巴特沃斯数字低通滤波器要点说明
巴特沃斯数字低通滤波器要点说明书
目录1.题目........................................................ .................................. .22.要求........................................................ (2)3.设计原理........................................................ . (2)3.1 数字滤波器基本概念......................................................... (2)3.2 数字滤波器工作原理......................................................... (2)3.3 巴特沃斯滤波器设计原理 (2)3.4脉冲响应不法......................................................... .. (4)3.5实验所用MATLAB函数说明 (5)4.设计思路........................................................ .. (6)5、实验内容........................................................ . (6)5.1实验程序......................................................... . (6)5.2实验结果分析......................................................... . (10)6.心得体会........................................................ . (10)7.参考文献........................................................ . (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。
巴特沃斯低通滤波器的设计方法
H a(p )p 5 a 4p 4 a 3p 3 1 a 2p 2 a 1p a 0
其中,a0=1.0000, a1=3.2361, a2=5.2361, a3=5.2361, a4=3.2361
2021/2/11
14
归一化:
——由于各滤波器的幅频特性不同,为使设计统一,需要将所 有的频率归一化
——这里采用对3dB截止频率Ωc归一化,归一化后的Ha(s)表示
为
1
Ha(s)
N 1
(
s
sk )
k0 c c
(5.2.11)
令归一化复变量p=s/Ωc,pk=sk/Ωc,得到归一化巴特沃斯的传
输函数
Ha ( p) N1 1
2021/2/11
27
切比雪夫低通滤波器: •I型——通带等波纹,阻带单调递减 •II型——通带单调递减,阻带等波纹
2021/2/11
28
切比雪夫I型低通滤波器
幅度平方函数: A2Ha(j)2 12C1N 2( p)
Ωp给定,两个参数ε和N
(5.2.24)
0< ε <1,表示通带内幅度波动的程度,ε愈大,波动幅度愈
ap:通带最大衰减系数
as:阻带最小衰减系数
ap 10lg
Ha( j) 2
2
(5.2.1)
Ha( jp)
as
10lg
Ha( j) 2 Ha( js ) 2
(5.2.2)
将Ω=0处幅度已归一化到1,即|Ha(0)|=1,得到
2
ap10lgHa(jp) (5.2.3)
as 10lgHa(js)2 (5.2.4)
LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解
C1 1.84776F C2 0.76537F
1NEW
0.76537 K 0.76537 4 12.29μH 5 M 2.512 10
L2NEW
1.84776 K 1.84776 4 29.42μH 5 M 2.512 10
待设计LPF的电容参数为 :
(1 2 )Hz
特征阻抗变换K 4 4 1 四阶Butterworth低通滤波器的电感电容参 数
2018/10/24
只因准备不足,才导致失败
7
四阶Butterworth低通滤波器的归一化LPF基 准滤波器的参数,设 L1 0.76537H L2 1.84776H 得:L
1.84776 1.84776 C1NEW 1.84 μF 5 M K 4 2.512 10 0.76537 0.76537 C2NEW 0.76μF 5 M K 4 2.512 10
2018/10/24 只因准备不足,才导致失败 8
电感采用无损磁芯及细包漆线绕制而成,其 电感值可用数字电桥测量仪器测量得到。
2018/10/24
只因准备不足,才导致失败
1
对滤波器截止角频率的变换是通过先求出待 设计滤波器截止角频率与基准角频率的比值 M,再用这个M去除滤波器中的所有元件值 来计算所需参数,其计算公式如下:
待设计滤波器的截止频 率 M 基准滤波器的截止频率
C (base) Cm(new) M
2018/10/24
5. 低通滤波器设计
1)归一化LPF设计方法 归一化低通滤波器设计数据,指的是特征阻 1 抗为 1 且截止频率为 0.159Hz 的基准 低通滤波器的数据。 2 在设计巴特沃思型的归一化LPF的情况下, 以巴特沃思的归一化LPF设计数据为基准滤 波器,将它的截止频率和特征阻抗变换为待 设计滤波器的相应值。
巴特沃斯低通滤波器的设计
巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。
式中N 为整数,是滤波器的阶次。
巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。
巴特沃斯低通滤波器的振幅特性如图a 所示。
滤波器的特性完全由其阶数N 决定。
当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。
滤波器的振幅特性对参数N 的依赖关系如图a 所示。
设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N NpjH j C pλλ==+- 由于p图a 巴特沃斯低通滤波器的振幅特性221()()()1()a a jsNcH s H s A s j Ω=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。
2、常用设计巴特沃斯低通滤波器指标p λ:通带截止频率; p α:通带衰减,单位:dB ;s λ:阻带起始频率;s α:阻带衰减,单位:dB 。
说明:(1)衰减在这里以分贝(dB )为单位;即222110lg10lg 1()NC H j αλλ⎡⎤==+⎣⎦(2)当3dB α=时p C Ω=Ω为通常意义上的截止频率。
(3)在滤波器设计中常选用归一化的频率/C λ=ΩΩ,即1,p sp s ppλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。
(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。
巴特沃斯低通滤波器传递函数
巴特沃斯低通滤波器传递函数一、引言巴特沃斯滤波器是一种常见的滤波器,它可以用于信号处理、图像处理等领域。
其中,低通滤波器是最基本的一种。
本文将详细介绍巴特沃斯低通滤波器传递函数的计算方法。
二、巴特沃斯低通滤波器1. 巴特沃斯低通滤波器概述巴特沃斯低通滤波器是一种对频率响应有要求的低通滤波器,其传递函数为:H(s) = 1 / (1 + (s/wc)^2n)^0.5其中,s为Laplace变换中的复频率变量,wc为截止频率,n为阶数。
2. 巴特沃斯低通滤波器传递函数推导(1)将传递函数H(s)转化为标准形式:H(s) = 1 / (1 + (s/wc)^2n)^0.5= 1 / [(s/wc)^2n + 1]^0.5= 1 / [(s^2n + wc^2n) / wc^2n]^0.5= wc^n / [(s^2n + wc^2n)^0.5](2)将复平面上的频率变量s转化为极坐标形式:s = σ + jω= r * e^(jθ)其中,σ为实部,ω为虚部,r为模值,θ为相位角。
(3)将传递函数H(s)中的s用极坐标表示:H(s) = wc^n / [(s^2n + wc^2n)^0.5]= wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5](4)将传递函数H(s)中的分母进行有理化:H(s) = wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5] = wc^n * (r^2n * e^(j2nθ) - wc^2n)^-0.5(5)将传递函数H(s)中的极坐标形式转化为直角坐标形式:H(s) = wc^n * cos(nθ) - jwc^n * sin(nθ)----------------------------------(r^2n - wc^2n)^0.5(6)根据频率响应要求,令模值等于1时的频率为截止频率wc,则有:1 = |H(jwc)| = wc^n / (wc^2n - wc^2n)^0.5=> 1 = (wc/wc)^n=> n = 1 / [ln(1/√R)] / [ln(tan(π/4 + fc/fs/2))]其中,R为通带最大衰减,fc为通带截止频率,fs为采样频率。
巴特沃斯低通滤波器的设计精编资料
巴特沃斯低通滤波器的设计巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。
式中N 为整数,是滤波器的阶次。
巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。
巴特沃斯低通滤波器的振幅特性如图a 所示。
滤波器的特性完全由其阶数N 决定。
当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。
滤波器的振幅特性对参数N 的依赖关系如图a 所示。
设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N Np jH j C pλλ==+-p 图a 巴特沃斯低通滤波器的振幅特性由于221()()()1()a a jsNcH s H s AsjΩ=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。
2、常用设计巴特沃斯低通滤波器指标pλ:通带截止频率;pα:通带衰减,单位:dB;sλ:阻带起始频率;sα:阻带衰减,单位:dB。
说明:(1)衰减在这里以分贝(dB)为单位;即222110lg10lg1()NCH jαλλ⎡⎤==+⎣⎦(2)当3dBα=时p CΩ=Ω为通常意义上的截止频率。
(3)在滤波器设计中常选用归一化的频率/Cλ=ΩΩ,即1,p sp sp pλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。
(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。
巴特沃斯数字低通滤波器要点说明
目录1.题目........................................................ .................................. .22.要求........................................................ (2)3.设计原理........................................................ . (2)数字滤波器基本概念......................................................... (2)数字滤波器工作原理......................................................... (2)巴特沃斯滤波器设计原理 (2)脉冲响应不法......................................................... .. (4)实验所用MATLAB函数说明 (5)4.设计思路........................................................ .. (6)5、实验内容........................................................ . (6)实验程序......................................................... . (6)实验结果分析......................................................... . (10)6.心得体会........................................................ . (10)7.参考文献........................................................ . (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。
数字信号处理巴特沃斯滤波器设计
数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。
巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。
本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。
在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。
巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。
要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。
巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。
一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。
确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。
根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。
设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。
数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。
常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。
在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。
同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。
综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。
巴特沃斯数字低通滤波器要点说明
目录1. 题目 ..................................................................... ........................................ .2 2. 要求 ..................................................................... .......................................... 2 3.设 理................................. 2 计 原3.1 数 字 滤波器 基本概念................23.2 数字滤波器 工作原理 ................23.3巴特 沃斯滤波器设计原理 ........23.4 法 .............脉冲响应不 (4)3.5 实验 所用MATLAB 函 数 说明 (5)............4. 设计思路............ (6)5 、实验内容............ (6)5.1 实验程序 ....... (6)5.2 实验结果分析...... (10)6. 心得体会............ (10)7. 参考文献............ (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。
并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t), 其中f1=50HZ,f2=200HZ。
用此信号验证滤波器设计的正确性。
三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。
巴特沃斯滤波器基本原理及相关参数计算(初稿)
H (s) =
VO ( s ) = ; Vi ( s ) s 2 R R C C sR R C ( 1 1 1 ) 1 2 3 1 2 2 3 1 R1 R2 R3
R2 R1
然而,二阶低通滤波器的频率响应的一般形式为:
H (s) =
H o (s) 1 f f 1 j f Q f 0 0
Vo ( s ) [ R1 + sR3C1 ( R1 + R2 + sR1 R2C2 +
Vo ( s ) [ R1 + s 2 R1 R2 R3C1C2 + s ( R1 R2 ) R3C1 + sR1 R2C1 ]= - Vi ( s ) R2 ;
即可得二阶巴特沃斯低通滤波器的传递函数 H ( s ) 为:
2
;
通过比较可得,
H o (s) = f0
R2 ; R1
1 ; 2 R2 R3C1C2 C2 ; R2 R3C1
Q ( R1 // R2 // R3 )
式中, f 0 为二阶巴特沃斯低通滤波器的通带频率,即衰减 3dB 时的截止频 率;而 Q 为等效品质因素,对于二阶巴特沃斯低通滤波器来说,其 Q=0.71;为 了计算方便,在这里令 C2 nC1 , A R2 / R1 ,则:
由此可求得二阶巴特沃斯低通滤波器的输出函数 Vo ( s ) 为:
Vo ( s ) = Va ( s ) - [
Vi ( s ) Va ( s ) V (s) - Va ( s ) sC2 - a ] R2 ; R1 R3 V ( s ) R2 R2 R + sR2C2 + 2 ) - i ; R1 R3 R1 V ( s ) R2 R2 R + sR2C2 + 2 ) - i ; R1 R3 R1
巴特沃斯低通滤波器设计
巴特沃斯低通滤波器一、设计要求(1)设计一巴特沃斯数字低通滤波器,在0.3π通带频率范围内,通带幅度波动小于1dB ,在0.5π~πrad 阻带频率范围内,阻带衰减大于12dB 。
二.设计过程巴特沃斯双线性变换法(1)数字指数:p w =0.3π,s w =0.5π,(2)求p Ω,s Ω利用频率预畸变公式得:p Ω=2T tan 2p w =2T tan 320π=1.019⨯1Ts Ω=2T tan 2s w =2T tan 4π=2T (3)确定滤波器阶数sp λ=s p ΩΩ=211.019TT ⨯=1.963 sp k≈0.132 N=—lg lg sp sp k λ=—lg 0.132lg1.963≈3.0023 N=4 (4)确定系统函数G(p)= 43212.613 3.4142 2.61311p p p p ++++ c Ω=p Ω()10.12101p a N --=1.019⨯1T⨯()10.1124101-⨯⨯-=1.2065T P=11211c s z s T z ---=Ω+=1c Ω⨯2T ⨯1111z z ---+=11211.20651z z ---+ H(z)=G(p)=12341234146434.1675441.3465432.542711.06234 1.69864z z z z z z z z--------++++-+-+三.软件仿真(1)将分子分母带入Matlab 验证b=[1 4 6 4 1];a=[34.16754 -41.34654 32.5427 -11.06234 1.69864];[H,w]=freqz(b,a,1000);plot(w,20*log10(abs(H)/max(H)),'-');grid;xlabel('frequency');ylabel('magnitude');-250-200-150-100frequency m a g n i t u d e图(a )频率——幅度衰减图0.3π≈0.940.9250.930.9350.940.9450.950.955frequency m a g n i t u d e图(b)0.5π≈1.57frequency m a g n i t u d e图(c)(2)用Matlab 直接仿真出低通滤波器wp=2*tan(0.3*pi/2)*1000;ws=2*tan(0.5*pi/2)*1000;ap=1;as=12;[n,wn]=buttord(wp,ws,ap,as,'s');[b,a]=butter(n,wn,'s');[bn,an]=bilinear(b,a,1000);[H,w]=freqz(bn,an);plot(w,abs(H),'-');grid;xlabel('frequency');ylabel('magnitude');legend('双线性变化法');figure(2);plot(w,20*log10(abs(H)/max(H)),'-');grid;00.51 1.522.533.5frequency m a g n i t u d e0.3π≈0.94图(d)0.5π≈1.57图(e)四.分析将计算得出的低通滤波器系统函数H(z)的分子分母各项系数用Matlab验证,得图(a)幅频关系图。
一阶归一化数字巴特沃斯低通滤波器
一阶归一化数字巴特沃斯低通滤波器数字巴特沃斯滤波器是一种常用的数字信号处理滤波器,可用于滤波和去噪等应用。
本文将介绍一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。
1.原理概述一阶归一化数字巴特沃斯低通滤波器是一种理想滤波器。
其设计目标是实现信号在截止频率以下的完美衰减,而在截止频率以上则不进行滤波。
该滤波器的频率响应特点可用模拟巴特沃斯低通滤波器的频率响应特点进行近似。
2.设计步骤实现一阶归一化数字巴特沃斯低通滤波器的设计,可以按照以下步骤进行:步骤一:确定截止频率根据滤波器的应用需求,选择合适的截止频率。
截止频率是指滤波器开始滤波的频率点,一般以赫兹为单位。
步骤二:计算模拟巴特沃斯低通滤波器的阶数根据所选截止频率,使用模拟巴特沃斯低通滤波器的阶数公式计算阶数。
对于一阶滤波器,阶数为1。
步骤三:计算截止频率对应的模拟巴特沃斯低通滤波器的增益根据所选截止频率,使用模拟巴特沃斯低通滤波器的增益公式计算增益。
对于一阶滤波器,增益为-3dB。
步骤四:进行归一化在设计数字巴特沃斯滤波器时,需要对模拟滤波器进行归一化。
归一化处理可将截止频率与折返频率映射到数字滤波器的单位圆上。
步骤五:数值实现根据归一化的模拟滤波器参数,使用双线性变换将其转换为数字滤波器的差分方程。
假设我们需要设计一个一阶归一化数字巴特沃斯低通滤波器,截止频率选取为1kHz。
根据步骤一,确定截止频率为1kHz。
根据步骤二,计算阶数为1。
根据步骤三,计算增益为-3dB。
在步骤四中,进行归一化处理,将1kHz映射到单位圆上。
最后,在步骤五中,根据归一化的模拟滤波器参数,使用双线性变换转换为数字滤波器的差分方程。
本文介绍了一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。
通过明确的设计步骤,我们可以根据所需的截止频率实现滤波器设计。
在应用中,可以根据实际需求调整截止频率和滤波器的阶数,以获得更好的滤波效果。
实验四四阶巴特沃思(Butterworth)滤波器
实验四 四阶巴特沃思(Butterworth )滤波器一. 实验目的1.了解四阶巴特沃思滤波器的电路构成;2.研究四阶巴特沃思滤波器的频率特性; 3.熟习滤波器频率特性的测量方法。
二. 实验原理1.四阶巴特沃思低通滤波器巴特沃思滤波器具有通带最大平坦幅度特性,式(4-1)是n 阶巴特沃思低通滤波器的幅频响应表达式由图4-1(A )可见,随n 的增大,幅频特性在截止频率处下降得越快,则越接近于理想低通滤波器。
本实验的四阶巴特沃思低通滤波器,如图4-2所示,它由两级二阶有源低通滤波器串联而成。
其中,前级二阶有源低通滤波器其传输函数为为等效品质因数为特征角频率,)1()(,1121111112111211121111211121101C R K C R R C C R R Q C C R R -++==ω大倍数比例运算放大电路的放为其中,1,)24(11)(1314101120111R R K Q j K j H +=-+⎪⎪⎭⎫ ⎝⎛-=ωωωωω后级二阶有源低通滤波器与前级电路结构相同,可得相同形式的传输函数H 2(j ω),则图4-2所示的四阶巴特沃思低通滤波器的传输函数为H (j ω)= H 1(j ω) H 2(j ω) (4-3)经仿真分析,可得如图4-3所示的频率特性曲线。
2.四阶巴特沃思高通滤波器本实验模块中的四阶巴特沃思高通滤波器,由两级二阶有源高通滤波器串联而成,如图4-4所示。
前级二阶有源低通滤波器其传输函数为(A )幅频特性 (B )相频特性图4-3 四阶巴特沃思低通滤波器频率特性)44(11)(01120111--⎪⎭⎫⎝⎛-=ωωωωωQ jK j H后级二阶有源低通滤波器与前级电路结构相同,可得相同形式的传输函数H 2(j ω),则图4-4所示的四阶巴特沃思高通滤波器的传输函数为H (j ω)= H 1(j ω) H 2(j ω) (4-6)经仿真分析可得如图4-5所示的频率特性曲线。
巴特沃斯低通滤波器
巴特沃斯低通滤波器简介巴特沃斯低通滤波器(Butterworth low-pass filter)是一种常用的模拟滤波器,被广泛应用于信号处理和电子系统中。
它的设计原则是在通带中具有平坦的幅频特性,而在截止频率处具有最大衰减。
这种滤波器的设计目的是能够尽可能滤除高频噪声,而保留低频信号。
巴特沃斯滤波器的特性巴特沃斯低通滤波器具有以下特性:•通带幅度为1:在通带中,滤波器的增益保持不变,也就是幅度为1。
•幅度频率响应的过渡带是由通带到停带的渐变区域,没有任何波纹。
•幅度频率响应在通带之外都有指数衰减。
•巴特沃斯滤波器是最平滑的滤波器之一,没有任何截止角陡峭度。
巴特沃斯滤波器的传递函数巴特沃斯低通滤波器的传递函数由下式给出:H(s) = 1 / (1 + (s / ωc)^2n)^0.5其中,H(s)为滤波器的传递函数,s为复变量,ωc为截止频率,n为滤波器的阶数。
阶数决定了滤波器的过渡带宽度和滤波特性。
巴特沃斯滤波器设计步骤巴特沃斯滤波器的设计步骤如下:1.确定所需滤波器的阶数和截止频率。
2.根据阶数和截止频率选择巴特沃斯滤波器的标准传递函数,可以从经验图表或计算公式中得到。
3.将标准传递函数的复频域变量进行频率缩放,以得到实际的传递函数。
4.将传递函数进行因式分解,得到一系列一阶巴特沃斯滤波器的传递函数。
5.根据一阶传递函数设计电路原型。
6.将一阶电路原型按照阶数进行级联或并联,构成所需的滤波器电路。
巴特沃斯滤波器的优点和缺点巴特沃斯低通滤波器具有以下优点:•平坦的传递特性:在通带中,滤波器的增益保持不变,不会引入频率响应的波纹或衰减。
•平滑的过渡带:巴特沃斯滤波器的过渡带具有指数衰减特性,没有任何波纹或突变。
•简单的设计:巴特沃斯滤波器的设计步骤相对简单,可以通过标准传递函数和电路原型进行设计。
然而,巴特沃斯滤波器也具有一些缺点:•较大的阶数:为了达到较陡的阻带衰减,巴特沃斯滤波器需要较高的阶数,导致电路复杂度增加。
巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理
巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。
关于“巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理”的详细说明。
1.巴特沃斯低通滤波器公式
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:
其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。
2.巴特沃斯低通滤波器设计原理
巴特沃斯型低通滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。
其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。
滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。
滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的
所有电容元件值来实现的。
实验四 数字低通巴特沃斯滤波器的设计
实验四 数字低通巴特沃斯滤波器的设计数字滤波器的设计方法 波器H(S);进行频率变换,将其转换为高通、带通、带阻滤波器;再用脉冲响应不变法或双线性变换法从模拟滤波器转换为数字滤波器。
对单极点的N 阶H(S)用部分展开式:)-(k 1)(S S A S H KNK ∑==冲激响应不变法取H(S)的单阶极点Sk 的指数函数sF KS e作为H (Z )的极点)-(111)(-=∑=z eA z H sF ks KNK双线性变换法是用⎥⎦⎤⎢⎣⎡+-=--11112Z Z T S 代换H (S )中的S 得到H(Z),双线性变换法可完全消除频率混叠失真但存在非线性频率失真,而冲激响应不变法存在混叠失真。
在不同的设计阶段MATLAB 的信号处理工具箱都给出了相应的滤波器设计函数,这些函数代表了不同类型的逼近函数的滤波器,常用的有巴特沃斯滤指标如下:通带截止频率:WP =1000HZ, 通带最大衰减:RP=3dB 阻带截止频率:Ws =2000HZ, 阻带最小衰减:Rs=40 dB 参考程序butter1.m2. 用冲激响应不变法和双线性变换法将一模拟低通滤波器转换为数字低通滤波器并图释H(S)和H(Z),采样频率Fs =1000Hz 频率特性应包括幅频、相频特性2.理论计算模拟低通原型滤波器的阶数和极点分布,说明实验中所用的冲激响应不变法和双线性变换法的原理及其编程根据3.总结实验体会及实验中存在的问题 1.双线性变换法和冲激响应不变法比较有何优点? 巴特沃斯滤波器为例介绍设计函数的功能和用法,其它设计函数的用法类似。
(1)求最小阶数N 的函数buttord调用格式1:[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs, 's') ✧ 功能:求出巴特沃斯模拟滤波器的最小阶数N 和频率参数Wn ✧ 说明:Wp, Ws,为通带截止频率和阻带截止频率如式所示;sstop s f f W π2=,为时域采样频率其中s spass p f f f W ,2π=Rp, Rs 为通带最大衰减 Apass(dB)和阻带最小衰减Astop(dB)如式)(lg 20)d ()()(lg20220p passpassf j f j j eH B eH e H A ππ-==)(lg 20)d ()()(lg20220s stopstopf j f j j eH B eH e H A ππ-== 's'对应模拟滤波器。
巴特沃斯低通滤波器归一化参数表
巴特沃斯低通滤波器归一化参数表(原创实用版)目录1.巴特沃斯低通滤波器的概念和特点2.巴特沃斯低通滤波器的归一化参数表3.巴特沃斯低通滤波器的应用场景4.如何使用巴特沃斯低通滤波器5.总结正文一、巴特沃斯低通滤波器的概念和特点巴特沃斯低通滤波器是一种电子滤波器,它的主要特点是通频带内的频率响应曲线尽可能平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。
这种滤波器可以有效地去除信号中的高频噪声,保留信号的低频成分,适用于许多信号处理领域。
二、巴特沃斯低通滤波器的归一化参数表巴特沃斯低通滤波器的归一化参数表是指在单位圆上,滤波器的截止频率和通带衰减的取值范围。
在这个表中,截止频率通常用角度表示,通带衰减则用分贝表示。
巴特沃斯低通滤波器的归一化参数表可以方便地用于设计和分析滤波器,因为它可以直观地反映滤波器的性能。
三、巴特沃斯低通滤波器的应用场景巴特沃斯低通滤波器广泛应用于各种信号处理领域,例如音频处理、图像处理、通信系统等。
例如,在音频处理中,巴特沃斯低通滤波器可以用来去除音频信号中的高频噪声,提高音质的清晰度;在图像处理中,巴特沃斯低通滤波器可以用来降低图像的频谱噪声,提高图像的质量;在通信系统中,巴特沃斯低通滤波器可以用来抑制信号中的干扰,提高通信的稳定性。
四、如何使用巴特沃斯低通滤波器要使用巴特沃斯低通滤波器,首先需要根据信号的特性和应用场景选择合适的滤波器参数,然后根据这些参数设计出巴特沃斯低通滤波器。
在实际应用中,通常需要使用巴特沃斯低通滤波器计算器来计算滤波器的参数,然后使用这些参数来设计和实现滤波器。
使用巴特沃斯低通滤波器计算器可以方便地得到滤波器的参数,从而简化滤波器的设计和实现过程。
五、总结巴特沃斯低通滤波器是一种性能优良的电子滤波器,它的特点是通频带内的频率响应曲线尽可能平坦,没有起伏,而在阻频带则逐渐下降为零。
巴特沃斯阶跃阻抗低通滤波器设计
巴特沃斯阶跃阻抗低通滤波器设计引言巴特沃斯阶跃阻抗低通滤波器是一种常用于信号处理和电子电路设计中的滤波器类型。
它的设计原理是通过调整滤波器的阶数和截止频率,来实现对输入信号的频率成分进行筛选和衰减。
本文将详细介绍巴特沃斯阶跃阻抗低通滤波器的设计方法及其在实际应用中的一些注意事项。
巴特沃斯阶跃阻抗低通滤波器概述巴特沃斯阶跃阻抗低通滤波器是一种I IR(无无限冲激响应)滤波器,具有平坦的通带、陡峭的衰减特性以及相对较低的群延迟。
它广泛应用于音频处理、通信系统等领域。
巴特沃斯滤波器的设计步骤1.确定滤波器的阶数(n):阶数决定了滤波器的衰减程度和复杂度,一般取偶数值。
2.确定滤波器的截止频率(f c):截止频率即信号通过滤波器时频率衰减到原来的1/√2,是决定滤波器频率特性的关键参数。
3.计算滤波器的极点位置:根据巴特沃斯滤波器的特性方程,计算极点位置。
4.标准化滤波器:对计算得到的极点位置进行标准化处理,使得滤波器的截止频率为1。
巴特沃斯滤波器设计实例以下是一个以设计一个4阶巴特沃斯阶跃阻抗低通滤波器为例的设计过程。
步骤1:确定滤波器的阶数我们选择设计一个4阶的巴特沃斯阶跃阻抗低通滤波器。
步骤2:确定滤波器的截止频率假设我们需要将信号的截止频率设置在1k H z。
步骤3:计算滤波器的极点位置根据巴特沃斯滤波器的特性方程,我们可以计算出滤波器的极点位置。
对于一个4阶的巴特沃斯低通滤波器,其极点位置可以通过下式计算得到:p_k=-s in h(π*fc)*s in(π*(2k-1)/(2n)),k=1,2,...,n式中,f c是截止频率,n是滤波器阶数。
步骤4:标准化滤波器标准化滤波器是将计算得到的极点位置通过变换使得滤波器的截止频率为1。
标准化后的滤波器的特性方程为:H(s)=1/((s+p1)(s+p2)...(s+pn))巴特沃斯滤波器的应用注意事项-在实际设计中,应根据需要调整滤波器的阶数和截止频率,以满足对信号的频率特性要求。
巴特沃斯滤波器参数计算 概述及解释说明
巴特沃斯滤波器参数计算概述及解释说明1. 引言1.1 概述巴特沃斯滤波器是一种常用于信号处理领域的滤波器,通过对信号进行频率域的调整来实现滤波效果。
巴特沃斯滤波器具有理想的平坦通带和陡峭衰减特性,因此在许多应用中得到广泛使用。
1.2 文章结构本文将对巴特沃斯滤波器参数计算进行详细介绍和解释说明。
文章主要分为三个部分:引言、巴特沃斯滤波器参数计算和结论。
其中,巴特沃斯滤波器参数计算部分包含了巴特沃斯滤波器的简介、参数计算方法以及应用举例。
1.3 目的本文旨在提供一个全面而清晰的指南,帮助读者理解和应用巴特沃斯滤波器参数计算的方法。
通过学习本文,读者将能够掌握如何选择适当的参数并正确地计算巴特沃斯滤波器所需的各项参数。
同时,本文还将通过实际案例展示巴特沃斯滤波器在信号处理中的应用,帮助读者更好地理解和运用所学知识。
以上是关于文章“1. 引言”部分的详细内容。
2. 巴特沃斯滤波器参数计算2.1 巴特沃斯滤波器简介巴特沃斯滤波器是一种常用的模拟滤波器,它可以用于信号处理和电路设计中。
它由英国工程师塞奇威克·巴特沃斯于1930年提出,被广泛地应用于各种领域。
巴特沃斯滤波器属于对数频率响应的无限脉冲响应(IIR)滤波器。
它有一个重要的性质,即在通带内具有归一化的最平坦幅度特性。
也就是说,在通带内,巴特沃斯滤波器具有相等的增益增益系数,并且在截止频率附近以最快速度衰减。
2.2 参数计算方法为了实现所需的滤波效果,我们需要正确计算巴特沃斯滤波器的参数。
主要参数包括截止频率、阶数和阻带衰减。
以下是参数计算的基本步骤:1. 确定所需的通带范围和阻带范围。
通带范围是信号中允许通过的频率范围,通常为滤波器响应大于或等于-3 dB 的范围。
阻带范围是信号中被抑制的频率范围。
2. 确定截止频率。
截止频率是巴特沃斯滤波器从通带到阻带的过渡点。
可以根据实际应用需求选择合适的截止频率。
3. 确定阶数。
阶数指滤波器中极点(零点和极点对决定了滤波器的频率响应)的数量。
巴特沃斯低通滤波器分析
巴特沃斯低通滤波器分析LT摘要:本篇论文叙述了数字滤波器的基本原理、IIR数字滤波器的设计方法和IIR数字高通滤波器设计在MATLAB上的实现与IIR数字滤波器在实际中的应用。
无限脉冲响应(IIR)数字滤波器是冲激响应函数h(t)包含无限个抽样值的滤波器,一般是按照预定的模拟滤波器的逼近函数来转换成相应的数字滤波器,现有的逼近函数如巴特沃斯、切比雪夫。
设计IIR数字滤波器在工程上常用的有两种:脉冲响应不变法、双线性变换法。
其设计过程都是由模拟滤波器的系统函数H(s)去变换出相应的数字滤波器的系统函数H(z)。
关键词:数字滤波器 MATLAB 巴特沃斯切比雪夫双线性变换法Abstract:Digital filter is described in this paper basic principles, IIR digital filter design method of IIR digital high-pass filter design in MATLAB realization of IIR digital filter and application in practice. Infinite Impulse response (IIR) digital filter is the impulse response h (t) includes unlimited sampling filter, usually according to the analog filter approximating function to convert into digital filters, such as Butterworth, Chebyshev approximation functions. Design of IIR digital filters there are two commonly used in engineering: impulse response method, the bilinear transformation method. The design process are by the analog filter system function h (s) to transform the digital filter of the system function h (z).Key words: Digital filter MATLAB Butterworth ChebyshevBilinear transformation methed目录目录 (7)1.前言................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1.题目........................................................ .................................. .22.要求........................................................ (2)3.设计原理........................................................ . (2)3.1 数字滤波器基本概念......................................................... (2)3.2 数字滤波器工作原理......................................................... (2)3.3 巴特沃斯滤波器设计原理 (2)3.4脉冲响应不法......................................................... .. (4)3.5实验所用MATLAB函数说明 (5)4.设计思路........................................................ .. (6)5、实验内容........................................................ . (6)5.1实验程序......................................................... . (6)5.2实验结果分析......................................................... . (10)6.心得体会........................................................ . (10)7.参考文献........................................................ . (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。
并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。
用此信号验证滤波器设计的正确性。
三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。
正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。
如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。
2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。
如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z 域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。
同样在频率域内,输入和输出存在下列关系Y(jw)=X(jw)H(jw)式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。
w 为数字角频率,单位rad 。
通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。
X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。
一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。
3、巴特沃斯滤波器设计原理(1)基本性质巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。
巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。
巴特沃思滤波器的低通模平方函数表示1()ΩΩ+=Ωc N /22a 11)(j H N=1,2,…… (2-6)下面归纳了巴特沃斯滤波器的主要特征a 对所有的N ,()1a j H 20=Ω=Ω。
b 对所有的N ,()707.0a j 2c =ΩΩH =Ω即()dB 3a lg 20j H c =Ω=ΩΩ c ()Ωj H a 2是Ω的单调下降函数。
d ()Ωj H a 2随着阶次N 的增大而更接近于理想低通滤波器。
如下图2所示,可以看出滤波器的幅频特性随着滤波器阶次N 的增加而变得越来越好,在截止频率Ωc 处的函数值始终为1/2的情况下,通带内有更多的频带区的值接近于1;在阻带内更迅速的趋近于零。
图2 巴特沃思低通滤波平方幅频特性函数(2)系统函数设巴特沃斯的系统函数为H a (s ),则:(3)设计过程巴特沃思低通滤波技术指标关系式为a p >-20log|H a (j Ω)|,Ω<ΩPa s <-20log|H a (j Ω)|,Ω>Ωs其中:Ωp 为通带边界频率,Ωs 为阻带边界频率。
代入式经过化简整理可得:取满足上式的最小整数N作为滤波器的阶数。
再将N代入可得:或查表求得归一化传输函数H(s),令s/Ωc代替归一化原型滤波器系统函数中的s,即得到实际滤波器传输函数。
4、脉冲响应不变法所谓脉冲响应不变法就是数字滤波器的脉冲响应序列h(n)等于模拟滤波器的响应ha(t)的采样值,即h(n)=ha(t)|t=nT=ha(nT)式中,T为采样周期。
因此数字滤波器的系统函数H(Z)可由下式求得H(z)=Z[h(n)]=Z[ha(nT)]Z[-]表示[-]的内容进行变换,变换的内容请参考相应的数字信号处理材料。
如果已经获得了满足性能指标的模拟滤波器的传递函数Ha(s) ,求与之对应的数字滤波器的传递函数H(z)的方法是:(1)、求模拟滤波器的单位脉冲响应ha(t)。
式中,L[Ha(s)]表示对Ha(s)的Laplace.逆变换。
Laplace变换内容请参考高等数学的积分变换或信号处理教材。
(2)、求模拟滤波器单位冲激响应ha(t)的采样值,即数字滤波器冲激响应序列h(n)。
(3)、对数字滤波器的冲激h(n)响应进行z变换,得到传递函数H(z)。
由上述方法推论出更直接地由模拟滤波器系统函数Ha(s)求出数字滤波器系统函数H(z)的步骤是:(1)利用部分分式展开将模拟滤波器的传递函数H(z)展开成Ha(s)= Rk\(S-Pk)在MATLAB中这步可通过residue函数实现若调用residue函数的形式为[b,a]=residue(R,P,K)形式。
若为[R,P,K]=residue(a,b)则为上面调用形式的反过程。
(2)将模拟极点Pk变换为数字极点e^pkT即得到数字系统的传递函数H(z)= Rk\(1-e^pkT*z*(-1))式中T为采样间隔。
(3)将上式转换为传递函数形式,可采用[R,P,K]=residue(b,a)。
对于上面的步骤,中已经提供了冲激响应不变法设计数字滤波器的函数,调用格式为[bz,az]=impinvar(b,a[ ,Fs],Fp)式中,b,a为模拟滤波器分子和分母多项式系数向量;Fs为采样频率(所滤波数据),单位Hz,缺省时为1Hz,为预畸变频率(prewarped frequency),是一个“匹配”频率,在该频率上,频率响应在变换前后和模拟频率可精确匹配。
一般设计中不考虑。
bz,az分别为数字滤波器分子和分母多项式系数向量。
5、实验所用MATLAB函数说数。
(1)[N,wc]=buttord(wp,ws,RP,As,’s’)该格式用于计算巴特沃斯模拟滤波器的阶数N和3db截止频率wc。
Wp、ws 和wc是实际模拟角频率(rad\s)。
Rp和As为通带最大衰减和最小衰减。
(2)[Z,P,k]=buttap(N)该格式用于计算N阶巴特沃斯归一化模拟低通原型滤波器系统函数的零、极点和增益因子,返回长度为N的列向量Z和P,分别给出N个零点和极点的位置,K表示滤波器增益。
(3)Y=filter(b,a,x)式中b表示系统传递函数的分子多项式的系数矩阵;a表示系统传递函数的分母多项式的系数矩阵;x表示输入序列;filter表示输出序列。
IIR函数实现的直接形式。
(4) [b,a]=butter(N,wc,‘ftype’)计算N阶巴特沃斯数字滤波器系统函数分子、分母多项式的系数向量b、a。
说明:调用参数N和wc分别为巴特沃斯数字滤波器的阶数和3dB截止频率的归一化值,一般是调用buttord格式(1)计算N和wc。
系数b、a是按照z-1的升幂排列。
(5) [B,A]=butter(N,Ωc,‘ftype’,‘s’)计算巴特沃斯模拟滤波器系统函数的分子、分母多项式系数向量。
说明:调用参数N和Ωc分别为巴特沃斯模拟滤波器的阶数和3dB截止频率(实际角频率),可调用buttord(2)格式计算N和Ωc。
系数B、A按s的正降幂排列。
tfype为滤波器的类型:◇ftype=high时,高通;Ωc只有1个值。
◇ftype=stop时,带阻;Ωc=[Ωcl,Ωcu],分别为带阻滤波器的通带3dB 下截止频率和上截止频率。
◇ ftype缺省时:若Ωc只有1个值,则默认为低通;若Ωc有2个值,则默认为带通;其通带频率区间Ωcl<Ω <Ωcu。
(6)[H,w]=freqz(b,a,N)b和a分别为离散系统的系统函数分子、分母多项式的系数向量,返回量H 则包含了离散系统频响在 0~pi范围内N个频率等分点的值(其中N为正整数),w则包含了范围内N个频率等分点。
调用默认的N时,其值是512。
可以先调用freqz()函数计算系统的频率响应,然后利用abs()和angle()函数及plot()函数,绘制出系统的频响曲线。
(7)lp2lp函数 [bt,at]=lp2lp(b,a,w0)该函数用于实现由低通模拟原型滤波器至低通滤波器的频率变换,可以用传递函数和状态空间进行转换,但无论哪种形式,其输入必须是模拟滤波器原型。