹣5和3D.﹣6和4【题型3 由二次函数解一元二次方程】【例3】(2021•花都区二模)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点是(3,0),则方程ax2+bx+c=0(a≠0)的两根是.【变式3-1】(2020秋•南京期末)二次函数y=mx2+2mx+c(m、c是常数,且m≠0)的图象过点A(3,0),则方程mx2+2mx+c=0的根为.【变式3-2】(2021•武汉模拟)抛物线y=ax2+bx+c经过A(﹣1,3),B(2,3),则关于x的一元二次方程a(x﹣2)2﹣3=2b﹣bx﹣c的解为.【变式3-3】(2020秋•上虞区期末)已知自变量为x的二次函数y=(ax+m)(x+3m)经过(t,3)、(t﹣4,3)两点,若方程(ax+m)(x+3m)=0的一个根为x=1,则其另一个根为.【题型4 由二次函数的图象求一元二次方程的近似解】【例4】(2020秋•禅城区期末)如下表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解(精确到0.1)为()x… 2.1 2.2 2.3 2.4 2.5…y…﹣1.39﹣0.76﹣0.110.56 1.25…A.2.2B.2.3C.2.4D.2.5【变式4-1】(2020秋•长春期末)根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)的根的个数是()x 6.17 6.18 6.19 6.20 y=ax2+bx+c0.020.010.020.04 A.1或2B.1C.2D.0【变式4-2】(2020秋•濮阳期末)如表是二次函数y=ax2+bx+c的几组对应值:x 6.17 6.18 6.19 6.20y=ax2+bx+c﹣0.03﹣0.010.020.04根据表中数据判断,方程ax2+bx+c=0的一个解x的范围是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.20【变式4-3】(2020秋•钦州期末)如图是二次函数y=ax2+bx+c的图象,图象上有两点分别为A(2.18,﹣0.51)、B(2.68,0.54),则方程ax2+bx+c=0的一个解只可能是()A.2.18B.2.68C.﹣0.51D.2.45【题型5 由二次函数的图象解不等式】【例5】(2021•杭州模拟)抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(1,0),对称轴是直线x=﹣1,其部分图象如图所示,当y>0时,x的取值范围是()A.x<1B.x>﹣3C.﹣3<x<1D.x<﹣3或x>1【变式5-1】(2020秋•淮安区期末)已知二次函数y=ax2+bx+c(a≠0),该函数y与自变量x的部分对应值如下表:x…123…y…0﹣10…(1)求该二次函数的表达式.(2)不等式ax2+bx+c>0的解集为;不等式ax2+bx+c<3的解集为.【变式5-2】(2021•宁波模拟)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数的表达式及点B的坐标.(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.【变式5-3】(2021•九龙坡区校级模拟)已知函数y=a|x﹣2|+x+b(a,b为常数).当x=3时,y=0,当x=0时,y=﹣1,请对该函数及其图象进行探究:(1)a=,b=;(2)请在给出的平面直角坐标系中画出该函数图象,并结合所画图象,写出该函数的一条性质.(3)已知函数y=﹣x2+4x+5的图象如图所示,结合图象,直接写出不等式a|x﹣2|+x+b≥﹣x2+4x+5的解集.【题型6 由二次函数与一次函数交点个数求范围】【例6】(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为()A.−214或﹣3B.−134或﹣3C.214或﹣3D.134或﹣3【变式6-1】(2021•章丘区一模)在平面直角坐标系中,将二次函数y=﹣x2+x+6在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,将这个新函数的图象记为G(如图所示),当直线y=﹣x+m 与图象G有4个交点时,则m的取值范围是()A.−254<m<3B.−254<m<2C.﹣2<m<3D.﹣6<m<﹣2【变式6-2】(2021•南沙区一模)如图,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC、BC.已知△ABC的面积为3.将抛物线向左平移h(h>0)个单位,记平移后抛物线中y随着x的增大而增大的部分为H.当直线BC与H没有公共点时,h的取值范围是()A.h>52B.0<h≤52C.h>2D.0<h<2【变式6-3】(2021•莱芜区模拟)如图,抛物线y=2x2﹣8x+6与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.1<m<158B.158<m<3C.1<m<3D.−18<m<1。

2020-2021学年高一数学课时同步练习第二章第3节二次函数与一元二次方程、不等式

2020-2021学年高一数学课时同步练习第二章第3节二次函数与一元二次方程、不等式

第二章 一元二次函数、方程和不等式 第3节 二次函数与一元二次方程、不等式一、基础巩固1.(2020·四川省三台中学高一月考)不等式(3)(5)0x x -+>的解集是( ) A .{53}x x -<< B .{|5x x <-或3}x > C .{35}x x -<< D .{|3x x <-或5}x >【答案】B【解析】与不等式对应的一元二次函数为:(3)(5)y x x =-+, 如图函数开口向上,与x 轴的交点为:(5,0)-,(3,0),可得不等式的解集为:{|5x x <-或3}x >.2.(2020·江苏省高一期末)不等式28x >的解集是( ) A .(2,22)- B .(,22)(22,)-∞-⋃+∞ C .(42,42)-D .(,42)2,)-∞-⋃+∞【答案】B【解析】由28x >得280x ->,即(22220x x -+>,解得22x <-或2x >(,2)(22,)-∞-⋃+∞. 3.(2020·吉林省实验高一期中)不等式()43x x -<的解集为( ) A .{|1x x <或}3x >B .{0x x <或}4x >C .{}13x x << D .{}04x x <<【答案】A【解析】由题:等式()43x x -<化简为:2430x x -+>()()130x x -->解得:1x <或3x >.4.(2020·安徽省怀宁县第二中学高一期中)不等式13()()022≥x x +-的解集是( ) A .1{|2x x <-或3}2x > B .1{|2x x ≤-或3}2x ≥ C .13{|}22x x -≤≤ D .13{|}22x x -<<【答案】C【解析】不等式130,22x x ⎛⎫⎛⎫+-≥ ⎪⎪⎝⎭⎝⎭可化为130,22x x ⎛⎫⎛⎫+-≤ ⎪⎪⎝⎭⎝⎭1322x ≤≤∴-, 所以不等式的解集为.13{|}22x x -≤≤ 5.(2020·浙江省高一期末)不等式23210x x +-≤的解集是( ) A .11,3⎡⎤-⎢⎥⎣⎦B .(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭C .1,13⎡⎤-⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞-+∞ ⎥⎝⎦【答案】A【解析】由23210x x +-≤,可得,(1)(31)0+-≤x x , 所以,113x -≤≤,故选:A 6.(2020·盘锦市第二高级中学高一期末)不等式290x -<的解集为( ) A .{}3x x > B .{}3x x <-C .{}33x x -<< D .{3x x <-或}3x >【答案】D【解析】将不等式290x -<变形为290x ->,解此不等式得3x <-或3x >. 因此,不等式290x -<的解集为{3x x <-或}3x >.7.(2020·浙江省高一期末)不等式23100x x --<的解集是( ) A .()2,5- B .()5,2- C .()(),52,-∞-+∞ D .()(),25,-∞-+∞【答案】A【解析】解:因为23100x x --<,所以(2)(5)0x x +-< 解得25x -<<,所不等式的解集为{}25x x -<<,故选:A8.(2020·邢台市第二中学高一开学考试)已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .9.(2020·元氏县第四中学高一月考)一元二次不等式2260x x +-≥的解集为( ) A .(]3,2,2⎡⎫-∞-+∞⎪⎢⎣⎭B .([)3,2,2⎤-∞-+∞⎥⎦C .32,2⎡⎤-⎢⎥⎣⎦D .322⎡⎤-⎢⎥⎣⎦, 【答案】A【解析】原不等式可化为()()2320x x -+≥, 解得,2x -≤,或32x ≥. 10.(2020·浙江省诸暨中学高一期中)关于x 的不等式()()()1101ax x a --<>的解集为( ) A .11,a ⎛⎫⎪⎝⎭B .()1,1,a ⎛⎫-∞+∞ ⎪⎝⎭C .1,1a ⎛⎫⎪⎝⎭D .()1,1,a ⎛⎫-∞+∞ ⎪⎝⎭【答案】C【解析】方程()()110ax x =--的两根分别为1,1a, 又1a >,所以11a <,故此不等式的解集为1,1a ⎛⎫ ⎪⎝⎭. 11.(2019·天津市双菱中学高一月考)一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则+a b 的值是( ) A .10 B .-10C .14D .-14【答案】D【解析】解:根据题意,一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭, 则方程220ax bx ++=的两根为12-和13, 则有112311223b a a ⎧⎛⎫-+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯= ⎪⎪⎝⎭⎩,解可得12a =-,2b =-, 则14a b +=-,故选:D .12.(2020·安徽省六安中学高一期末(理))关于x 的不等式x 2﹣(a +1)x +a <0的解集中恰有两个正整数,则实数a 的取值范国是( ) A .[2,4) B .[3,4]C .(3,4]D .(3,4)【答案】C【解析】()()()21010x a x a x a x -++<⇔--<,因解集中恰好有两个正整数,可判断解集为()1,x a ∈,两正整数为2,3,故(]3,4a ∈ 13.(2020·吉林省实验高一期末)不等式222221x x x x --<++的解集为 ( )A .{}2x x ≠- B .RC .∅D .{|2x x <-或}2x >【答案】A【解析】由222221x x x x --<++得:222222442011x x x x x x x x ------=<++++210x x ++>恒成立 2440x x ∴---<又()22442x x x ---=-+ ()220x ∴+> 2x ∴≠-∴不等式222221x x x x --<++的解集为{}2x x ≠- 14.(2020·宁夏回族自治区银川一中高一期末)不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦成立,则a 的最小值为( ) A .52B .52-C .2D .2-【答案】B 【解析】记2()1=++f x x ax ,不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦成立,则必须有(0)1011110242f f a =≥⎧⎪⎨⎛⎫=++≥ ⎪⎪⎝⎭⎩,解得52a ≥-, 52a =-时,22559()1()2416f x x x x =-+=--,在10,2⎛⎤⎥⎝⎦上单调递减,min 1()()02f x f ==,满足题意,∴a 的最小值是52-.15.(2020·浙江省高一期末)不等式210x -<的解集是( )A .()1,1-B .(),1-∞-C .(),1-∞D .()(),11,-∞-+∞【答案】A【解析】解:因为210x -<,所以()()110x x -+<,解得11x -<<,即()1,1x ∈- 故选:A16.(2020·重庆高一期末)若关于x 的一元二次不等式2210ax x ++>的解集为R ,则实数a 的取值范围是( ) A .()1,+∞ B .()0,1C .(),1-∞D .()(),00,1-∞【答案】A【解析】由于关于x 的一元二次不等式2210ax x ++>的解集为R ,则0440a a >⎧⎨∆=-<⎩,解得1a >.因此,实数a 的取值范围是()1,+∞.17.(2020·齐齐哈尔市朝鲜族学校高一期中)不等式250ax x c -+<的解集为11|32x x ⎧⎫<<⎨⎬⎩⎭,则a ,c 的值为( ) A .6a =,1c = B .6a =-,1c =- C .1a =,6c = D .1a =-,6c =-【答案】A【解析】不等式250ax x c -+<的解集为11|32x x ⎧⎫<<⎨⎬⎩⎭, 故不等式对应方程的系数满足:115321132ac a⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得6a =,1c =.18.(2020·福建省泰宁第一中学高一月考)不等式220ax bx ++>的解集是11|23x x ⎧⎫-<<⎨⎬⎩⎭,则-a b 的值为( ) A .14 B .-14C .10D .-10【答案】D【解析】不等式220ax bx ++>的解集是11|23x x ⎧⎫-<<⎨⎬⎩⎭,可得11,23-是一元二次方程220ax bx ++=的两个实数根,11112,2323b a a∴-+=--⨯=,解得12,2a b =-=-,12(2)10a b ∴-=---=-,故选:D.19.(2020·全国高一)若函数f (x )的定义域为一切实数,则实数m 的取值范围是( ) A .[0,4) B .(0,4)C .[4,+∞)D .[0,4]【答案】D【解析】由函数f (x )的定义域为一切实数,即210mx mx ++≥在R 上恒成立, 当m =0时,1≥0恒成立; 当m ≠0时,则240m m m >⎧⎨∆=-≤⎩,解得04m <≤. 综上可得04m ≤≤,故选:D .20.(2020·浙江省诸暨中学高一期中)若不等式2(2)2(2)40a x a x -+--<的解集为R ,则a 的取值范围是( ) A .2a ≤ B .22a -<≤ C .22a -<< D .2a <【答案】B【解析】当20a -=即2a =时,40-<恒成立,满足题意; 当20a -≠时,不等式2(2)(2)10a x a x ----<的解为一切实数,所以()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩,解得22a -<<, 综上可得实数a 的取值范围是22a -<≤,故选:B.21.(2020·霍邱县第二中学高一月考)设一元二次不等式210ax bx ++>的解集为{}|12x x -<<则ab 的值为( )A .1B .14-C .4D .12-【答案】B【解析】由题意可知方程210ax bx ++=的根为1,2-,所以有11212{{114122b a a ab b a -+=-=-∴∴=--⨯==22.(2020·浙江省余姚中学高一期中)已知不等式2440mx mx +-<对任意实数x 恒成立.则m 取值范围是( ) A .(-1,0) B .[-1,0]C .(,1)(0,)-∞-+∞D .(-1,0]【答案】D【解析】①若0m =,则40-<成立;②若0m ≠,则2001016160m m m m m <<⎧⎧⇒⎨⎨-<<∆=+<⎩⎩. 综上所述,(1,0]m ∈-.23.(2020·全国高一)若,,m n R ∈且0,m n +>则关于x 的不等式()()0m x n x -+>的解集为( ) A .{}x x n x m -或 B .{}x n x m -<< C .{}x m x n -<< D .{}x x m x n -或 【答案】B【解析】()()0m x n x -+>,则()()0x m n x -+<,因为0m n +>,则m n >-,()() 0x m n x -+<的解集为{}|x n x m -<<,选B .24.(2020·全国高一)若方程()2250x m x m +-+-=的两根都大于2,则实数m 的取值范围是( )A .()(],55,4-∞---B .(],4-∞-C .(],2-∞-D .(]5,4--【答案】D【解析】设()()225f x x m x m =+-+-,由题意得:()()()2245020222m m f m ⎧⎪∆=---≥⎪>⎨⎪-⎪>⎩,解之得实数m 的取值范围为:(]5,4--.25.(2020·全国高一)已知不等式对任意正实数x ,y 恒成立,则正实数m 的最小值是A .2B .4C .6D .8【答案】B【解析】解:不等式对任意的正实数x ,y 恒成立,则对任意的正实数x ,y 恒成立,又,,解得或不合题意,舍去,,即正实数m 的最小值是4.26.(多选题)(2019·全国高一课时练习)已知a ∈Z ,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则a 的值可以是( ). A .6 B .7 C .8 D .9【答案】ABC【解析】设26y x x a =-+,其图像为开口向上,对称轴是3x =的抛物线,如图所示.若关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,因为对称轴为3x =,则2226201610a a ⎧-⨯+≤⎨-⨯+>⎩ 解得58a <≤,.又a ∈Z ,故a 可以为6,7,8.27.(多选题)(2019·辽宁省高一月考)(多选题)已知正数a ,b 满足4a b +=,ab 的最大值为t ,不等式230x x t +-<的解集为M ,则( )A .2t =B .4t =C .{}|41M x x =-<<D .{}|14M x x =-<<【答案】BC【解析】∵正数a ,b 满足4a b +=,∴242+⎛⎫≤= ⎪⎝⎭a b ab ,即ab 的最大值为4t =,当且仅当2a b ==时,取等号.∵2340x x +-<的解集为M ,∴{}|41M x x =-<<.28.(多选题)(2020·江苏省高一期末)对于给定的实数a ,关于实数x 的一元二次不等式()()10a x a x -+>的解集可能为( ) A .φB .()1,a -C .(),1a -D .()(),1,a -∞-⋃+∞【答案】ABCD【解析】解:对于一元二次不等式()(1)0a x a x -+>,则0a ≠当0a >时,函数()(1)y a x a x =-+开口向上,与x 轴的交点为a ,1-, 故不等式的解集为()(),1,x a ∈-∞-+∞;当0a <时,函数()(1)y a x a x =-+开口向下, 若1a =-,不等式解集为∅;若10a -<<,不等式的解集为(1,)a -, 若1a <-,不等式的解集为(,1)a -, 综上,ABCD 都成立,故选:ABCD .29.(多选题)(2020·全国高一课时练习)已知关于x 的方程()230x m x m +-+=,下列结论正确的是( )A .方程()230x m x m +-+=有实数根的充要条件是{1m m m ∈<,或}9m > B .方程()230x m x m +-+=有一正一负根的充要条件是{}0m m m ∈< C .方程()230x m x m +-+=有两正实数根的充要条件是{}01m m m ∈<≤ D .方程()230x m x m +-+=无实数根的必要条件是{}1m m m ∈> E.当3m =时,方程的两实数根之和为0【答案】BCD【解析】在A 中,由()2340m m ∆=--≥得1m 或9m ≥,故A 错误;在B 中,当0x =时,函数()23y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}0m m m ∈<,故B 正确; 在C 中,由题意得()2340,30,0,m m m m ⎧∆=--≥⎪->⎨⎪>⎩解得01m <≤,故C 正确;在D 中,由()2340m m ∆=--<得19m <<,又{}{}191m m m m <<⊆>,故D 正确;在E 中,当3m =时,方程为230x +=,无实数根,故E 错误.30.(多选题)(2020·全国高一课时练习)已知关于x 的不等式23344a x xb ≤-+≤,下列结论正确的是( ) A .当1a b <<时,不等式23344a x xb ≤-+≤的解集为∅ B .当1a =,4b =时,不等式23344a x xb ≤-+≤的解集为{}04x x ≤≤ C .当2a =时,不等式23344a x xb ≤-+≤的解集可以为{}xc xd ≤≤的形式 D .不等式23344a x x b ≤-+≤的解集恰好为{}x a x b ≤≤,那么43b = E.不等式23344a x x b ≤-+≤的解集恰好为{}x a x b ≤≤,那么4b a -= 【答案】ABE 【解析】由23344x x b -+≤ 得23121640x x b -+-≤,又1b <,所以()4810b ∆=-<,从而不等式23344a x xb ≤-+≤的解集为∅,故A 正确.当1a =时,不等式23344a x x ≤-+就是2440x x -+≥,解集为R ,当4b =时,不等式23344x x b -+≤就是240x x -≤,解集为{}04x x ≤≤,故B 正确.在同一平面直角坐标系中作出函数()2233342144y x x x =-+=-+的图象及直线y a =和y b =,如图所示.由图知,当2a =时,不等式23344a x x b ≤-+≤的解集为{}{}A C D B x x x x x x x x ≤≤⋃≤≤的形式,故C 错误. 由23344a x x b ≤-+≤的解集为{}x a x b ≤≤, 知min a y ≤,即1a ≤,因此当x a =,x b =时函数值都是b .由当x b =时函数值是b ,得23344b b b -+=,解得43b =或4b =. 当43b =时,由2343443a a b -+==,解得43a =或83a =,不满足1a ≤,不符合题意,故D 错误. 当4b =时,由233444a a b -+==,解得0a =或4a =,0a =满足1a ≤,所以0a =,此时404b a -=-=,故E 正确.故选:ABE二、拓展提升1.(2020·上海高一课时练习)求下列不等式的解集:(1)21202x x -++<; (2)2353x x +≤.【解析】解 (1)原不等式可化为21202x x -->.0∆>,∴方程21202x x --=的解是114x -=,214x +=.所以原不等式的解集是{|x x <或x >. (2)原不等式变形为23503x x -+≤.0∆<,∴方程23503x x -+=无解.所以原不等式的解集是∅.2.(2020·上海高一课时练习)已知m 是常数,解关于x 的不等式:212m x m x -<+.【解析】原不等式可化为()2112m x m +>-. 210m +>,2121m x m ->∴+ 3.(2019·山东省高一月考)甲厂以x 千克/时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得利润310051x x ⎛⎫+- ⎪⎝⎭元.要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围. 【解析】由题可知:3200513000x x ⎛⎫+-≥ ⎪⎝⎭ 化简可得:251430x x --≥ 所以21514305x x x --≥⇒≤-或3x ≥ 又110x ≤≤,所以310x ≤≤ 4.(2020·梅河口市第五中学高一月考)已知关于x 的不等式:()1311a x x +-<-. (1)当1a =时,解该不等式;(2)当a 为任意实数时,解该不等式.【解析】(1)当1a =时,原不等式可化为2311x x -<-即201x x -<-, 故()()210x x --<,所以12x <<,故原不等式的解为1,2.(2)原不等式可化为201ax x -<-即()()210ax x --<, 当0a <时,不等式的解为2x a <或1x >;当0a =时,原不等式可化为10x ->即1x >;当0a >时,原不等式可化为()210x x a ⎛⎫--< ⎪⎝⎭, 若02a <<,则不等式的解为21x a <<; 若2a =,则不等式的解为∅;若2a >,则不等式的解为21x a<<. 综上,当0a <时,不等式的解为()2,1,a ⎛⎫-∞⋃+∞ ⎪⎝⎭,当0a =时,不等式的解为1,, 当02a <<时,不等式的解为21,a ⎛⎫ ⎪⎝⎭,当2a =时,不等式的解为∅, 当2a >时,不等式的解为2,1a ⎛⎫ ⎪⎝⎭. 5.(2020·上海高一课时练习)若不等式22231ax x x x-+<-+对一切实数x 均成立,求实数a 的范围. 【解析】210x x -+>,11430∆=-=-<,则210x x -+>恒成立,22231ax x x x +-+∴-<,即()22231ax x x x -+<-+. 整理得:()22310x a x +-+>.该式对一切实数x 均成立,()22380a ∴∆=--<,即(2330a a ∆=---+<,解得:33a -<<+ 6.(2020·浙江省高一期末)已知集合(){}(][)22310,15,x R x k x k ∈-+-+≥=-∞-⋃+∞. (Ⅰ)求实数k 的值;(Ⅰ)已知(),2t ∈-∞,若不等式()22234150x k x k m m -+--++≥在4t x ≤≤上恒成立,求实数m 的取值范围.【解析】(Ⅰ)由题意可知,1-和5是方程()22310x k x k -+-+=的两个根,所以由韦达定理得152531k k -+=+⎧⎨-=-+⎩, 故实数2k =. (Ⅰ)由2k =,原不等式可化为224940x x m m -+-+≥, 所以22449x x m m -≥--在()42t x t ≤≤<上恒成立,令()22424y x x x =-=--,因为()42t x t ≤≤<,所以min 4y =-,所以不等式恒成立等价于2494m m --≤-,故由2450m m --≤, 解得:15m -≤≤,故实数m 的取值范围为:[]1,5-.。

人教版高一数学上学期高频考点专题05 二次函数与一元二次方程、不等式

人教版高一数学上学期高频考点专题05 二次函数与一元二次方程、不等式

高一数学上学期高频考点专题05 二次函数与一元二次方程、不等式专题05 二次函数与一元二次方程、不等式考点1:二次函数与一元二次方程、不等式知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅题型1:解不含参数的一元二次不等式例1解下列不等式:(1)-x2+5x-6>0;(2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .变式 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0,∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.题型2:三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎨⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512. 所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .变式 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎨⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x+1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤1.题型3:含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a<x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.变式 (1)当a =12时,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集; (2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集. 解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎫a +1a x +1≤0⇔⎝⎛⎭⎫x -1a (x -a )≤0, ①当0<a <1时,a <1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a ≤x ≤1a ; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a ≤x ≤a .综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a≤x ≤a .考点1:练习题1.已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1m <x <m B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >1m 或x <m C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >m 或x <1m D.⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-b a ,-2×3=ca ,∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( )A .5B .-5C .-25D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m 和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.。

高一一元二次不等式及其解法知识点+例题+练习 含答案

高一一元二次不等式及其解法知识点+例题+练习 含答案

1.“三个二次”的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集(-∞,x1)∪(x2,+∞)(-∞,-b2a)∪(-b2a,+∞)Rax2+bx+c<0(a>0)的解集(x1,x2) ∅∅不等式解集a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b}{x|x≠a}{x|x<b或x>a}(x-a) (x-b)<0{x|a<x<b}∅{x|b<x<a}【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ ) (2)不等式x -2x +1≤0的解集是[-1,2].( × )(3)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (5)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )1.(教材改编)不等式x 2-3x -10>0的解集是________. 答案 (-∞,-2)∪(5,+∞)解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 2.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =________. 答案 [0,4)解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).3.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是________________. 答案 (2,3)解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).4.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.5.(教材改编)若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为________. 答案 (-1,1)解析 由题意可知,Δ>0且x 1x 2=a 2-1<0,故-1<a <1.题型一 一元二次不等式的求解命题点1 不含参的不等式例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(32,+∞),即原不等式的解集为(-∞,-1)∪(32,+∞).命题点2 含参不等式例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1,①当a >1时,x 2-(a +1)x +a <0的解集为{x |1<x <a }, ②当a =1时,x 2-(a +1)x +a <0的解集为∅, ③当a <1时,x 2-(a +1)x +a <0的解集为{x |a <x <1}. 引申探究将原不等式改为ax 2-(a +1)x +1<0,求不等式的解集. 解 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a )(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a<x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a .综上所述:当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a<x <1}.思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集.求不等式12x 2-ax >a 2(a ∈R )的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.综上所述,当a >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上恒成立例3 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.(2)设a 为常数,∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是________. 答案 (1)(-3,0) (2)[0,4)解析 (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. (2)∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4.命题点2 在给定区间上恒成立例4 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即 m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67.命题点3 给定参数范围的恒成立问题例5 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________________________________________________________________________. 答案 {x |x <1或x >3}解析 x 2+(k -4)x +4-2k >0恒成立, 即g (k )=(x -2)k +(x 2-4x +4)>0, 在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解之得x <1或x >3.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为__________.(2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (1)[-1,4] (2)(-22,0) 解析 (1)x 2-2x +5=(x -1)2+4的最小值为4, 所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4,解得-1≤a ≤4.(2)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.题型三 一元二次不等式的应用例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)y =[(1+0.75x )×12-(1+x )×10]×(1+0.6x )×10 000 =-6 000x 2+2 000x +20 000,即y =-6 000x 2+2 000x +20 000(0<x <1). (2)上年利润为(12-10)×10 000=20 000. ∴y -20 000>0,即-6 000x 2+2 000x >0, ∴0<x <13,即x 的范围为(0,13).14.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思维点拨 (1)考虑“三个二次”间的关系; (2)将恒成立问题转化为最值问题求解. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵x ∈[1,+∞)时,f (x )=x 2+2x +ax >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )=g (x )恒成立.而g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}温馨提醒 (1)本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. (2)注意函数f (x )的值域为[0,+∞)与f (x )≥0的区别.[方法与技巧]1.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.2.f (x )>0的解集即为函数y =f (x )的图象在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. [失误与防范]1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0 (a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.A 组 专项基础训练(时间:30分钟)1.不等式(x -1)(2-x )≥0的解集为____________. 答案 {x |1≤x ≤2}解析 由(x -1)(2-x )≥0可知(x -2)(x -1)≤0, 所以不等式的解集为{x |1≤x ≤2}.2.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 2的解集为________.答案 [-1,1]解析 方法一 当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.② 由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是____________. 答案 [0,4]解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.4.已知不等式x 2-2x -3<0的解集是A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b =________. 答案 -3解析 由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2}, 则不等式x 2+ax +b <0的解集为{x |-1<x <2}. 由根与系数的关系可知,a =-1,b =-2, 所以a +b =-3.5.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c =________.答案 2∶1∶3解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -b a. ∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧ b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a 2=2∶1∶3. 6.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为__________.答案 1±52解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是________________. 答案 {x |a <x <1a} 解析 原不等式即(x -a )(x -1a)<0, 由0<a <1得a <1a ,∴a <x <1a. 8.已知关于x 的不等式ax -1x +1<0的解集是⎩⎨⎧⎭⎬⎫x |x <-1或x >-12,则实数a =____________. 答案 -2解析 ax -1x +1<0⇔(x +1)(ax -1)<0, 依题意,得a <0,且1a =-12.∴a =-2. 9.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a 的取值范围是________.答案 (-1,23) 解析 ∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1.∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0, ∴-1<a <23. 10.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .B 组 专项能力提升(时间:20分钟)11.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是__________________________.答案 (-∞,-32)∪(12,+∞) 解析 f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12.12.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.答案 52解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 13.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.答案 b <-1或b >2解析 由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a 2=1,故a =2. 由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.14.设函数f (x )=x 2-1,对任意x ∈[32,+∞),f (x m)-4m 2·f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________________.答案 {m |m ≤-32或m ≥32} 解析 依据题意得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立, 即1m 2-4m 2≤-3x 2-2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =-3x 2-2x +1取得最小值-53, 所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0, 解得m ≤-32或m ≥32. 15.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.所以x 的取值范围是{x |x <2或x >4}.。

高一数学人必修件时二次函数与一元二次方程不等式的应用

高一数学人必修件时二次函数与一元二次方程不等式的应用

02
将原方程 $ax^2 + bx + c = 0$ 因式分解为 $(x - m)(x - n) = 0$。
03
解得 $x_1 = m$ 和 $x_2 = n$。
04
若无法找到满足条件的 $m$ 和 $n$,则此方法 不适用,需采用其他方 法求解。
03
一元二次不等式解法与性质
一元二次不等式解法
配方法
二次函数与一元二次不等式的联系
一元二次不等式表示的是二次函数在某个区间内的函数值大于或小于零的情况。通过解一元二次不等式,可以确定二 次函数在某个区间内的正负性。
二次函数、一元二次方程与不等式的区别
它们的研究对象不同,二次函数研究的是函数的性质,而一元二次方程和不等式研究的是数与数之间的 关系。此外,它们的解法也有所不同,需要根据具体情况选择合适的方法。
当 $Delta = 0$ 时,方程有两个相等的 实根,即 $x_1 = x_2 = -frac{b}{2a}$。
判别式 $Delta = b^2 - 4ac$。
当 $Delta > 0$ 时,方程有两个不相等 的实根,分别为 $x_1 = frac{-b + sqrt{Delta}}{2a}$ 和 $x_2 = frac{-b sqrt{Delta}}{2a}$。
二次函数的判别式$Delta=b^2-4ac$ ,决定了方程的根的情况,当
$Delta>0$时,方程有两个不相等的实 根;当$Delta=0$时,方程有两个相等 的实根;当$Delta<0$时,方程无实根

二次函数与一元二次不等式关系
一元二次不等式 $ax^2+bx+c>0$或 $ax^2+bx+c<0$的解集, 就是二次函数 $f(x)=ax^2+bx+c$在$x$ 轴上方或下方的部分对应的 $x$的取值范围。

二次函数与一元二次方程、不等式2020高一数学新教材

二次函数与一元二次方程、不等式2020高一数学新教材

A.x -12<x<1
B.{x|x>1}
C.{x|x<1 或 x>2}
√D.x x<-12或x>1
解析 ∵2x2-x-1=(2x+1)(x-1),
∴由2x2-x-1>0,得(2x+1)(x-1)>0,
解得x>1或x<-
1, 2
∴不等式的解集为x x<-12或x>1
.
2.若不等式x2+mx+1≥0的解集为R,则实数m的取值范围是
2.实际问题要注意变量的实际含义对变量范围的影响,如长度应该大于0,人数应该 为自然数等. 3.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.
课堂作业 作业:完成对应练习
解 不等式可化为3x2-6x+2<0, ∵Δ=(-6)2-4×3×2=12>0,
∴x1=1- 33,x2=1+ 33,
∴不等式-3x2+6x>2的解集是
x 1-
33<x<次不等式的解集
例4 已知关于x的不等式x2+ax+b<0的解集为{x|1<x<2},试求关于x的不等
2.3 第1课时 二次函数与一元二次方程、不等式
学习目标
1、了解一元二次不等式的概念; 2、掌握一元二次不等式的解法; 3、理解三个二次的关系,能够利用这种关系解题; 4、掌握与一元二次不等式有关的恒成立问题的解法.
1 自主学习
在初中,我们从一次函数的角度看一元一 次方程、一元一次不等式,发现了三者之 间的内在联系,利用这种联系可以更好的 解决相关问题。对于二次函数、一元二次 方程和一元二次不等式,是否也有这样的 联系呢?
跟踪训练 3 若不等式x2+x+k<0在区间[-1,1]上恒成立,则实数k的取值范围 是 (-∞,-2) .

2020-2021学年人教A版高中数学必修第一册课件:2.3二次函数与一元二次方程-、不等式(共19

2020-2021学年人教A版高中数学必修第一册课件:2.3二次函数与一元二次方程-、不等式(共19

题型二 含参数的一元二次不等式的解法
例2:当a ห้องสมุดไป่ตู้时,解不等式 x2 (a 2)x 2a 0
变式:解不等式 x2 (a 2)x 2a 0
点评:如果未能判断两根的大小,必须按两根的大小关系 进行分类讨论!最后应加一段总结,按参数的大小顺序分 段将结论列举出来
含参数的一元二次不等式的解法
二次函数与一元二次 方程 、不等式
问题导学 预习教材 P50-P54,并思考以下问题: 1.一元二次不等式的概念是什么? 2.二次函数与一元二次方程、一元二次不等式的解有什么对应 关系? 3.求解一元二次不等式 ax2+bx+c>0(a>0)的过程是什么?
1.一元二次不等式
(1)一般地,我们把只含有一___个___未知数,并且未知数的最高次 数是__2____的不等式,称为一元二次不等式.
(2) 一 元 二 次 不 等 式 的 一 般 形 式 是 __a_x_2_+__b_x_+__c_>_0_____ 或 __a_x_2_+__b_x_+__c<__0_____ (其中 a,b,c 均为常数,a≠0)
(1)一元,即只含一个未知数,其他元素均为常数(或参数).
(2)二次,即未知数的最高次数必须为 2,且其系数不能为 0. 2.二次函数的零点
3.求解一元二次不等式的过程
题型一 解不含参数的一元二次不等式
例 1 解下列不等式: (1)2x2+7x+3>0; (2)-4x2+18x-81≥0;
4 (3)-2x2+3x-2<0; (4)-1x2+3x-5>0.
2
【解】 (1)因为 Δ=72-4×2×3=25>0, 所以方程 2x2+7x+3=0 有两个不等实根 x1=-3,x2=-12. 又二次函数 y=2x2+7x+3 的图象开口向上, 所以原不等式的解集为 xx<-3或x>-12. (2)原不等式可化为2x-922≤0, 所以原不等式的解集为xx=94.

高一数学知识点梳理:二次函数与一元二次方程

高一数学知识点梳理:二次函数与一元二次方程

高一数学知识点梳理:二次函数与一元二次方程亲爱的同学们,大家好!在度过一个平安、愉快的暑假之后,我们满怀新的希望,迎来了生机勃勃的新学期!现在请跟着我,一起熟悉高一数学知识点梳理。

二次函数(以下称函数)y=ax A2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即axA2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1. 二次函数y=axA2,y=a(x-h)A2 ,y=a(x-h)A2+k ,y=axA2+bx+c(各式中,a^ 0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式顶点坐标对称轴y=axA2(0,0)x=0y=a(x-h)A2(h,0)x=hy=a(x-h)A2+k(h,k)x=hy=axA2+bx+c(-b/2a,[4ac-bA2]/4a)x=-b/2a当h>0时,y=a(x-h)A2的图象可由抛物线y=axA2向右平行移动h个单位得到,当h当h>0, k>0时,将抛物线y=axA2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-hF2+k的图象;当h>0,k当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)A2+k 的图象;当h因此,研究抛物线y=axA2+bx+c(a丰0)的图象,通过配方,将一般式化为y=a(x-h)A2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便•2. 抛物线y=axA2+bx+c(a工0)的图象:当a>0时,开口向上,当a0,当x< -b/2a 时,y随x的增大而减小;当x>-b/2a时,y随x的增大而增大.若a0,图象与x 轴交于两点A(x?,0)和B(x?,0),其中的x1, x2是一元二次方程axA2+bx+c=0 (a 工0)的两根.这两点间的距离AB=|x?-x?|当厶=0.图象与x轴只有一个交点;当A0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a5.抛物线y=axA2+bx+c的最值:如果a>0(a1、要养成纠错订正的习惯,提高自我评判能力要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,养成良好的习惯,不少问题就会茅塞顿开,从而提高自我评判能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 一元二次不等式、方程和不等式
2.3 二次函数与一元二次方程、不等式
【学习目标】
1.掌握判断一元二次方程实数根的存在性与实数根的个数的方法
2.了解一元二次不等式与相应函数、方程的联系
【知识网络详解】
知识点一:一元二次不等式的概念
只含有一个未知数,并且未知数的最高次数是二次的不等式叫做一元二次不等式,一
般形式:02>++c bx ax 或)0(02
≠<++a c bx ax 知识点二:一元二次不等式与二次函数的图像
0>∆ 0=∆ 0<∆
二次函数 c bx ax y ++=2
(0>a )的图象
一元二次方程 ()的根
00
2>=++a c bx ax 有两相异实根 21,x x 有两相等实根
a b x x 221-== 无实根 的解集)0(0
2>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩
⎨⎧-≠a b x x 2 R 的解集)0(0
2><++a c bx ax
{}21x x x x << ∅ ∅ 的解集)0(0
2>≥++a c bx ax
{}21x x x x x ≥≤或 R R 的解集)0(0
2>≤++a c bx ax {}21x x x x ≤≤ ⎭⎬⎫⎩⎨⎧-a b 2 ∅
【考向详析】
题型一:解一元二次不等式
例1.解下列不等式:
(1) x 2-3x +5>0; (2)-6x 2-x +2≥0; (3)-4x 2≥1-4x (4)2x 2-4x +7<0.
【练习】1.解下列不等式:
(1)
02132-2≤-+x x ; (2)()422≤-x
题型二:含参的一元二次不等式的解法
例1.解下列不等式:
(1)02322<+-a ax x ; (2)0232
≤+-a ax ax ; (3)01)1(2≥++-x a ax
【练习】1.解下列不等式
(1)()a x a x +--12>0; (2)()0222≤++-x a ax
题型三:三个“二次”之间的关系
例1.已知不等式02≤++b ax x 的解集为{}32≤≤x x ,则=+b a 。

例2.不等式()()012422≥--+-x a x a 的解集为空集,则实数a 的取值范围为 。

例3.若二次函数()11222+++-=k x k x y 的图像与x 轴的两个交点为()0,1x ,()0,2x ,且21,x x 都大于1.
(1)求实数k 的若取值范围。

(2)2
121=x x ,求k 的值。

【练习】1.不等式()21-ax <2x 恰有2个整数解,则实数a 的取值范围为 。

2. 若方程()2
7132=0x m x m -+--的两个根,一根在区间(0,1)上,另一根在区间(1,2)上,则实数m 的取值范围为 。

3. 已知不等式226kx x k -+<0,
()0k ≠。

(1)若不等式的解集为{}
2>3<--x x x 或,求k 的值。

(2)若不等式的解集为⎭
⎬⎫⎩⎨⎧
≠k x x 1-,求k 的值。

(3)若不等式的解集为R ,求k 的取值范围。

(4)若不等式的解集为∅,求k 的取值范围。

题型四:一元二次不等式的恒成立问题
例1.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________. 例2.不等式x 2-3>ax -a 对一切3≤x ≤4恒成立,实数a 的取值范围是________.
【练习】1.关于x 的不等式(1+m )x 2+mx +m <x 2+1对x ∈R 恒成立,求实数m 的取值范围.
2.若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦
⎤0,12恒成立,则a 的最小值是________.
题型五:一元二次不等式的实际应用
例1.国家为了加强对烟酒生产的宏观管理,除了应用税收外,还征收附加税。

已知某种酒每瓶销售价为70元,不收附加税时,每年大约产销100万瓶;若征收附加税,每销100元要征附加税r 元(叫做税率r%),则每年的产销量将减少10r 万瓶.如果要使每年在此项经营中所收取的附加税额不少于112万元,那么r 应怎样确定?。

相关文档
最新文档