单 纯 形 法

合集下载

运筹学单纯形法

运筹学单纯形法

运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。

它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。

单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。

在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。

单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。

传统的单纯性法分为有界单纯性和无界单纯性两种情形。

无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。

有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。

单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。

使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。

单纯形法新版

单纯形法新版

1 2
2 1
1 0
10,A 中的2阶可逆子阵有
1
B 1
0
10,其相应的基向量为P3
,
P 4
,
基变量为x
3
,
x
,X
4
B1
x 3 ; x 4
1
B 2
2
2 1
,
其相应的基向量为P 1
,
P 2
,
基变量为x
1
,
x
2
,
X
B2
x 1 。 x 2
问题:本例旳A中一共有几种基? —— 6个。
一般地,m×n 阶矩阵A中基旳个数最多有多少个? — —C m 个。 n
p 1
7
(0 0
0) 4
7;
3
360 90
3
4
[ ] 中表达进基列与出基行旳交叉元,下一张表将实 施以它为主元旳初等行变换(称高斯消去)。措施是: 先将主元消成1,再用此1将其所在列旳其他元消成0。
C X B b1
B
B
0
x 3
360
0
x 4
200
0
x 5
300
0
x 3
240
0
x 4
50
(1)先将模型化为原则型
Maxz 7 x1 12x2
9x 1 4x 2 x 3
5x 2 10 x
2
x 4
200
x 300 5
x
1, x
2, x , x , x
3
4
5
0
(2) 拟定初始基可行解、检验
1
B 0
1
,
B
b1

第5章-单纯形法

第5章-单纯形法
所有变量的解都是大于等于零,才能断定这个解是基本可行解,这个基是可行
基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个
基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中
要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位 矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,
xm a x m ,m 1 m 1 a m ,n xn bm ,
x j 0. j 1, 2, , n
以下用 xii1,2, ,m表示基变量,用 x jj m 1 ,m 2 , ,n
表示非基变量。
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi ai,m1xm1ai,m2xm2 ai,nxn
i1
a1j
,cma2j
amj
c1,c2, ,cmpj
§2 单纯形法的表格形式
上面假设x1,x2,…xm是基变量,即第i行约束方程的基变量正好是xi,而 经过迭代后,基将发生变化,计算zj的式子也会发生变化。如果迭代后的 第i行约束方程中的基变量为xBi,与xBi相应的目标函数系数为cBi,系数列
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。

第二章 单纯形法

第二章 单纯形法

此时基变量为: x3 , x2 , x1
非基变量为:x4 , x5 得到另一基本可行解为:
X 2 4,6,4,0,0
T
z1 42
迭代结果
2 1 x3 x4 x5 4 3 3 1 x4 6 x2 2 2 1 x4 x5 4 x1 3 3
最小比值规则
当确定进基变量后,以进基变量的系数列向量 中的正数为分母,以相应的方程右端常数为分子求 最小比值,所得到的最小比值的分母就是主元。主 元所在的方程中的基变量就是离基变量。即:
bi bl min ik 0 aik alk
令新的非基变量 x3 x4 0 ,得到新的 基本可行解: T
12 36 12 x2 m in , 2 4 2
2是主元,其所在方程为主方程,且
x4 为离基变量。
此时基变量为: x3 , x2 , x5
非基变量为: x1 , x4 得到另一基本可行解为:
X1 0,6,8,0,12
T
z1 30
迭代结果
8 x1 x3 1 6 x2 x4 2 3 x 2 x x 12 1 4 5
单纯形法的3种形式——
方程组形式(代数形式) 表格形式 矩阵形式
单纯形法的基本思路——
基于LP问题的标准形,先设法找到某个基本 可行解(称为初始基本可行解); 开始实施从这个基本可行解向另一个基本可 行解的转换,要求这种转换不仅容易实现, 而且能改善(至少保持)目标函数值; 继续寻找更优的基本可行解,进一步改进目 标函数值。当某一个基本可行解不能再改善 时,该解就是最优解。(或者是出现无可行 解、无最优解、无穷多最优解的情况)

第5章_单纯形法

第5章_单纯形法

初始可行解:第一个找到的可行域的顶点。
三、单纯形法试算程序框图(见图5—1)
开始
转变为标准型[增加额外 变量(松弛、剩余、人工 变量)]
建立初始单纯形表
最优


否 找出“换入”“换出”变量
修正单纯形表
图5—1
5.2 线性规划模型的变换
一、线性规划模型标准型的特点 ⑴目标函数是求极大值或极小值; ⑵所有的变量都是非负的; ⑶除变量的非负约束外,其余的约束条件都
ABCD 含量(单位/千克)
最低需求量 (单位)

5 2 4 2 60
蛋白质
3 2 1 4 40
脂肪
3 1 2 5 35
单价(元/千克) 1.5 0.7 0.9 1.2
例3是例2的对偶问题,例3与例2互为对偶线性规 划原规划与对偶规划具有对称性,如图所示:
食品
单一营
养成分单价
AB C D
单一营养
(x1) (x2) (x3) (x4) 成分需求量
m
c a Z j
i ij
i 1
解b
b 1
b 2
…… b
n
目标函 数
例1
求max Z=7x1+10x2 满足 7x1+7x2≤49 10x1+5x2≤50 x1,x2≥0
用单纯形法求解。
例2
第2章例1中我们得线性规划模型为: 目标函数:max Z = 50x1+100x2
满足 x1 + x2 ≤300 2x1 + x2 ≤400 x2 ≤250 x1,x2 ≥0
…… am1x1 + am2x2 + ……+ amnxn ≤(≥,=) bm x1,x2 …… xn≥ 0

运筹学 第二章 单纯形法

运筹学 第二章 单纯形法

按最小非负比值规则:
5 0 1 1/ 3 1 1 2 1
x2 x3
5 0 1 1/ 3 0 2/3 0 1/ 3 1
0 15 0 1/ 6 0 4 0 1/ 6 1 1 0 1/ 3 0 8 0
至此,检验行已没有负数, 当前解即为最优解。
0
此时对应的LP问题为:
min S 0 x1 0 x2 x3 x4 0 x5 1
x4 1 x1 2 x2 2 x3 s.t 0 x1 3x2 3x3 x4 x5 5 x 0 (i 1,2,3,4,5) i
i 1, ,5
可行基{ x1 , x 2 , x 3 }
令非基变量 x4 , 最优值:
x 5为0,得到最优解
17 max Z 2
15
7 3 15 X 3 ( , , ,0,0)T 2 2 2
此基本可行解对应可行域的顶点(7 / 2, 3 / 2) 其结果与图解法一致。 总结:①在迭代过程中要保持常数列向量非负,这能保证基 可行解的非负性。最小比值能做到这一点。 ②主元素不能为0。因为行的初等变换不能把0变成1。
此时,
x4
已经从24降到了0,达到了非基的取值,变
成非基变量。从而得到新的可行基{x1 , x3 , x5 } 。 由此得到一个新的基本可行解: X 1 ( 4,0,15,0,1)T
8
此基本可行解对应可行域的顶点(4,0)
目标函数值: ( X1 ) 2 4 8 Z ( X 0 ) 0. Z
T
X 0 (0,0,15,24,5)
(对应可行域的 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0

单纯形法原理及例题

单纯形法原理及例题

单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。

用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。

例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。

由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。

第三讲 单纯形法

第三讲 单纯形法

最优性检验和解的判别
将X (0)
( x10 ,
x20 ,,
x
0 m
,0,
,0)T

X (1) ( x10 -a1 j ,, xm0 amj ,0,,0)T
代入目标函数
m
z(0) ci xi0 i 1
m
z(1) ci ( xi0 aij ) c j i 1
m
m
ci
x
0 i
(c j
单纯形法引例4这样如此下去可得要有一个变为非基变量此时目标函数变为由于目标函数中的变量系数都小于等于0所以42004为最优解最优值z14标本无需切片处理而代之在标本表面涂上一层铂金当电子撞击标本表面各点时便产生次及电子呈现立体状态可观察标本的形状及表面的特征
第1章 线性规划与单纯形法
第1节 线性规划问题及其数学模型 第2节 线性规划问题的几何意义 第3节 单纯形法 第4节 单纯形法的计算步骤 第5节 单纯形法的进一步讨论 第6节 应用举例
1 0 1 0 -1/2
0 0 -4 1 2
0 1 0 0 1/4
0 0 -2
0 1/4
1 0 0 1/4 0 0 0 -2 1/2 1 0 1 1/2 -1/8 0
0 0 -3/2 -1/8 0
j
--8/2
3/(1/4)
单纯形法迭代原理:确定初始可行解
n
目 标 函 数 :max z c j x j j 1
令 这m个 不 等 式 至 少 有 一 个 等号 成 立 。
可 令
min i
xi0 aij
aij
0
xl0 alj
故X (1)是一个可行解,其分量xi1 xi0
aij

系统工程导论_09单纯形法

系统工程导论_09单纯形法

(1)
第三、第一次迭代,得到初始基本可行解后,就进入迭代过程,但在开始迭代前应建立 一个判断标准, 以便决定每次迭代后的基本可行解是否是最优解, 从而决定迭代过程是停止 还是继续。选取临近顶点,如果能使目标函数值增大,则为新的基础可行解。 1)选择引入变量:选大原则; 考虑目标函数 f x 13x1 11x 2 ,由于 x1 的系数 13 比 x 2 的系数 11 大,故选 x1 为 引入变量; 2)选择退出变量:最小比值规则(或 规则) ;
x3 1500 4 x1 41500 / 4 x1 4375 x1 由于 x 2 0 ,根据(1)有: x 4 1575 5 x1 51575 / 5 x1 5315 x1 ,取 x 420 x 1420 / 1 x 1420 x 1 1 1 5
x1 2 x 2 x3 10 s.t. 2 x1 3 x 2 3 x3 10 (Ⅰ) x 0, x 0, x 0 2 3 1
线性规划问题(Ⅰ)和(Ⅱ)之间有如下关系: ① 一个问题的目标函数系数是另一个问题约束条件的右端常数; ② 一个问题的第 i 个约束条件的各系数是另一个问题第 i 个变量的约束条件系数(或, 一个问题的约束条件的系数矩阵是另一个问题的约束条件系数矩阵的转置) ; ③ 一个问题是求目标函数的极大值,约束条件全都是“≤”形式,而另一个问题是求 目标函数的极小值,约束条件全都是“≥”形式; ④ 两个问题的变量均非负。 一般情况:
3 x1 6 x2 24 s.t. 2 x1 x2 10 x 0, x 0 2 1
解:最优解为 x1 4 , x2 2 ,最优值为 f x 14 。

单纯形法解的四种情况

单纯形法解的四种情况

单纯形法解的四种情况单纯形法是运筹学中求解线性规划问题的一种常用方法。

它的基本思想是利用线性规划问题的几何性质,通过不断优化目标函数值,使得问题的最优解逐渐逼近。

在运用单纯形法求解线性规划问题时,存在四种不同的情况,下面一一进行详细介绍。

一、唯一最优解当线性规划问题满足严格的可行性条件和凸性条件时,求解出的最优解就是唯一的。

在这种情况下,单纯形法通过一系列计算步骤,得出的就是该问题的最优解。

此时,算法的收敛速度也是最快的,因为每次迭代都会使得目标函数值有所改善,确定下一次迭代的方向也较为明确。

二、无解当线性规划问题没有可行解时,单纯形法会失败。

这通常是因为约束条件之间存在冲突,导致问题无法求解。

例如,如果一个约束条件要求变量的值大于等于某个数,而另一个约束条件要求该变量的值小于该数,那么就会导致问题无法求解。

这种情况下,单纯形法会一直进行迭代,直到达到指定的迭代次数或者发现无法得到更好的解为止。

三、无界当线性规划问题的目标函数可以无限地取得更小的值时,就被称为无界问题。

这种情况通常是由于约束条件中某个变量的值可以无限大或者无限小,导致目标函数的值可以无限地下降。

在这种情况下,单纯形法会一直迭代下去,但却无法得到最优解。

此时,需要对约束条件进行适当的调整,添加额外的限制条件以消除无界情况。

四、多解当线性规划问题可以有多个最优解时,就称为多解问题。

例如,当目标函数有多个极小值点,每个极小值点都是最优解。

在这种情况下,单纯形法只能找到其中一个最优解,而无法确定其他最优解的位置。

在实际应用中,多解问题较为常见,在解决此类问题时,需要进一步确定目标函数的相关参数,以便正确地找到所有的最优解。

综上所述,单纯形法在求解线性规划问题时,会出现四种不同的情况,即唯一最优解、无解、无界和多解。

对于每种不同的情况,需要采取不同的策略来进行处理。

因此,在运用单纯形法求解线性规划问题时,需要对这些情况进行充分的考虑,以便正确地解决问题。

运筹学单纯形法

运筹学单纯形法

X2
Q4 3 2 1
0
x1+2x2 =8 4x1=16
Q3
4x2=12
Q2
Q1
X1
1
2
3
4
解: 首先:将该问题化成标准形
max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3 8
s.t
.
4 4
x1 x2

x4 x5
16 12
xj 0, j 1, 2 ,, 5
基向量、非基向量、基变量、非基变量: 称pj(j=1,2,…,m)为基向量,其余称为非基向量; 与基向量pj(j=1,2,…,m)对应的xj称为基变量,其全体写成 XB=(x1,x2,…,xm)T;否则称为非基变量,其全体经常写 成XN。
基解:对给定基B,设XB是对应于这个基的基变量 XB=(x1,x2,…,xm)T; 令非基变量xm+1=xm+2=…=xn=0, 由(2)式得出的解X=(x1,x2,…,xm,0,…,0)T 称为基解。
(xi0 aij )Pi Pj b
(5)
i 1
由(5)式可以找到满足约束方程的另一个点X(1),其中是点X(1)的第j 个坐标值
X (1) x10 - a1j xm0 - amj 0 0
j
要使X(1)是一个基本可行解,则要求 xi0 - aij 0
§3 单纯形法(Simplex Method)
线性规划问题的最优解,可以从基可行解中找到 图解法有局限性; 枚举法计算量大;
§3.1 单纯形法的引入
例子:求解线性规划问题
max z 2x1 3x2
x1 2x2 8

单纯形法求解原理过程

单纯形法求解原理过程

单纯形法求解原理过程第一篇:单纯形法求解原理过程单纯形法需要解决的问题:如何确定初始基本可行解;如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降;如何判断一个基本可行解是否为最优解。

min f(X)=-60x1-120x2 s.t.9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 xi≥0(i=1,2,3,4,5)(1)初始基本可行解的求法。

当用添加松弛变量的方法把不等式约束换成等式约束时,我们往往会发现这些松弛变量就可以作为初始基本可行解中的一部分基本变量。

例如:x1-x2+x3≤5 x1+2x2+x3≤10xi≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10xi≥0(i=1,2,3,4,5)令x1=x2=x3=0,则可立即得到一组基本可行解x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵⎡94100⎤⎥A=[P1,P2,P3,P4,P5]=⎢310010⎢⎥⎢⎣45001⎥⎦中可以看出其中有个标准基,即⎡100⎤⎥B=⎢010⎢⎥⎢⎣001⎥⎦与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x20 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 TX=[0,0,360,300,200]判别初始基本可行解是否是最优解。

此时可将上式代入到目标函数中,得: F(X)=-60x1-120x20对应的函数值为f(X)=0。

0由于上式中x1,x2系数为负,因而f(X)=0不是最小值。

因此所得的解不是最优解。

011(2)从初始基本可行解X迭代出另一个基本可行解X,并判断X 是否为最优解。

从一个基本可行解迭代出另一个基本可行解可分为两步进行:第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量;第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。

单纯形法基本原理及实例演示

单纯形法基本原理及实例演示
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。
③计算各非基变量xj的检验数j=Cj-CBPj ′,若所有j≤0,则问题已得
到最优解,停止计算,否则转入下步。
④在大于0的检验数中,若某个k所对应的系数列向量Pk≤0,则此问
题是无界解,停止计算,否则转入下步。
⑤根据max{j|j>0}=k原则,确定xk为换入变量(进基变量),再按 规则计算:=min{bi/aik| aik>0}=bl/ aik 确定xBl为换出变量。建 立新的单纯形表,此时基变量中xk取代了xBl的位置。
⑥以aik为主元素进行迭代,把xk所对应的列向量变为单位列向量,即 aik变为1,同列中其它元素为0,转第③ 步。
线性规划的例子
max z 4x1 3x2 2x1 2x2 1600 5x1 2.5x2 2500 x1 400 x1, x2 0
线性规划--标准化
● 引入变量:s1,s2,s3
检验系数区
Z=CBB-1b
初始单纯形表
迭代 基变 次数 量
CB
x1
x2
s1
s2
s3
50 100 0 0 0
比值
b bi ai 2
1 Zj=CBNj j cj zj
Z=CBB-1b
初始单纯形表

迭代 次数

CB
x1
X2
s1
s2 S3

50 100 0 0 0
比值
b bi ai 2
1 1 1 0 0 300
C向量
max z 50 100 0 0
CB
CN
x1
x2
0•

1 1 1
1 0 0
0 1 0

运筹学单纯形法

运筹学单纯形法

问题:本例的A中一共有几个基? —— 6个。
一般地,m×n 阶矩阵A中基的个数最多有多少个?
——Cm个。 n
(3)基本解与基本可行解
当A中的基B取定后,不妨B设表示中的前m列,则可记
A=(B N),相应地 X= (XB XN)T
约束中的 AX=B
可表示为
B
N
XB XN

b,
即 BB X NN X b
①将目标函数转化为求极大型,即得
②对第一个约束添加松弛变量x4≥0,得 ③对第二个约束减去剩余变量x5≥0,得 ④对自由变量x3,令
原规划化为标准型:
练习3: minZ=x1+2x2-3x3
x1+x2+x3 ≤9 -x1-2x2+x3 ≥2 3x1+x2-3x3=5 x1≤0,x2≥0, x3无约束
解:本例中A, 12
2 1
1 0
10,A中的2阶可逆子阵有
1
B 1
0
10,其相应的基向P量3 , P为4 ,基变量为 x 3 ,
x
,X
4
B1
x3 ; x4
1
B 2
2
21,
其相应的基向量P为 , P
1
2
,
基变量为x , 1
x
2
,
X
B2
x1 。 x2
k
j
j
k
令 l m i i ni
(B 1b)

i
(B 1P)
ki
(B 1P) ki
0 对应 P l出 的 基
称作检验比。 i
以例1为例,可按上述单纯形法的步骤求出其最 优解,其大致的过程如下。

03第三章 单纯形法

03第三章 单纯形法

第三章 单纯形法在线性规划的计算求解中,应用最多且最著名的就是单纯形法。

这种方法是美国运筹学家G .B.Dantzig 丹捷格在1947年提出的。

后来经过人们多次改进,形成了许多变种。

实践证明单纯形法是一种使用方便、行之有效的算法。

§3.1 单纯形法的原理基本可行解的存在定理已经表明,若线性规划有最优解,则一定存在最优基本可行解,因此求线性规划问题就归结为寻找最优基本可行解。

单纯形法的基本思想就是从一个基本可行解出发,检查该基本可行解是否为最优解;若不是,则再设法求另一个未检查过的基本可行解,如此继续,直到查询到最优解为止。

按照以上的思路,需要解决三个难题: 1、 如何求出第一个基本可行解?2、 如何判断这个基本可行解就是最优解?3、 若不是最优解,如何从一个基本可行解过渡到另一个未检查过的基本可行解? 第一个问题的彻底解决尚需留待今后,但是我们知道,求基本可行解就是解线性方程组=A x B ,由于且()r m =A ,故可以解出m 个变量,称之为基本变量,剩下的n-m 个变量称之为自由变量。

于是,最简单的方法就是令所有的自由变量的值为零相应得到的解就是基本解。

例3.1 考虑线性规划1234134123m in 324..246350,1,2,3,4j z x x x x s t x x x x x x x j =-++-+=-++=≥= (3.1)把约束方程写成表格的形式,如表3-1:20 -4 1 6 -1 1 3 0 5从上述表格的左端可以看出,由第二、四列构成一个单位子矩阵,或曰子块,即对角元为1,其余为0,因此把2x 和4x 解出,即把2x 和4x 作为基本变量,余下1x 和3x 作为自由变量。

41321362453x x x x x x =-+=+- (3.2)令所有的自由变量130x x ==,而426,5x x ==,从而得到一个基本解(0,5,0,6)T 。

若需要判断该基本解是否基本可行解?只需看左端有单位子矩阵时,右列的元素是否都是非负,若是,则为基本可行解。

单纯形法图解法及原理

单纯形法图解法及原理
X= X(1) +(1- ) X(2) (0< <1)
则称X为 D的顶点。
31
定理1:LP问题的可行解域一定是凸集。
引理1:线性规划问题的可行解X为基可 行解的充分必要条件是:X的非 零分量(>=0)所对应的系数矩阵
A的列向量是线性无关。?
32
定理2:线性规划问题的基可行解对应线性 规划问题可行域(凸集)的顶点。
10 20
30 40
x1
11
例2 解线性规划
max z x1 x2
2x1 x2 2
s.t
.
x1 x1

2
x2 x2

2 5
x1 0, x2 0
有唯一最优解
2x1 x2 2
x2
z 3 x 1,4T
z 1.5
A2
z0
A1
40 2x1+x2 50
30
20 可行域
10
目标函数是以Z作为 参数的一组平行线
x2 = Z/30-(5/3)x1
4x1+3x2 120
10 20
30 40
x1 9
x2
50
当Z值不断增加时,该直线
40 2x1+x2 50 x2 = Z/30-(5/3)x1
沿着其法线方向向右上方移
30
动。
令X4=X5=0 X=(12, 12, -6, 0, 0)T
基本解, 但不可行
Z=40X1 +50X2
=40[12-(1/3 X4 -1/3 X5)] +50[12- 1/2 X5 ]
= 1080+(- 40/3 X4 -35/3 X5 )

单纯形法(表格形式)

单纯形法(表格形式)

x4 24 x5 5
x1, x2 , x3 , x4 , x5 0
§5.2单纯形法的表格形式
迭代 次数 基
CB
x1 2
x2 1
x3 0
x4 0
x5 0
b
比值
x3 0
0 5 100
15
-
x4 0
6 2 010
24 24/6
0
x5 0
1 1 001
5
5
zj
?0 0 0 0 0
Z=0
第五章 单纯形法
5.1 单纯形法的基本思路和原理 5.2 单纯形法的表格形式
第1步:求初始基可行解,列出初始单纯形表。
§5.2单纯形法的表格形式
第1步:求初始基可行解,列出初始单纯形表。 例
max z 2x1 x2

5x2 15
6
x1 2x2 x1 x2
§5.2单纯形法的表格形式
迭代 次数 基
CB
x1 2
x2 1
x3 0
x4 0
x5 0
b
比值
x3 0
0 5 100
15
-
x4 0
6 2 010
24 24/6
0
x5 0
1 1 001
5
5
zj
0 0 000 Z=0
j= cj -zjห้องสมุดไป่ตู้2 1 0 0 0
z c3 b1 c4 b2 c5 b3 0 15 0 24 0 5 0
第五章 单纯形法
Singlex Method
第五章 单纯形法
5.1 单纯形法的基本思路和原理 5.2 单纯形法的表格形式

单纯形法基本原理

单纯形法基本原理

2)求出线性规划的初始基可行解,列出初始单纯形表。
cj cB 0 基 x3 b 40 3 x1 2 4 x2 1 0 x3 1 0 x4 0
θi
0
j
x4
30
1
3
3
4
0
0
1
0
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法的计算步骤
单纯形法的计算步骤
cj
cB 0 0 基变量 x4 b 15 20
Page 11
1
x1 2 1/3
2
x2 -3 1
1
x3 2 5
0
x4 1 0
0
x5 0 1
θi
j
x5
- 20 25 60
2
0
j
1
2
x2
x1
Hale Waihona Puke x475 3 20 1/3 1/3
25 35/3
1
0 1 0 0 1
0
2
17 5
-9
1
1 0 0
Page 14
解:首先将数学模型化为标准形式
max Z 3 x1 2 x 2 x 3 4 x1 3 x 2 x 3 x 4 4 x1 x 2 2 x 3 x 5 10 2 x1 2 x 2 x 3 1 x j 0, j 1,2, ,5
Page 16
θi 4 5 1 3/5 8/3 —— —— 31/3 ——
j
→ →
j

j
j
单纯形法的进一步讨论-人工变量法
解的判别:
Page 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 x2 s1 300, 2x1 x2 s2 400, x2 s3 250.
在第二步中已经知道x2为入基变量,我们把各约束方程中x2的为正的系数除 对应的常量,得
b1 300 300, b2 400 400, b3 250 250.
a12 1
a22 1
a32 1
管理运筹学
管理运筹学
10
§1 单纯形法的基本思路和原理
2. 在确定了x2为入基变量之后,我们要在原来的3个基变量s1,s2,s3中确
定一个出基变量,也就是确定哪一个基变量变成非基变量呢? 如果把s3作为出基变量,则新的基变量为x2,s1,s2,因为非基变量x1=s3=0,
x2 +s1=300, x2+s2=400, x2=250, 求出基本解:x1=0,x2=250,s1=50,s2=150,s3=0。 条件,是基本可行解,故s3可以确定为出基变量。 能否在求出基本解以前来确定出基变量呢? 以下就来看在找出了初始基本可行解和确定了入基变量之后,怎么样的 基变量可以确定为出基变量呢?或者说出基变量要具有什么条件呢?
0 0 1 1 0 0 0 1 0 那么显然所求得的基本解一定是基本可行解,这个单位矩阵或由单位矩阵各列向 量组成的基一定是可行基。实际上这个基本可行解中的各个变量或等于某个bj或等 于零。
管理运筹学
6
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0
B2 0 1 0
ቤተ መጻሕፍቲ ባይዱ
n
bi aij xj. i 1, 2,L , m
j m1
把以上的表达式带入目标函数,就有
m
n
z c1x1 c2 x2 L cn xn ci xi c j x j
i 1
j m 1
其中:
n
n
z0
c j z j x j z0 j x j
j m 1
j m 1
50x1+100x2=50×0+100×250=25000。 显然比初始基本可行解x1=0,x2=0,s1=300,s3=250时的目标函数值为0要好 得多。
下面我们再进行检验其最优性,如果不是最优解还要继续进行基变
换,直至找到最优解,或者能够判断出线性规划无最优解为止。
管理运筹学
13
§2 单纯形法的表格形式
通过第二章例1的求解来介绍单纯形法:
目标函数: max 50x1+100x2 约束条件:x1+x2+s1≤300,
2x1+x2+s2≤400, x2+s3≤250.
xj≥0 (j=1,2),sj≥0 (j=1,2,3)
管理运筹学
2
§1 单纯形法的基本思路和原理
它的系数矩阵 , 1 1 1 0 0
数都为零了。此时目标函数中所有变量的系数即为各变量的检验数,把变
量xi的检验数记为σi。显然所有基变量的检验数必为零。在本例题中目标 函数为50x1+100x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知
σ1=50,σ2=100,σ3=0,σ4=0,σ5=0。
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。
12
§1 单纯形法的基本思路和原理
其中
b3 a32
的值最小,所以可以知道在原基变量中系数向量为 e3
0, 0,1T
的基变量s3为出基变量,这样可知x2,s1,s2为基变量,x1,s3为非基变量。 令非基变量为零,得
x2+s1=300, x2+s2=400, x2=250. 求解得到新的基本可行解x1=0,x2=250,s1=50,s2=150. 这时目标函数值为
在讲解单纯形法的表格形式之前,先从一般数学模型里推导出检验
数 j 的表达式。
可行基为m阶单位矩阵的线性规划模型如下(假设其系数矩阵的前m 列是单位矩阵):
max z c1x1 c2 x2 L cn xn. x1 a x 1,m1 m1 L a1,n xn b1, x2 a x 2,m1 m1 L a2,n xn b2 , LLLLLLLLLLLL xm a x m,m1 m1 L am,n xn bm ,
都小
j
于等于零时,可知 j xj 是一个小于等于零的数,要使z
jJ
的值最大,显然 j xj 只有为零。我们把这些xj取为非基 jJ
变量(即令这些xj的值为零),所求得的基本可行解就使目标 函数值最大为z0。
**对于求目标函数最小值的情况,只需把 j≤0改为 ≥j0
管理运筹学
9
§1 单纯形法的基本思路和原理
第五章 单 纯 形 法
• §1 单纯形法的基本思路和原理 • §2 单纯形法的表格形式 • §3 求目标函数值最小的线性规划的问题的
单纯形表解法 • §4 几种特殊情况
管理运筹学
1
§1 单纯形法的基本思路和原理
单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优 解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此 点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的 解,或者能判断出线性规划问题无最优解为止。
所谓最优性检验就是判断已求得的基本可行解是否是最优解。
1. 最优性检验的依据——检验数σj 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可
以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基
变量,这样目标函数中只含有非基变量了,或者说目标函数中基变量的系
而其计算的方法也大体上使用矩阵的行的初等变换。以下用单纯形表格来
求解第二章的例1。
max 50x1+100x2+0·s1+0·s2+0·s3. x1+x2+s1=300 2x1+x2+s2=400 x2+s3=250
x1, x2, s1, s2, s3≥0. 把上面的数据填入如下的单纯形表格
管理运筹学
A ( p1, p2 , p3 , p4 , p5 ) 2 1 0 1 0 0 1 0 0 1
其中pj为系数矩阵A第j列的向量。A的秩为3,A的秩m小于此方程组的变 量的个数n,为了找到一个初始基本可行解,先介绍以下几个线性规划的 基本概念。
基: 已知A是约束条件的m×n系数矩阵,其秩为m。若B是A中m×m阶非 奇异子矩阵(即可逆矩阵),则称B是线性规划问题中的一个基。 基向量:基B中的一列即称为一个基向量。基B中共有m个基向量。 非基向量:在A中除了基B之外的一列则称之为基B的非基向量。 基变量:与基向量pi相应的变量xi叫基变量,基变量有m个。
B3 1 0 0
1 0 1
非基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
管理运筹学
4
§1 单纯形法的基本思路和原理
x2+s1≤300, x2=400, x2+s3=250.
x1=0,x2=400,s1=-100,s2=0,s3=-150 由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,
管理运筹学
8
§1 单纯形法的基本思路和原理
• 2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,
如果所有检验数 ≤0,j 则这个基本可行解是最优解。下面
我们用通俗的说法来解释最优解判别定理。设用非基变量
表示的目标函数为如下形式
z z0 j xj
由于所有的xj的取值范围为大jJ 于等于零,当所有的
所有变量的解都是大于等于零,才能断定这个解是基本可行解,这个基是可行
基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个
基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中
要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位 矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,
xj 0. j 1, 2,L , n
以下用 xi i 1, 2,L , m 表示基变量,用 xj j m 1, m 2,L , n
表示非基变量。
管理运筹学
14
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi a x i,m1 m1 a x i,m2 m2 L ai,n xn
向量为 pj j 1, 2,L , n 则
z j cB1,L , cBm pj cB pj ,
其中,(cB)是由第1列第m行各约束方程中的基变量相应的目标函数依 次组成的有序行向量。
单纯形法的表格形式是把用单纯形法求出基本可行解、检验其最优性、
迭代某步骤都用表格的方式来计算求出,其表格的形式有些像增广矩阵,
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各 列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行 解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行 基,我们将构造初始可行基,具体做法在以后详细讲述。
相关文档
最新文档