单 纯 形 法
运筹学单纯形法

运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。
它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。
单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。
在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。
单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。
传统的单纯性法分为有界单纯性和无界单纯性两种情形。
无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。
有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。
单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。
使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。
单纯形法新版

1 2
2 1
1 0
10,A 中的2阶可逆子阵有
1
B 1
0
10,其相应的基向量为P3
,
P 4
,
基变量为x
3
,
x
,X
4
B1
x 3 ; x 4
1
B 2
2
2 1
,
其相应的基向量为P 1
,
P 2
,
基变量为x
1
,
x
2
,
X
B2
x 1 。 x 2
问题:本例旳A中一共有几种基? —— 6个。
一般地,m×n 阶矩阵A中基旳个数最多有多少个? — —C m 个。 n
p 1
7
(0 0
0) 4
7;
3
360 90
3
4
[ ] 中表达进基列与出基行旳交叉元,下一张表将实 施以它为主元旳初等行变换(称高斯消去)。措施是: 先将主元消成1,再用此1将其所在列旳其他元消成0。
C X B b1
B
B
0
x 3
360
0
x 4
200
0
x 5
300
0
x 3
240
0
x 4
50
(1)先将模型化为原则型
Maxz 7 x1 12x2
9x 1 4x 2 x 3
5x 2 10 x
2
x 4
200
x 300 5
x
1, x
2, x , x , x
3
4
5
0
(2) 拟定初始基可行解、检验
1
B 0
1
,
B
b1
第5章-单纯形法

基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个
基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中
要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位 矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,
xm a x m ,m 1 m 1 a m ,n xn bm ,
x j 0. j 1, 2, , n
以下用 xii1,2, ,m表示基变量,用 x jj m 1 ,m 2 , ,n
表示非基变量。
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi ai,m1xm1ai,m2xm2 ai,nxn
i1
a1j
,cma2j
amj
c1,c2, ,cmpj
§2 单纯形法的表格形式
上面假设x1,x2,…xm是基变量,即第i行约束方程的基变量正好是xi,而 经过迭代后,基将发生变化,计算zj的式子也会发生变化。如果迭代后的 第i行约束方程中的基变量为xBi,与xBi相应的目标函数系数为cBi,系数列
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。
第二章 单纯形法

此时基变量为: x3 , x2 , x1
非基变量为:x4 , x5 得到另一基本可行解为:
X 2 4,6,4,0,0
T
z1 42
迭代结果
2 1 x3 x4 x5 4 3 3 1 x4 6 x2 2 2 1 x4 x5 4 x1 3 3
最小比值规则
当确定进基变量后,以进基变量的系数列向量 中的正数为分母,以相应的方程右端常数为分子求 最小比值,所得到的最小比值的分母就是主元。主 元所在的方程中的基变量就是离基变量。即:
bi bl min ik 0 aik alk
令新的非基变量 x3 x4 0 ,得到新的 基本可行解: T
12 36 12 x2 m in , 2 4 2
2是主元,其所在方程为主方程,且
x4 为离基变量。
此时基变量为: x3 , x2 , x5
非基变量为: x1 , x4 得到另一基本可行解为:
X1 0,6,8,0,12
T
z1 30
迭代结果
8 x1 x3 1 6 x2 x4 2 3 x 2 x x 12 1 4 5
单纯形法的3种形式——
方程组形式(代数形式) 表格形式 矩阵形式
单纯形法的基本思路——
基于LP问题的标准形,先设法找到某个基本 可行解(称为初始基本可行解); 开始实施从这个基本可行解向另一个基本可 行解的转换,要求这种转换不仅容易实现, 而且能改善(至少保持)目标函数值; 继续寻找更优的基本可行解,进一步改进目 标函数值。当某一个基本可行解不能再改善 时,该解就是最优解。(或者是出现无可行 解、无最优解、无穷多最优解的情况)
第5章_单纯形法

初始可行解:第一个找到的可行域的顶点。
三、单纯形法试算程序框图(见图5—1)
开始
转变为标准型[增加额外 变量(松弛、剩余、人工 变量)]
建立初始单纯形表
最优
是
停
否 找出“换入”“换出”变量
修正单纯形表
图5—1
5.2 线性规划模型的变换
一、线性规划模型标准型的特点 ⑴目标函数是求极大值或极小值; ⑵所有的变量都是非负的; ⑶除变量的非负约束外,其余的约束条件都
ABCD 含量(单位/千克)
最低需求量 (单位)
糖
5 2 4 2 60
蛋白质
3 2 1 4 40
脂肪
3 1 2 5 35
单价(元/千克) 1.5 0.7 0.9 1.2
例3是例2的对偶问题,例3与例2互为对偶线性规 划原规划与对偶规划具有对称性,如图所示:
食品
单一营
养成分单价
AB C D
单一营养
(x1) (x2) (x3) (x4) 成分需求量
m
c a Z j
i ij
i 1
解b
b 1
b 2
…… b
n
目标函 数
例1
求max Z=7x1+10x2 满足 7x1+7x2≤49 10x1+5x2≤50 x1,x2≥0
用单纯形法求解。
例2
第2章例1中我们得线性规划模型为: 目标函数:max Z = 50x1+100x2
满足 x1 + x2 ≤300 2x1 + x2 ≤400 x2 ≤250 x1,x2 ≥0
…… am1x1 + am2x2 + ……+ amnxn ≤(≥,=) bm x1,x2 …… xn≥ 0
运筹学 第二章 单纯形法

按最小非负比值规则:
5 0 1 1/ 3 1 1 2 1
x2 x3
5 0 1 1/ 3 0 2/3 0 1/ 3 1
0 15 0 1/ 6 0 4 0 1/ 6 1 1 0 1/ 3 0 8 0
至此,检验行已没有负数, 当前解即为最优解。
0
此时对应的LP问题为:
min S 0 x1 0 x2 x3 x4 0 x5 1
x4 1 x1 2 x2 2 x3 s.t 0 x1 3x2 3x3 x4 x5 5 x 0 (i 1,2,3,4,5) i
i 1, ,5
可行基{ x1 , x 2 , x 3 }
令非基变量 x4 , 最优值:
x 5为0,得到最优解
17 max Z 2
15
7 3 15 X 3 ( , , ,0,0)T 2 2 2
此基本可行解对应可行域的顶点(7 / 2, 3 / 2) 其结果与图解法一致。 总结:①在迭代过程中要保持常数列向量非负,这能保证基 可行解的非负性。最小比值能做到这一点。 ②主元素不能为0。因为行的初等变换不能把0变成1。
此时,
x4
已经从24降到了0,达到了非基的取值,变
成非基变量。从而得到新的可行基{x1 , x3 , x5 } 。 由此得到一个新的基本可行解: X 1 ( 4,0,15,0,1)T
8
此基本可行解对应可行域的顶点(4,0)
目标函数值: ( X1 ) 2 4 8 Z ( X 0 ) 0. Z
T
X 0 (0,0,15,24,5)
(对应可行域的 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
单纯形法原理及例题

单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。
用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。
例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。
由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。
第三讲 单纯形法

最优性检验和解的判别
将X (0)
( x10 ,
x20 ,,
x
0 m
,0,
,0)T
和
X (1) ( x10 -a1 j ,, xm0 amj ,0,,0)T
代入目标函数
m
z(0) ci xi0 i 1
m
z(1) ci ( xi0 aij ) c j i 1
m
m
ci
x
0 i
(c j
单纯形法引例4这样如此下去可得要有一个变为非基变量此时目标函数变为由于目标函数中的变量系数都小于等于0所以42004为最优解最优值z14标本无需切片处理而代之在标本表面涂上一层铂金当电子撞击标本表面各点时便产生次及电子呈现立体状态可观察标本的形状及表面的特征
第1章 线性规划与单纯形法
第1节 线性规划问题及其数学模型 第2节 线性规划问题的几何意义 第3节 单纯形法 第4节 单纯形法的计算步骤 第5节 单纯形法的进一步讨论 第6节 应用举例
1 0 1 0 -1/2
0 0 -4 1 2
0 1 0 0 1/4
0 0 -2
0 1/4
1 0 0 1/4 0 0 0 -2 1/2 1 0 1 1/2 -1/8 0
0 0 -3/2 -1/8 0
j
--8/2
3/(1/4)
单纯形法迭代原理:确定初始可行解
n
目 标 函 数 :max z c j x j j 1
令 这m个 不 等 式 至 少 有 一 个 等号 成 立 。
可 令
min i
xi0 aij
aij
0
xl0 alj
故X (1)是一个可行解,其分量xi1 xi0
aij
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在第二步中已经知道x2为入基变量,我们把各约束方程中x2的为正的系数除 对应的常量,得
b1 300 300, b2 400 400, b3 250 250.
a12 1
a22 1
a32 1
管理运筹学
管理运筹学
10
§1 单纯形法的基本思路和原理
2. 在确定了x2为入基变量之后,我们要在原来的3个基变量s1,s2,s3中确
定一个出基变量,也就是确定哪一个基变量变成非基变量呢? 如果把s3作为出基变量,则新的基变量为x2,s1,s2,因为非基变量x1=s3=0,
x2 +s1=300, x2+s2=400, x2=250, 求出基本解:x1=0,x2=250,s1=50,s2=150,s3=0。 条件,是基本可行解,故s3可以确定为出基变量。 能否在求出基本解以前来确定出基变量呢? 以下就来看在找出了初始基本可行解和确定了入基变量之后,怎么样的 基变量可以确定为出基变量呢?或者说出基变量要具有什么条件呢?
0 0 1 1 0 0 0 1 0 那么显然所求得的基本解一定是基本可行解,这个单位矩阵或由单位矩阵各列向 量组成的基一定是可行基。实际上这个基本可行解中的各个变量或等于某个bj或等 于零。
管理运筹学
6
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0
B2 0 1 0
ቤተ መጻሕፍቲ ባይዱ
n
bi aij xj. i 1, 2,L , m
j m1
把以上的表达式带入目标函数,就有
m
n
z c1x1 c2 x2 L cn xn ci xi c j x j
i 1
j m 1
其中:
n
n
z0
c j z j x j z0 j x j
j m 1
j m 1
50x1+100x2=50×0+100×250=25000。 显然比初始基本可行解x1=0,x2=0,s1=300,s3=250时的目标函数值为0要好 得多。
下面我们再进行检验其最优性,如果不是最优解还要继续进行基变
换,直至找到最优解,或者能够判断出线性规划无最优解为止。
管理运筹学
13
§2 单纯形法的表格形式
通过第二章例1的求解来介绍单纯形法:
目标函数: max 50x1+100x2 约束条件:x1+x2+s1≤300,
2x1+x2+s2≤400, x2+s3≤250.
xj≥0 (j=1,2),sj≥0 (j=1,2,3)
管理运筹学
2
§1 单纯形法的基本思路和原理
它的系数矩阵 , 1 1 1 0 0
数都为零了。此时目标函数中所有变量的系数即为各变量的检验数,把变
量xi的检验数记为σi。显然所有基变量的检验数必为零。在本例题中目标 函数为50x1+100x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知
σ1=50,σ2=100,σ3=0,σ4=0,σ5=0。
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。
12
§1 单纯形法的基本思路和原理
其中
b3 a32
的值最小,所以可以知道在原基变量中系数向量为 e3
0, 0,1T
的基变量s3为出基变量,这样可知x2,s1,s2为基变量,x1,s3为非基变量。 令非基变量为零,得
x2+s1=300, x2+s2=400, x2=250. 求解得到新的基本可行解x1=0,x2=250,s1=50,s2=150. 这时目标函数值为
在讲解单纯形法的表格形式之前,先从一般数学模型里推导出检验
数 j 的表达式。
可行基为m阶单位矩阵的线性规划模型如下(假设其系数矩阵的前m 列是单位矩阵):
max z c1x1 c2 x2 L cn xn. x1 a x 1,m1 m1 L a1,n xn b1, x2 a x 2,m1 m1 L a2,n xn b2 , LLLLLLLLLLLL xm a x m,m1 m1 L am,n xn bm ,
都小
j
于等于零时,可知 j xj 是一个小于等于零的数,要使z
jJ
的值最大,显然 j xj 只有为零。我们把这些xj取为非基 jJ
变量(即令这些xj的值为零),所求得的基本可行解就使目标 函数值最大为z0。
**对于求目标函数最小值的情况,只需把 j≤0改为 ≥j0
管理运筹学
9
§1 单纯形法的基本思路和原理
第五章 单 纯 形 法
• §1 单纯形法的基本思路和原理 • §2 单纯形法的表格形式 • §3 求目标函数值最小的线性规划的问题的
单纯形表解法 • §4 几种特殊情况
管理运筹学
1
§1 单纯形法的基本思路和原理
单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优 解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此 点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的 解,或者能判断出线性规划问题无最优解为止。
所谓最优性检验就是判断已求得的基本可行解是否是最优解。
1. 最优性检验的依据——检验数σj 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可
以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基
变量,这样目标函数中只含有非基变量了,或者说目标函数中基变量的系
而其计算的方法也大体上使用矩阵的行的初等变换。以下用单纯形表格来
求解第二章的例1。
max 50x1+100x2+0·s1+0·s2+0·s3. x1+x2+s1=300 2x1+x2+s2=400 x2+s3=250
x1, x2, s1, s2, s3≥0. 把上面的数据填入如下的单纯形表格
管理运筹学
A ( p1, p2 , p3 , p4 , p5 ) 2 1 0 1 0 0 1 0 0 1
其中pj为系数矩阵A第j列的向量。A的秩为3,A的秩m小于此方程组的变 量的个数n,为了找到一个初始基本可行解,先介绍以下几个线性规划的 基本概念。
基: 已知A是约束条件的m×n系数矩阵,其秩为m。若B是A中m×m阶非 奇异子矩阵(即可逆矩阵),则称B是线性规划问题中的一个基。 基向量:基B中的一列即称为一个基向量。基B中共有m个基向量。 非基向量:在A中除了基B之外的一列则称之为基B的非基向量。 基变量:与基向量pi相应的变量xi叫基变量,基变量有m个。
B3 1 0 0
1 0 1
非基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
管理运筹学
4
§1 单纯形法的基本思路和原理
x2+s1≤300, x2=400, x2+s3=250.
x1=0,x2=400,s1=-100,s2=0,s3=-150 由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,
管理运筹学
8
§1 单纯形法的基本思路和原理
• 2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,
如果所有检验数 ≤0,j 则这个基本可行解是最优解。下面
我们用通俗的说法来解释最优解判别定理。设用非基变量
表示的目标函数为如下形式
z z0 j xj
由于所有的xj的取值范围为大jJ 于等于零,当所有的
所有变量的解都是大于等于零,才能断定这个解是基本可行解,这个基是可行
基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个
基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中
要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位 矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,
xj 0. j 1, 2,L , n
以下用 xi i 1, 2,L , m 表示基变量,用 xj j m 1, m 2,L , n
表示非基变量。
管理运筹学
14
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi a x i,m1 m1 a x i,m2 m2 L ai,n xn
向量为 pj j 1, 2,L , n 则
z j cB1,L , cBm pj cB pj ,
其中,(cB)是由第1列第m行各约束方程中的基变量相应的目标函数依 次组成的有序行向量。
单纯形法的表格形式是把用单纯形法求出基本可行解、检验其最优性、
迭代某步骤都用表格的方式来计算求出,其表格的形式有些像增广矩阵,
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各 列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行 解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行 基,我们将构造初始可行基,具体做法在以后详细讲述。