2017年深圳市中考数学试题及答案

合集下载

深圳市中考数学试题及答案

深圳市中考数学试题及答案

深圳市2017年初中毕业生学业考试数学试卷第一部分选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的) 1.-2的绝对值是()A .-2B .2C .-12D .122.图中立体图形的主视图是()立体图形ABCD3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为()A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()ABCD5.下列选项中,哪个不可以得到l 1∥l 2?()A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180° 6.不等式组32521x x -<⎧⎨-<⎩的解集为()A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M ,求∠BCM 的度数()A .40°B .50C .60°D .70°9.下列哪一个是假命题()A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数()A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是()mA .203B .30C .303D .4012.如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE ·OP ;③AOD OECF S S =V 四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是()A .1B .2C .3D .4第11题第12题第16题第二部分 非选择题二、填空题(本题共4题,每小题3分,共12分) 13.因式分解:34a a -=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i ,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么()()11i i +-=.16.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,Rt △MPN ,∠MPN =90°,点P 在AC 上,PM 交AB 与点E ,PN 交BC 于点F ,当PE =2PF 时,AP =. 三、解答题(567889952''''''''++++++=) 17.计算:()22224518cos ---+-+o 18.先化简,再求值:22224x x xx x x ⎛⎫+÷⎪-+-⎝⎭,其中x =-1. 19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率 A 30 x B 18 0.15 Cm0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y=kx+b与反比例函数my=(x>0)交于A(2,4)、B(a,1),x与x轴、y轴分别交于点C、D.(1)直接写出一次函数y=kx+b的表达式和反比例函数m=(x>0)的表达式;yx(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是¼CBD上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求s i n∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE HF•的值.F23.如图,抛物线22=++经过A(-1,0),B(4,0),交y轴于点C.y ax bx(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABD S S ∆=V ,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.深圳市2017年中考试数学试卷参考答案1-5.BACDC6-10.DDBCB11-12.BC13.()()22a a a +-;14.23;15.2;16.3;17.3; 18.原式=()()()()()()2222222x x x x x x x x x++-+-•+-=3x +2把x =-1代入得:原式=3×(-1)+2=-1.19.(1)18÷0.15=120人,x =30÷120=0.25,m =120×0.4=48,y =1-0.25-0.4-0.15=0.2,n =120×0.2=24;(2)如下图;(3)2000×0.25=500.20.(1)解:设长为x 厘米,则宽为(28-x )厘米, 列方程:x (28-x )=180,解方程得110x =,218x =, 答:长为18厘米,宽为10厘米;(2)解:设长为x 厘米,则宽为(28-x )厘米,列方程得:x (28-x )=200,化简得:2282000x x -+=,224284200160b ac ∆=-=-⨯=-<, 方程无解,所以不能围成面积为200平方厘米的矩形. 21.(1)将A (2,4)代入my x=中,得m =8, ∴反比例函数的解析式为8y x=,∴将B (a ,1)代入8y x=中得a =8,∴B (8,1),将A (2,4)与B (8,1)代入y =kx +b 中,得8124k b k b +=⎧⎨+=⎩,解得125k b ⎧=-⎪⎨⎪=⎩,∴152y x =-+;(2)由(1)知,C 、D 两点的坐标为(10,0)、(0,5), 如图,过点A 作y 轴的垂线与y 轴交于点E ,过B 作x 轴的垂线与x 轴交于点F ,∴E (0,4),F (8,0),∴AE =2,DE =1,BF =1,CF =2,∴在Rt △ADE 和Rt △BCF 中,根据勾股定理得, AD =225AE DE +=,BC =225CF BF +=, ∴AD =BC .22.(1)连接OC ,在Rt △COH 中,CH =4,OH =r -2,OC =r ,由勾股定理得:(r -2)2+42=r 2,解得:r =5; (2)∵弦CD 与直径AB 垂直,∴»»»12AD AC CD==,∴∠AOC =12∠COD , ∵∠CMD =12∠COD ,∴∠CMD =∠AOC ,∴sin ∠CMD =sin ∠AOC , 在Rt △COH 中,s i n ∠AOC =45OH OC =,即s i n ∠CMD =45; (3)连接AM ,则∠AMB =90°,在Rt △ABM 中,∠MAB +∠ABM =90°,在Rt △EHB 中,∠E +∠ABM =90°,∴∠MAB =∠E ,∵¼¼BMBM =,∴∠MNB =∠MAB =∠E , ∵∠EHM =∠NHF ,∴△EHM ∽△NHF , ∴HE HMHN HF=,∴HE ·HF =HM ·HN ,∵AB 与MN 相交于点H , ∴HM ·HN =HA ·HB =HA ·(2r -HA )=2×(10-2)=16,即HE ·HF =16.23.(1)由题意得2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴213222y x x =-++; (2)依题意知:AB =5,OC =2,∴1125522ABC S AB OC ∆=⨯=⨯⨯=,∵23ABC ABD S S ∆=V ,∴315522ABD S =⨯=V ,设D (m ,213222m m -++)(m >0),∵11522ABD D S AB y ==V ,∴211315522222m m ⨯⨯-++=,解得:m =1或m =2或m =-2(舍去)或m =5, ∴D 1(1,3)、D 2(2,3)、D 3(5,-3);(3)过C 点作CF ⊥BC ,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H , ∵∠CBF =45°,∠BCF =90°,∴CF =CB , ∵∠BCF =90°,∠FHC =90°,∴∠HCF +∠BCO =90°,∠HCF +∠HFC =90°,即∠HFC =∠OCB ,∵CHF COBHFC OCB FC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CHF ≌△BOC (AAS ), ∴HF =OC =2,HC =BO =4,∴F (2,6), ∴易求得直线BE :y =-3x +12,联立213222312y x x y x ⎧=-++⎪⎨⎪=-+⎩, 解得15x =,24x =(舍去),故E (5,-3), ∴()()22543010BE =-+--=.。

2017年广东省深圳市中考数学试卷

2017年广东省深圳市中考数学试卷

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2B.2C.−12D.122.(3分)图中立体图形的主视图是()A.B.C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6.(3分)不等式组{3−2x <5x −2<1的解集为( ) A .x >﹣1 B .x <3 C .x <﹣1或x >3 D .﹣1<x <37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =3308.(3分)如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M ,则∠BCM 的度数为( )A .40°B .50°C .60°D .70°9.(3分)下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,﹣2)关于y 轴的对称点为(﹣3,2)D .抛物线y =x 2﹣4x +2017对称轴为直线x =210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20√3B.30C.30√3D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=1316,其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|√2−2|﹣2cos45°+(﹣1)﹣2+√8.18.(6分)先化简,再求值:(2xx−2+xx+2)÷xx2−4,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=mx(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=mx(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是CBD̂上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=23S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.。

深圳市2017年中考数学真题

深圳市2017年中考数学真题

卷4一、选择题1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.图中立体图形的主视图是()A. B. C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM 的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.因式分解:a3﹣4a=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.。

2017年广东省深圳市中考数学试卷含答案.docx

2017年广东省深圳市中考数学试卷含答案.docx

2017 年广东省深圳市中考数学试卷一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.2.图中立体图形的主视图是()A.B.C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 37.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330 D.(1+10%)x=330 8.如图,已知线段 AB,分别以 A、B 为圆心,大于 AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=210.某共享单车前 a 公里1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 4012.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3﹣4a=.14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑1 白的概率是.15.阅读理解:引入新数i,新数i 满足分配律,结合律,交换律,已知i2=﹣1,那么( 1+i)?(1﹣i) =.16.如图,在 Rt△ABC中,∠ ABC=90°,AB=3,BC=4, Rt△MPN,∠ MPN=90°,点 P 在 AC上, PM 交 AB 于点 E,PN 交 BC于点 F,当 PE=2PF时, AP=.三、解答题17.计算: |﹣2|﹣2cos45°+(﹣1)﹣2+.18.先化简,再求值:(+)÷,其中x=﹣1.19.深圳市某学校抽样调查, A 类学生骑共享单车, B 类学生坐公交车、私家车等, C 类学生步行, D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y( 1)学生共人, x=, y=;( 2)补全条形统计图;( 3)若该校共有 2000 人,骑共享单车的有人.20.一个矩形周长为56 厘米.(1)当矩形面积为 180 平方厘米时,长宽分别为多少?(2)能围成面积为 200 平方米的矩形吗?请说明理由.2017 年中考数学真题试题21.如图,一次函数y=kx+b 与反比例函数y= (x>0)交于 A(2,4), B( a,1),与 x 轴, y 轴分别交于点 C,D.(1)直接写出一次函数 y=kx+b 的表达式和反比例函数 y= (x>0)的表达式;(2)求证: AD=BC.22.如图,线段 AB 是⊙ O 的直径,弦 CD⊥AB 于点 H,点 M 是上任意一点,AH=2,CH=4.(1)求⊙ O 的半径 r 的长度;(2)求 sin∠CMD;(3)直线 BM 交直线 CD于点 E,直线 MH 交⊙ O 于点 N,连接 BN 交 CE于点 F,求 HE?HF的值.2017 年中考数学真题试题23.如图,抛物线 y=ax2+bx+2 经过点 A(﹣ 1,0),B( 4,0),交 y 轴于点 C;( 1)求抛物线的解析式(用一般式表示);( 2)点 D 为y 轴右侧抛物线上一点,是否存在点 D 使S△ABC= S△ABD?若存在请直接给出点 D 坐标;若不存在请说明理由;( 3)将直线 BC绕点 B 顺时针旋转 45°,与抛物线交于另一点E,求 BE的长.2017 年中考数学真题试题2017 年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.【考点】 15:绝对值.【分析】根据绝对值的定义,可直接得出﹣ 2 的绝对值.【解答】解: | ﹣2| =2.故选 B.2.图中立体图形的主视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选 A.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×107【考点】 1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将 8200000 用科学记数法表示为: 8.2×106.故选: C.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】 R5:中心对称图形; P3:轴对称图形.【分析】根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选 D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°【考点】 J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解: A、∵∠ 1=∠2,∴ l1∥l2,故本选项错误;B、∵∠ 2=∠ 3,∴ l1∥l2,故本选项错误;C、∠ 3=∠5 不能判定 l1∥l2,故本选项正确;D、∵∠ 3+∠ 4=180°,∴ l1∥l2,故本选项错误.故选 C.6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 3【考点】 CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式 3﹣ 2x<5,得: x>﹣ 1,解不等式 x﹣ 2< 1,得: x<3,∴不等式组的解集为﹣ 1<x<3,故选: D.7.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330D.(1+10%)x=330【考点】 89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x 双,等量关系是:上个月卖出的双数×(1+10%) =现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x 双,根据题意得(1+10%) x=330.故选 D.8.如图,已知线段AB,分别以 A、B 为圆心,大于AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()2017 年中考数学真题试题A.40°B.50°C.60°D.70°【考点】 N2:作图—基本作图; KG:线段垂直平分线的性质.【分析】根据作法可知直线 l 是线段 AB 的垂直平分线,故可得出 AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l 是线段 AB 的垂直平分线,∴AC=BC,∴∠ CAB=∠CBA=25°,∴∠ BCM=∠CAB+∠ CBA=25°+25°=50°.故选 B.9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=2【考点】 O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解: A、五边形外角和为360°是真命题,故 A 不符合题意;B、切线垂直于经过切点的半径是真命题,故 B 不符合题意;C、(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)是假命题,故C 符合题意;D、抛物线 y=x2﹣4x+2017 对称轴为直线 x=2 是真命题,故 D 不符合题意;故选: C.10.某共享单车前 a 公里 1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车 50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】 WA:统计量的选择.【分析】由于要使使用该共享单车 50%的人只花 1 元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选 B.11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 40【考点】 TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据 CD=20米,DE=10m得出∠ DCE=30°,故可得出∠ DCB=90°,再由∠BDF=30°可知∠ DBE=60°,由 DF∥AE 可得出∠ BGF=∠BCA=60°,故∠GBF=30°,所以∠ DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵ CD=20m,DE=10m,∴ sin∠DCE= = ,∴∠ DCE=30°.∵∠ ACB=60°,DF∥ AE,∴∠ BGF=60°∴∠ ABC=30°,∠ DCB=90°.∵∠ BDF=30°,∴∠ DBF=60°,∴∠ DBC=30°,∴ BC===20 m,∴ AB=BC?sin60°=20 ×=30m.故选 B.12.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当 BP=1时, tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4【考点】 S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质; T7:解直角三角形.【分析】由四边形 ABCD是正方形,得到AD=BC,∠ DAB=∠ ABC=90°,根据全等三角形的性质得到∠ P=∠ Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD?OP,由 OD≠OE,得到 OA2≠OE?OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到 S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD四边形OECF;故③正确;根据相似三角形的性质得到BE= ,求得 QE=,=SQO= , OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形 ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵ BP=CQ,∴AP=BQ,在△ DAP与△ ABQ中,,∴△ DAP≌△ ABQ,∴∠ P=∠ Q,∵∠ Q+∠ QAB=90°,∴∠ P+∠ QAB=90°,∴∠ AOP=90°,∴AQ⊥ DP;故①正确;∵∠ DOA=∠AOP=90,∠ADO+∠ P=∠ADO+∠DAO=90°,∴∠ DAO=∠P,∴△ DAO∽△ APO,∴,∴AO2=OD?OP,∵ AE>AB,∴AE>AD,∴OD≠ OE,∴OA2≠OE?OP;故②错误;在△ CQF与△ BPE中,∴△ CQF≌△ BPE,∴CF=BE,∴DF=CE,在△ ADF与△ DCE中,,∴△ ADF≌△ DCE,∴S△ADF﹣ S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1, AB=3,∴ AP=4,∵△ AOP∽△ DAP,∴,∴BE= ,∴ QE= ,∵△ QOE∽△ PAD,∴,∴QO= ,OE= ,∴AO=5﹣QO= ,∴tan∠ OAE= = ,故④正确,故选 C.二、填空题313.因式分解: a ﹣4a= a(a+2)(a﹣2).【分析】首先提取公因式 a,进而利用平方差公式分解因式得出即可.32【解答】解: a ﹣ 4a=a(a ﹣ 4)=a(a+2)(a﹣2).故答案为: a( a+2)( a﹣ 2).14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑 1 白的概率是.【考点】 X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸。

【数学】2017年广东省深圳市中考数学试卷含答案

【数学】2017年广东省深圳市中考数学试卷含答案

【关键字】数学2017年广东省深圳市中考数学试卷一、选择题1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.图中立体图形的主视图是()A.B.C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105 B.82×105 C.8.2×106 D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=3308.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.某同享单车前a公里1元,超过a公里的,每公里2元,若要使使用该同享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE 的长为10cm,则树AB的高度是()m.A.20 B.30 C.30 D.4012.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC 交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.因式分解:a3﹣4a=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC 上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.先化简,再求值:( +)÷,其中x=﹣1.19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.2.图中立体图形的主视图是()A. B. C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.5.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【考点】J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.6.不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,故选:D.7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【考点】89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM 的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】WA:统计量的选择.【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.40【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF ∥AE ,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m , ∴AB=BC•sin60°=20×=30m . 故选B .12.如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE=,其中正确结论的个数是( )A .1B .2C .3D .4【考点】S9:相似三角形的判定与性质;KD :全等三角形的判定与性质;LE :正方形的性质;T7:解直角三角形.【分析】由四边形ABCD 是正方形,得到AD=BC ,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据相似三角形的性质得到AO 2=OD•OP ,由OD ≠OE ,得到OA 2≠OE•OP ;故②错误;根据全等三角形的性质得到CF=BE ,DF=CE ,于是得到S △ADF ﹣S △DFO =S △DCE ﹣S △DOF ,即S △AOD =S 四边形OECF ;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF ≌△DCE ,∴S △ADF ﹣S △DFO =S △DCE ﹣S △DOF ,即S △AOD =S 四边形OECF ;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP ∽△DAP , ∴,∴BE=,∴QE=, ∵△QOE ∽△PAD , ∴, ∴QO=,OE=,∴AO=5﹣QO=,∴tan ∠OAE==,故④正确, 故选C .二、填空题13.因式分解:a 3﹣4a= a (a +2)(a ﹣2) .【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式a ,进而利用平方差公式分解因式得出即可.【解答】解:a 3﹣4a=a (a 2﹣4)=a (a +2)(a ﹣2).故答案为:a (a +2)(a ﹣2).14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:216.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【考点】S9:相似三角形的判定与性质.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.三、解答题17.计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】因为<2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.18.先化简,再求值:( +)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣119.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【考点】VC:条形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.【考点】AD:一元二次方程的应用.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【考点】MR:圆的综合题.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB•OC=×5×2=5,∵S△ABC =S△ABD,∴S△ABD=×5=,设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

2017年广东省中考数学试卷及答案解析

2017年广东省中考数学试卷及答案解析

2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×10103.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆7.(3分)如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)8.(3分)下列运算正确的是( )A .a +2a =3a 2B .a 3•a 2=a 5C .(a 4)2=a 6D .a 4+a 2=a 49.(3分)如图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S,其中正确的是()△CDFA.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC ̂的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连接BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣5【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D .2.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【解答】解:4000000000=4×109.故选:C .3.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【解答】解:∵∠A =70°,∴∠A 的补角为110°,故选:A .4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【解答】解:∵2是一元二次方程x 2﹣3x +k =0的一个根,∴22﹣3×2+k =0,解得,k =2.故选:B .5.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B .6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A .130°B .100°C .65°D .50°【解答】解:∵∠CBE =50°,∴∠ABC =180°﹣∠CBE =180°﹣50°=130°,∵四边形ABCD 为⊙O 的内接四边形,∴∠D =180°﹣∠ABC =180°﹣130°=50°,∵DA =DC ,∴∠DAC =180°−∠D 2=65°, 故选:C .10.(3分)如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【解答】解:∵四边形ABCD 是正方形,∴AD ∥CB ,AD =BC =AB ,∠F AD =∠F AB ,在△AFD 和△AFB 中,{AF =AF ∠FAD =∠FAB AD =AB,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE =EC =12BC =12AD ,AD ∥EC ,∴ECAD =CFAF=EFDF=12,∴S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.(4分)一个n边形的内角和是720°,则n=6.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b>0.(填“>”,“<”或“=”)【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是25.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25, 故答案为:25 15.(4分)已知4a +3b =1,则整式8a +6b ﹣3的值为 ﹣1 .【解答】解:∵4a +3b =1,∴8a +6b ﹣3=2(4a +3b )﹣3=2×1﹣3=﹣1;故答案为:﹣1.16.(4分)如图,矩形纸片ABCD 中,AB =5,BC =3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 √10 .【解答】解:如图3中,连接AH .由题意可知在Rt △AEH 中,AE =AD =3,EH =EF ﹣HF =3﹣2=1,∴AH =√AE 2+EH 2=√32+12=√10,故答案为√10.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 【解答】解:原式=7﹣1+3=9.18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5.【解答】解:原式=[x+2(x+2)(x−2)+x−2(x+2)(x−2)]•(x +2)(x ﹣2) =2x (x+2)(x−2)•(x +2)(x ﹣2) =2x ,当x =√5时,原式=2√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:{30x +20y =68050x +40y =1240, 解得:{x =12y =16. 答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.【解答】解:(1)如图所示;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =50°,∴∠AEC =∠EAB +∠B =100°.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.【解答】(1)证明:如图,连接DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .在△BAD 与△F AD 中,{AB =AF ∠BAD =∠FAD AD =AD,∴△BAD ≌△F AD ,∴DB =DF ,∴D 在线段BF 的垂直平分线上,∵AB =AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;解法二:∵四边形ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA,AD=DE=EF=F A.∴AB=AF,∵∠BAD=∠F AD,∴AD⊥BF(等腰三角形三线合一);(2)方法1:如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=12BF.∵BF=BC,BC=CD,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.方法2:∵BF=BC,BC=AB=AD=AF,∴BF=AB=AF,即△ABF是等边三角形.∵AD⊥BF,∴∠BAD=30°,∴∠ADC=180°﹣∠BAD=150°.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克) 人数 A45≤x <50 12 B50≤x <55 m C55≤x <60 80 D60≤x <65 40 E 65≤x <70 16(1)填空:①m = 52 (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°; 故答案为:52,144;(2)九年级体重低于60千克的学生大约有12+52+80200×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y =﹣x 2+ax +b 交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线y =﹣x 2+ax +b 的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【解答】解:(1)将点A 、B 代入抛物线y =﹣x 2+ax +b 可得,{0=−12+a +b 0=−32+3a +b, 解得,a =4,b =﹣3,∴抛物线的解析式为:y =﹣x 2+4x ﹣3;(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32,∵点P 在抛物线y =﹣x 2+4x ﹣3上,∴y P =−(32)2+4×32−3=34,∴点P 的坐标为(32,34);(3)∵点P 的坐标为(32,34),点P 是线段BC 的中点, ∴点C 的纵坐标为2×34−0=32,∴点C 的坐标为(0,32), ∴BC =√(32)2+32=3√52, ∴sin ∠OCB =OB BC =3√52=2√55. 24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC ̂的长度(结果保留π)【解答】(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .解法二:证明:连接AC .∵OA =OC∴∠BAC =∠ACO ,∵CD 平行AF ,∴∠F AC =∠ACD ,∴∠F AC =∠CAO ,∵CF ⊥AF ,CE ⊥AB ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,PC =4a ,PM =a , ∵∠MCB +∠P =90°,∠P +∠PBM =90°,∴∠MCB =∠PBM ,∵CD 是直径,BM ⊥PC ,∴∠CMB =∠BMP =90°,∴△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM •PM =3a 2,∴BM =√3a ,∴tan ∠BCM =BM CM =√33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC ̂的长=60⋅π⋅2√3180=2√33π.25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连接BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 (2√3,2) ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2√3,∠BCO=∠BAO=90°,∴B(2√3,2).故答案为(2√3,2).(2)存在.理由如下:∵OA=2,OC=2√3,∵tan∠ACO=AOOC=√33,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠BDC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC =∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2√3,综上所述,满足条件的AD的值为2或2√3.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2√3,0),∴直线AC的解析式为y=−√33x+2,设D(a,−√33a+2),∴DN=−√33a+2,BM=2√3−a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴DEBD =DNBM=−√33a+22√3−a=√33.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=12AD=12x,AH=√AD2−DH2=√32x,∴BH=2√3−√32x,在Rt△BDH中,BD=√BH2+DH2=(12x)2+(2√3−√32x)2,∴DE=√33BD=√33•(12x)2+(2√3−√32x)2,∴矩形BDEF的面积为y=√33[(12x)2+(2√3−√32x)2]2=√33(x2﹣6x+12),即y =√33x 2﹣2√3x +4√3, ∴y =√33(x ﹣3)2+√3, ∵√33>0, ∴x =3时,y 有最小值√3.。

广东省深圳市2017年中考数学真题试卷(含答案)

广东省深圳市2017年中考数学真题试卷(含答案)

2017年广东省深圳市中考数学试卷一、选择题1.-2的绝对值是( )A .-2B .2C .−12D .122.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .5.下列选项中,哪个不可以得到 l 1//l 2 ?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180∘第5题图 第8题图6.不等式组 {3−2x <5x −2<1 的解集为( ) A .x >−1B .x <3C .x <−1或 x >3D .−1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出 x 双,列出方程( )A .10%x =330B .(1−10%)x =330C .(1−10%)2x =330D .(1+10%)x =3308.如图,已知线段 AB ,分别以 A 、B 为圆心,大于 12AB 为半径作弧,连接弧的交点得到直线 l ,在直线 l 上取一点 C ,使得 ∠CAB =25∘ ,延长 AC 至 M ,求 ∠BCM 的度数为( ) A .40∘B .50∘C .60∘D .70∘9.下列哪一个是假命题()A.五边形外角和为360∘B.切线垂直于经过切点的半径C.(3,−2)关于y轴的对称点为(−3,2)D.抛物线y=x2−4x+2017对称轴为直线x=2 10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()mA.20√3B.30C.30√3D.40第11题图第12题图12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE.下列结论:①AQ⊥DP;②OA2=OE·OP;③SΔAOD=S四边形OECF;④当BP=1时,tan∠OAE=1316.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3−4a=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=−1,那么(1+i)·(1−i)=.16.如图,在RtΔABC中,∠ABC=90∘,AB=3,BC=4,RtΔMPN,∠MPN=90∘,点P 在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.计算|√2−2|−2cos45∘+(−1)−2+√8.18.先化简,再求值:(2xx−2+xx+2)÷xx2−4,其中x=−1.19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y=kx+b与反比例函数y=mx(x>0)交于A(2,4)、B(a,1),与x轴,y轴分别交于点C、D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=mx(x>0)的表达式;(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD上任意一点,AH= 2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE·HF的值.23.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y 轴于点C:(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使SΔABC=23SΔABD,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45∘,与抛物线交于另一点E,求BE的长.答案解析部分1.【答案】B【解析】【解答】解:依题可得:|-2|=2.故答案为B.【分析】根据正数和0的绝对值是它们本身,负数的绝对值是它的相反数.2.【答案】A【解析】【解答】解:主视图是指从前往后看所得到的平面图形.由此可得出正确答案.故答案为A.【分析】由主视图的定义即可选出正确答案.3.【答案】C【解析】【解答】解:8200000=8.2×106.故答案为C.【分析】科学记数法的定义:将一个数字表示成a×10n的形式;其中1≤|a|<10,n为整数.由此可得出正确答案.4.【答案】D【解析】【解答】解:A为中心对称图形,B为轴对称图形,C为中心对称图形,D是轴对称图形又是中心对称图形.故答案为D.【分析】轴对称图形:是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴;中心对称图形:如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形;根据它们的定义即可得出答案.5.【答案】C【解析】【解答】解:A. ∵∠1=∠2.∴l1//l2.B.∵∠2=∠3.∴l1//l2.C.∠3=∠5并不能得到l1//l2.D.∵∠3+∠4=180∠.∴l1//l2.故答案选C.【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;从而得出答案.6.【答案】D【解析】【解答】解:解第一个不等式得:x>-1.解第二个不等式得:x<3.∴原不等式组的解集为:-1<x<3.故答案为D.【分析】解两个不等式,根据“大小小大取中间”,从而得出答案.7.【答案】D【解析】【解答】解:依题可得:x(1+10%)=330.故答案为D.【分析】根据题意即可列出方程.8.【答案】B【解析】【解答】解:依题可得:l是AB的垂直平分线,∴CA=CB,∵∠CAB=25°,∴∠CAB=∠CBA=25°∴∠BCM=25°+25°=50°.故答案为B.【分析】依题可得l是AB的垂直平分线,再由垂直平分线上的点到两端点的距离相等,从而得到∠CAB 为等腰三角形,在根据三角形的外角即可得出答案.9.【答案】C【解析】【解答】解:A.多边形的外角和为360°,故本选项正确.B.切线垂直于过切点的半径,故本选项正确.C.(3,-2)关于y的对称点为(-3,-2),故本选项错误.D.抛物线y=x2-4x+2017对称轴为直线x=2.故本选项正确.故答案为C.【分析】根据多边形的外角和定理,切线的性质,点的坐标特征,以及抛物线的顶点坐标公式即可得出答案.10.【答案】B【解析】【解答】解:中位数:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数);结合题意可知答案为B.【分析】根据中位数的定义即可得出答案.11.【答案】B【解析】【解答】解:在Rt∠DEC中,∵CD=20,DE=10.∴ ∠DCE=30°,∠CDE=60°.∴ ∠CDF=30°.又∵∠BDF=30°.∠BCA=60°.∴ ∠BCD=30°.∠BDC=60°.在Rt∠BCD中,∴ tan60°=BC DC.∴ BC=DCtan60°=20√3.在Rt∠BAC中,∴ sin60°=BA BC.∴ BA=BCsin60°=20√3×√32=30(m).故AB的高度为30m.【分析】依题可得CD=20,DE=10.∠BDF=30°.∠BCA=60°.在Rt∠BCD中和Rt∠BAC中,利用锐角三角函数即可求出CB,BA12.【答案】C【解析】【解答】解:①∵正方形ABCD 的边长是3,BP=CQ.∴∠DAP∠∠ABQ.∴∠P=∠Q.∴∠P+∠QAB=∠Q+∠QAB=90°.∴AQ∠DP.故①正确.②在Rt∠DAP中,AO∠DP.∴∠AOD∠∠POA∴AOPO=ODOA.∴OA2=PO.OD.∵OD≠OE.故②错误.③∵正方形ABCD 的边长是3,BP=CQ.∴∠QCF∠∠PBE.∴CF=BE.∵BC=DC.∴DF=CE.∴∠ADF∠∠DEC.∴S∠ADF-S∠DOF=S∠DEC-S∠DOF.∴S ΔAOD =S 四边形OECF. 故③正确.④∵BP=1时,AP=4. ∴∠AOP∠∠DAP. ∴PB EB =PA DA =43.BE=34 ∴QE=134∴∠QOP∠∠PAD.∴QO PA =OE AD =QE PD =1345. 解得QO=135,OE=3920,AO=5-QO=125∴tanOAE=OE OA =1316. 故④正确. 故答案为C.【分析】①由正方形 ABCD 的边长是3, BP=CQ 易证∠DAP∠∠ABQ ,可得∠P=∠Q ,∠P+∠QAB=∠Q+∠QAB=90°;AQ∠DP.故①正确.②在Rt∠DAP 中,AO∠DP 可得∠AOD∠∠POA ;根据相似三角形的性质可得OA 2=PO.OD.OD≠OE;故②错误.③由正方形 ABCD 的边长是3, BP=CQ 易证∠QCF∠∠PBE ;∠ADF∠∠DEC ;所以S ∠ADF -S ∠DOF =S ∠DEC -S ∠DOF ;即S ΔAOD =S 四边形OECF.故③正确.④由题可证∠AOP∠∠DAP ,求出BE=34,QE=134,从而得到∠QOP∠∠PAD ,利用相似三角形的性质易得QO=135,OE=3920,AO=5-QO=125;所以tanOAE=OE OA =1316;故④正确.13.【答案】a (a+2)(a-2)【解析】【解答】解:原式=a (a+2)(a-2).故答案为a (a+2)(a-2).【分析】根据因式分解的提公因式法和公式法中的平方差公式即可得出答案.14.【答案】23【解析】【解答】解:依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,所以P=23.故答案为23.【分析】依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,从而得出答案.15.【答案】2【解析】【解答】解:原式=1-i 2.∵i 2=-1.∴原式=1-(-1).=2. 故答案为2.【分析】根据平方差公式即可得出式子,再把i 2=-1代入即可求出答案.16.【答案】3【解析】【解答】解:如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,∵∠ABC=∠MPN=90°. ∴∠PEB+∠PFB=180°. 又∵∠PEB+∠PEQ=180°. ∴∠PFB=∠PEQ. ∴∠QPE∠∠RPF. ∵PE=2PF. ∴PQ=2PR=2BQ. ∴∠AQP∠∠ABC.∴AQ :QP :AP=AB :BC :AC=3:4:5. 设PQ=4x ,∴AQ=3x ,AP=5x ,PR=BQ=2x. ∴AB=AQ+BQ=5x=3.∴x=35.∴AP=5x=3. 故答案为3.【分析】如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,由题易得∠PFB=∠PEQ ;可得∠QPE∠∠RPF ;∠AQP∠∠ABC ;根据相似三角形的性质与已知条件即可求出AP.17.【答案】解:原式=2-√2-2×√22+1+2√2.=3.【解析】【分析】根据二次根式,负指数幂,绝对值,特殊角的三角函数值等性质计算即可得出答案.18.【答案】解:原式=2x (x+2)+x (x−2)(x−2)(x+2)×(x−2)(x+2)x =2x 2+4x+x 2−2x x =3x 2+2x x=3x+2.∵x=-1.∴原式=3×(-1)+2 =-1.【解析】【分析】根据分式的加减乘除运算法则即可化简该分式,将x 的值代入即可得出答案.19.【答案】(1)120;0.25;0.2(2)解:补全的条形统计图如下:(3)500【解析】【解答】解:(1)18÷0.15=120(人)x=30÷120=0.25.m=120×0.4=48.y=1-0,25-0.4-0.15=0.2.n=120×0.2=24(3)2000×0.25=500(人)【分析】(1)根据频数÷频率=总数;频率=频数÷总数;频数=总数×频率即可补全统计表.(2)由(1)中的数据即可补全条形统计图.(3)根据2000乘以共享单车的频率即可求出人数.20.【答案】(1)解:设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.化简得:x 2-28x+180=0.解得:x 1=10(舍去),x 2=18.答:长为18厘米,宽为10厘米.(2)解:设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.化简得:y 2-28y+200=0.∵∠=b 2-4ac=282-4×200=-16<0.∴原方程无解.∴不能围成面积为200平方厘米的矩形.【解析】【分析】(1)设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.求解即可得出答案.(2)设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.由根的判别式可知此方程无解;故不能围成面积为200平方厘米的矩形21.【答案】(1)解:将A (2,4)代入y=m x .∴ m=2×4=8.∴ 反比例函数解析式为y=8x.∴将B (a ,1)代入上式得a=8.∴B (8,1).将A (2,4),B (8,1)代入y=kx+b 得:{2k +b =48k +b =1. ∴{k =−12b =5∴一次函数解析式为:y=-12x+5. (2)证明:由(1)知一次函数解析式为y=-12x+5.∴C (10,0),D (0,5). 如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F.∴E (0,4),F (8,0).∴AE=2,DE=1,BF=1,CF=2∴在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得:AD=√AE 2+DE 2=√5,BC=√CF 2+BF 2=√5.∴AD=BC.【解析】【分析】(1)将A (2,4)代入y=m x 求出m 得到反比例函数解析式;再将B (a ,1)代入得a ,将A (2,4),B (8,1)代入y=kx+b 得一个二元一次方程组求解即可得一次函数解析式.(2)由(1)可得C (10,0),D (0,5);如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F ;从而得到E (0,4),F (8,0);AE=2,DE=1,BF=1,CF=2在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得AD=BC.22.【答案】(1)解:连接OC ,在Rt∠COH 中,∵CH=4,OH=r-2,OC=r.∴ (r-2)2+42=r 2.∴ r=5(2)解:∵弦CD 与直径AB 垂直,∴ 弧AD=弧AC=12弧CD. ∴ ∠AOC=12∠COD. ∴∠CMD=12∠COD. ∴ ∠CMD=∠AOC.∴sin∠CMD=sin∠AOC.在Rt∠COH 中,∴sin∠AOC=CH OC =45. ∴sin∠CMD=45. (3)解:连接AM ,∴∠AMB=90°.在Rt∠AMB 中,∴∠MAB+∠ABM=90°.在Rt∠EHB 中,∴∠E+∠ABM=90°.∴∠MAB=∠E.∵弧BM=弧BM ,∴∠MNB=∠MAB=∠E.∵∠EHM=∠NHF.∴∠EHM∠∠NHF∴HE HN =HM HF. ∴HE.HF=HM.HN.∵AB 与MN 交于点H ,∴HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16.∴HE.HF=16.【解析】【分析】(1)连接OC ,在Rt∠COH 中,根据勾股定理即可r.(2)根据垂径定理即可得出弧AD=弧AC=12弧CD ;再根据同弧所对的圆周角等于圆心角的一半;得出 ∠CMD=∠AOC ;在Rt∠COH 中,根据锐角三角函数定义即可得出答案.(3)连接AM ,则∠AMB=90°.在Rt∠AMB 中和Rt∠EHB 中,根据同角的余角相等即可∠MAB=∠E ;再由三角形相似的判定和性质即可得HE.HF=HM.HN.又由AB 与MN 交于点H ,得出HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16;从而求出HE.HF=16.23.【答案】(1)解:依题可得:{a −b +2=016a +4b +2=0解得:{a =−12b =32∴y=-12x 2+32x+2. (2)解:依题可得:AB=5,OC=2,∴S ∠ABC =12AB×OC=12×2×5=5. ∵S ∠ABC =23S ∠ABD. ∴S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0). ∵S ∠ABD =12AB|y D |=152.| 12×5×|-12m 2+32m+2|=152. ∴m=1或m=2或m=-2(舍去)或m=5∴D 1(1,3),D 2(2,3),D 3(5,-3).(3)解:过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H.∵∠CBF=45°,∠BCF=90°.∴CF=CB.∵∠BCF=90°,∠FHC=90°.∴∠HCF+∠BCO=90°,∠HCF+∠HFC=90°∴∠HFC=∠OCB.∵{∠CHF =∠COB ∠HFC =∠OCB FC =CB∴∠CHF∠∠BOC (AAS ).∴HF=OC=2,HC=BO=4,∴F (2,6).设直线BE 解析式为y=kx+b.∴{2k +b =64k +b =0解得{k =−3b =12∴直线BE 解析式为:y=-3x+12. ∴{y =−12x 2+32x +2y =−3x +12解得:x 1=5,x 2=4(舍去)∴E (5,-3).BE=√(5−4)2+(−3−0)2=√10.【解析】【分析】(1)用待定系数法求二次函数解析式.(2)依题可得:AB=5,OC=2,求出S ∠ABC =12AB×OC=12×2×5=5;根据S ∠ABC =23S ∠ABD ;求出S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0).根据三角形的面积公式得到一个关于m 的方程,求解即可. (3)过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H ;根据同角的余角相等得到∠HFC=∠OCB ;再根据条件得到∠CHF∠∠BOC (AAS );利用其性质可求出HF=OC=2,HC=BO=4,从而得到F (2,6);用待定系数法求直线BE 解析式;再把抛物线解析式和直线BE 解析式联立得到方程组求E 点坐标,再根据勾股定理求出BE 长.。

2017年深圳市中考数学真题试卷及详细答案(word版))

2017年深圳市中考数学真题试卷及详细答案(word版))

C.7 3=7 5D.7 3+7 4=1802017年广东省深圳市中考数学试卷、选择题1. (3分)-2的绝对值是( )A .- 2B. 2C .-丄2. (3分)图中立体图形的主视图是()3. (3分)随着一带一路”建设的不断发展,我国已与多个国家建立了经贸合作 关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000吨,将8200000用科学记数法表示为( )A . 8.2X 105B . 82X 1054. (3分)观察下列图形,其中既是轴对称又是中心对称图形的是()B.C. 8.2X 106D. 82X 107A .Z 仁/ 2 B.Z 2=7 3 C. 11 II 12 ?(D.6. (3分)不等式组、 :的解集为( ) A . x >- 1B . x v 3C . x v- 1 或 x >3D .- 1 <x <37. (3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个 月卖出x 双,列出方程(11. (3分)如图,学校环保社成员想测量斜坡 CD 旁一棵树AB 的高度,他们先 在点C 处测得树顶B 的仰角为60。

,然后在坡顶D 测得树顶B 的仰角为30。

,已 知斜坡CD 的长度为20m ,DE 的长为10cm ,则树AB 的高度是()m .A . 10%x=330 B. (1 - 10%) x=330 C. (1 - 10%) 2x=3308. (3分)如图,已知线段AB, 接弧的交点得到直线I ,在直线D . (1 +10%) x=330B 为圆心,大于二AB 为半径作弧,连2 C,使得/ CAB=25, 分别以A 、 l 上取一点 长AC 至M ,求/ BCM 的度数为( A . 40°B. 50°C. 60°D . 70°9. (3分)下列哪一个是假命题( A . 五边形外角和为360° B. 切线垂直于经过切点的半径C. D . (3,- 2)关于y 轴的对称点为(-3, 抛物线y=f - 4X+2017对称轴为直线x=2 2) 10. (3分)某共享单车前a 公里1元,超过a 公里的,每公里用该共享单车50%的人只花1元钱,a 应该要取什么数(2元,若要使使A .平均数B .中位数C .众数D .方差延A. 20 二B. 30 D. 4012. (3分)如图,正方形ABCD的边长是3,BP=CQ连接AQ, DP交于点0,并分别与边CD, BC交于点F, E,连接AE,下列结论:①AQ丄DP;②0A?=0E?0R③Sx A0D=S四边形0ECF;④当BP=1 时,tan/ 0AE—,A. 1B. 2C. 3二、填空题13. (3分)因式分解:a3-4a= _______ .14. (3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是_____________________________________________15. (3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=- 1,那么(1+i)? (1- i)= ______ .16. (3 分)如图,在Rt A ABC中,/ ABC=90, AB=3, BC=4 Rt A MPN, / MPN=90 ,点P在AC上, PM交AB于点E, PN交BC于点F,当PE=2PF 时,AP= .三、解答题17. (5 分)计算:- 2| - 2cos45+(- 1)2砸.18 (6分)先化简,再求值:(亍+z-)宁^—,其中x=- 1.19. (7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y(2) 补全条形统计图;(3) _______________________________________ 若该校共有2000人,骑共享单车的有______________________________________ 人.20. ( 8分)一个矩形周长为56厘米.(1) 当矩形面积为180平方厘米时,长宽分别为多少?(2) 能围成面积为200平方米的矩形吗?请说明理由.21. (8分)如图,一次函数y=kx+b与反比例函数y壬(x>0)交于A (2,4),B (a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y亠(x>0)的表达式;22. (9分)如图,线段AB是。

2017年深圳市中考数学试题及答案(K12教育文档)

2017年深圳市中考数学试题及答案(K12教育文档)

(直打版)2017年深圳市中考数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2017年深圳市中考数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2017年深圳市中考数学试题及答案(word版可编辑修改)的全部内容。

深圳市2017年初中毕业生学业考试数学试卷第一部分 选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的)1.-2的绝对值是( )A .-2B .2C .-12D .122.图中立体图形的主视图是( )立体图形ABCD3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为( )A .8.2×105B .82×105C .8。

2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A B C D5.下列选项中,哪个不可以得到l 1∥l 2?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180° 6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .203B .30C .303D .4012.如图,正方形ABCD 的边长是3,BP =CQ,连接AQ 、DP 交于点O,并分别与边CD 、BC 交于点F ,E,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE ·OP;③AODOECF S S =四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( )A .1B .2C .3D .4第11题 第12题 第16题第二部分 非选择题二、填空题(本题共4题,每小题3分,共12分) 13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.阅读理解:引入新数i ,新数i 满足分配率,结合律,交换律,已知i 2=-1,那么()()11i i +-= .16.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,Rt △MPN ,∠MPN =90°,点P 在AC上,PM 交AB 与点E ,PN 交BC 于点F,当PE =2PF 时,AP = .三、解答题(567889952''''''''++++++=) 17()22224518cos --+-+18.先化简,再求值:22224x x x x x x ⎛⎫+÷⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年深圳市中考数学试题及答案深圳市2017年初中毕业生学业考试数学试卷第一部分选择题一、(本部分共12题,每小题3分,共36分,每小题给出4个选项,其中只有一个选项是正确的)1.-2的绝对值是()A.-2 B.2 C.-12D.122.图中立体图形的主视图是()立体图形 A B C D 3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学计数法表示为()A.8.2×105B.82×105C.8.2×106D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A B C D 5.下列选项中,哪个不可以得到l1∥l2?()A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6.不等式组32521x x -<⎧⎨-<⎩的解集为( ) A .1x >- B .3x < C .1x <-或3x > D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10330%x =B .()110330%x -=C .()2110330%x -=D .()110330%x +=8.如图,已知线段AB ,分别以A 、B为圆心,大于12AB 为半径作弧, 连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M ,求∠BCM 的度数( )A .40°B .50C .60°D .70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,-2)关于y 轴的对称点为(-3,2)D .抛物线242017y x x =-+对称轴为直线x =210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .B .30C .D .4012.如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE ·OP ;③AOD OECFS S =V 四边形,④当BP =1时,1316tan OAE ∠=. 其中正确结论的个数是( )A .1B .2C .3D .4第11题第12题第16题第二部分非选择题二、填空题(本题共4题,每小题3分,共12分)13.因式分解:34-=.a a14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配率,结合律,交换律,已知i2=-1,那么()()+-=.11i i16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB与点E,PN交BC于点F,当PE=2PF 时,AP = .三、解答题(567889952''''''''++++++=)17.计算:()22224518cos ---+-+o18.先化简,再求值:22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x =-1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B类学生坐公交车、私家车,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率A30 x B18 0.15 Cm 0.40 Dn y(1)学生共人,x=,y =;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别是多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图,一次函数y=kx+b与反比例函数my=(x>0)x交于A(2,4)、B(a,1),与x轴、y轴分别交于点C、D.(1)直接写出一次函数y=kx+b的表达式和反比例函数m=(x>0)的表达式;yx(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是¼CBD上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求s i n∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE HF•的值.F23.如图,抛物线22y ax bx=++经过A(-1,0),B(4,0),交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使得23ABC ABDS S ∆=V ,若存在请直接给出点D 坐标,若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.深圳市2017年中考试数学试卷参考答案1-5.BACDC 6-10.DDBCB 11-12.BC13.()()22a a a +-; 14.23; 15.2; 16.3; 17.3;18.原式=()()()()()()2222222x x x x x x x x x ++-+-•+-=3x +2 把x =-1代入得:原式=3×(-1)+2=-1.19.(1)18÷0.15=120人,x =30÷120=0.25,m =120×0.4=48,y =1-0.25-0.4-0.15=0.2,n =120×0.2=24;(2)如下图;(3)2000×0.25=500.20.(1)解:设长为x 厘米,则宽为(28-x )厘米, 列方程:x (28-x )=180, 解方程得110x =,218x =, 答:长为18厘米,宽为10厘米;(2)解:设长为x 厘米,则宽为(28-x )厘米, 列方程得:x (28-x )=200, 化简得:2282000xx -+=, 224284200160b ac ∆=-=-⨯=-<,方程无解,所以不能围成面积为200平方厘米的矩形.21.(1)将A (2,4)代入m y x=中,得m =8, ∴反比例函数的解析式为8y x =, ∴将B (a ,1)代入8y x=中得a =8, ∴B (8,1),将A (2,4)与B (8,1)代入y =kx +b 中,得8124k b k b +=⎧⎨+=⎩,解得125k b ⎧=-⎪⎨⎪=⎩, ∴152y x =-+; (2)由(1)知,C 、D 两点的坐标为(10,0)、(0,5),如图,过点A 作y 轴的垂线与y 轴交于点E ,过B 作x 轴的垂线与x 轴交于点F ,∴E (0,4),F (8,0),∴AE =2,DE =1,BF =1,CF =2,∴在Rt △ADE 和Rt △BCF 中,根据勾股定理得, AD =225AE DE +=,BC =225CF BF +=, ∴AD =BC .22.(1)连接OC ,在Rt △COH 中,CH =4,OH =r -2,OC =r ,由勾股定理得:(r -2)2+42=r 2,解得:r =5;(2)∵弦CD 与直径AB 垂直,∴»»»12AD AC CD ==,∴∠AOC =12∠COD , ∵∠CMD =12∠COD ,∴∠CMD =∠AOC ,∴sin ∠CMD =sin ∠AOC ,在Rt △COH 中,s i n ∠AOC =45OH OC =,即s i n ∠CMD =45; (3)连接AM ,则∠AMB =90°,在Rt △ABM 中,∠MAB +∠ABM =90°,在Rt △EHB 中,∠E +∠ABM =90°,∴∠MAB =∠E ,∵¼¼BM BM =,∴∠MNB =∠MAB =∠E , ∵∠EHM =∠NHF ,∴△EHM ∽△NHF ,∴HE HM HN HF =,∴HE ·HF =HM ·HN ,∵AB 与MN 相交于点H ,∴HM ·HN =HA ·HB =HA ·(2r -HA )=2×(10-2)=16, 即HE ·HF =16.23.(1)由题意得2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴213222y x x =-++; (2)依题意知:AB =5,OC =2,∴1125522ABC SAB OC ∆=⨯=⨯⨯=, ∵23ABC ABD SS ∆=V ,∴315522ABD S =⨯=V , 设D (m ,213222m m -++)(m >0), ∵11522ABD D S AB y ==V ,∴211315522222m m ⨯⨯-++=,解得:m =1或m =2或m =-2(舍去)或m =5, ∴D 1(1,3)、D 2(2,3)、D 3(5,-3);(3)过C 点作CF ⊥BC ,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H ,∵∠CBF =45°,∠BCF =90°,∴CF =CB ,∵∠BCF =90°,∠FHC =90°,∴∠HCF +∠BCO =90°,∠HCF +∠HFC =90°,即∠HFC =∠OCB ,∵CHF COB HFC OCBFC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CHF ≌△BOC (AAS ),∴HF =OC =2,HC =BO =4,∴F (2,6),∴易求得直线BE :y =-3x +12, 联立213222312y x x y x ⎧=-++⎪⎨⎪=-+⎩, 解得15x =,24x =(舍去),故E (5,-3),∴BE .。

相关文档
最新文档