贵州省贵阳市2019-2020学年普通高中学生学业水平测试数学试题-含答案
2019-2020学年高中数学新教材必修一第二章《等式与不等式》测试试卷及答案解析
2019-2020学年高中数学新教材必修一第二章《等式与不等式》测试试卷(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a >1>b >-1,则下列不等式中恒成立的是( ) A.1a <1b B.1a >1b C .a >b 2D .a 2>2bC [取a =2,b =-12,满足a >1>b >-1,但1a >1b ,故A 错;取a =2,b =13,满足a >1>b >-1,但1a <1b ,故B 错;取a =54,b =56,满足a >1>b >-1,但a 2<2b ,故D 错,只有C 正确.]2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >ab 2 B.a b 2>a b >a C.a b >ab 2>aD.a b >a >a b 2C [∵a <0,b <-1,∴a b >0,b 2>1,∴1b 2<1. 又∵a <0,∴0>a b 2>a ,∴a b >ab 2>a . 故选C.]3.不等式-x 2-x +2≥0的解集为( ) A .{x |x ≤-2或x ≥1} B .{x |-2<x <1} C .{x |-2≤x ≤1}D .∅C [不等式-x 2-x +2≥0可化为x 2+x -2≤0,即(x +2)(x -1)≤0,所以-2≤x ≤1,即解集为{x |-2≤x ≤1}.]4.已知集合M ={x |0≤x <2},N ={x |x 2-2x -3<0},则M ∩N =( ) A .{x |0≤x <1}B .{x |0≤x <2}C .{x |0≤x ≤1}D .{x |0≤x ≤2}B [由于N ={x |x 2-2x -3<0}={x |-1<x <3},又因为M ={x |0≤x <2},所以M ∩N ={x |0≤x <2}.]5.下列方程,适合用因式分解法解的是( ) A .x 2-42x +1=0 B .2x 2=x -3 C .(x -2)2=3x -6D .x 2-10x -9=0C [C 中方程化简后可以用因式分解法求解.]6.求方程组⎩⎨⎧11x +3z =9,3x +2y +z =8,2x -6y +4z =5的解集时,最简便的方法是( )A .先消x 得⎩⎨⎧22y +2z =61,66y -38z =-37B .先消z 得⎩⎨⎧ 2x -6y =-15,38x +18y =21C .先消y 得⎩⎨⎧11x +7z =29,11x +3z =9D .得8x -2y +4z =11,再解C [第一个方程中没有y ,所以消去y 最简便.]7.若不等式4x 2+(m -1)x +1>0的解集为R ,则实数m 的取值范围是( ) A .m >5或m <-3 B .m ≥5或m ≤-3 C .-3≤m ≤5D .-3<m <5D [依题意有(m -1)2-16<0,所以m 2-2m -15<0,解得-3<m <5.] 8.已知关于x 的方程x 2-6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是( )A .1B .2C .3D .4B [∵x 2-6x +k =0的两根分别为x 1,x 2,∴x 1+x 2=6,x 1x 2=k ,∴1x 1+1x 2=x 1+x 2x 1x 2=6k =3,解得k =2.经检验,k =2满足题意.]9.某种产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本时的最低产量是( )A .200台B .150台C .100台D .50台B [要使生产者不亏本,则应满足25x ≥3 000+20x -0.1x 2,整理得x 2+50x -30 000≥0,解得x ≥150或x ≤-200(舍去),故最低产量是150台.]10.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D .a <b <a +b2<abB [因为0<a <b ,所以由均值不等式可得ab <a +b 2,且a +b 2<b +b2=b ,又a =a ·a <a ·b ,所以a <ab <a +b2<b .]11.若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( ) A .a 2+b 2+c 2≥2 B .a +b +c ≤ 3 C.1a +1b +1c ≤2 3D .(a +b +c )2≥3D [由均值不等式知a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,于是a 2+b 2+c 2≥ab +bc +ca =1,故A 错;而(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca )=3,故D 项正确,B 项错误;令a =b =c =33,则ab +bc +ca =1,但1a +1b +1c =33>23,故C 项错误.]12.若x >1,则4x +1+1x -1的最小值等于( ) A .6 B .9 C .4 D .1B [由x >1,得x -1>0,于是4x +1+1x -1=4(x -1)+1x -1+5≥24+5=9,当且仅当4(x -1)=1x -1,即x =32时,等号成立.] 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若{(x ,y )|(2,1)}是关于x ,y 的方程组⎩⎨⎧ax +by =2,bx +ay =7的解集,则(a +b )(a-b )=________.-15 [∵{(x ,y )|(2,1)}是关于x ,y 的方程组⎩⎨⎧ax +by =2,bx +ay =7的解集,∴⎩⎨⎧ 2a +b =2,2b +a =7,解得⎩⎨⎧a =-1,b =4,∴(a +b )(a -b )=(-1+4)×(-1-4)=-15.]14.若关于x 的不等式ax 2-6x +a 2<0的解集为(-∞,m )∪(1,+∞),则m =________.-3 [由已知可得a <0且1和m 是方程ax 2-6x +a 2=0的两根,于是a -6+a 2=0,解得a =-3,代入得-3x 2-6x +9=0,所以方程另一根为-3,即m =-3.]15.若关于x 的不等式组⎩⎨⎧x -1>a 2,x -4<2a的解集不是空集,则实数a 的取值范围是________.(-1,3) [依题意有⎩⎨⎧x >a 2+1,x <2a +4,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a -3<0,解得-1<a <3.]16.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. [9,+∞) [∵ab =a +b +3≥2ab +3, ∴ab -2ab -3≥0,即(ab -3)(ab +1)≥0, ∴ab -3≥0,即ab ≥3,∴ab ≥9.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或。
贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(4)含解析
贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了2.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D .3.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.4.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .5.若22)30x y -+-=(,则x-y 的正确结果是( ) A .-1B .1C .-5D .56.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣77.若30m n +-=,则222426m mn n ++-的值为( ) A .12B .2C .3D .08.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°9.二次函数y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.910.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3)C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)11.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=kx的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A.10 B.212C.454D.1512.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)14.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.15.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.16.已知双曲线k1yx+=经过点(-1,2),那么k的值等于_______.17.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.18.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.20.(6分)如图,反比例函数y=kx(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.21.(6分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元. 22.(8分)已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:»»BD CD;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.23.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P 与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x 轴的交点坐标.24.(10分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,AB =5,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使AE =4,连接OA ,OE ; (2)在BC 边上取点F ,使BF =______,连接OF ; (3)在CD 边上取点G ,使CG =______,连接OG ;(4)在DA 边上取点H ,使DH =______,连接OH .由于AE =______+______=______+______=______+______=______.可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .25.(10分)如图,已知抛物线2y x bx c =++经过(1,0)A ,(0,2)B 两点,顶点为D .(1)求抛物线的解析式;(2)将OAB ∆绕点A 顺时针旋转90︒后,点B 落在点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB ∆的面积是1NDD ∆面积的2倍,求点N 的坐标.26.(12分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下. 频数分布表 组别 一二三四五六七销售额 1619x <… 1922x <… 2225x <… 2528x <… 2831x <… 3134x <…频数7 932b2数据分析表 平均数 众数 中位数 20.318请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.27.(12分)如图,点C 、E 、B 、F 在同一直线上,AC ∥DF ,AC =DF ,BC =EF , 求证:AB=DE参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.2.D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图3.A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4.B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC、2、只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.5.A【解析】 由题意,得 x-2=0,1-y=0, 解得x=2,y=1. x-y=2-1=-1, 故选:A . 6.C 【解析】 【分析】先求出x=7时y 的值,再将x=4、y=-1代入y=2x+b 可得答案. 【详解】∵当x=7时,y=6-7=-1, ∴当x=4时,y=2×4+b=-1, 解得:b=-9, 故选C . 【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法. 7.A 【解析】 【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键. 8.D 【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD ∥BC ,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.9.D【解析】【分析】直接利用配方法得出二次函数的顶点式进而得出答案.【详解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函数y=﹣x2﹣4x+5的最大值是9,故选D.【点睛】此题主要考查了二次函数的最值,正确配方是解题关键.10.D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=23,∴AD=AB ACBC⋅=232⨯=3,∴BD=2ABBC=223()=1.∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.11.C【解析】【分析】A ,C 之间的距离为6,点Q 与点P 的水平距离为3,进而得到A ,B 之间的水平距离为1,且k=6,根据四边形PDEQ 的面积为()6 1.534524+⨯=,即可得到四边形PDEQ 的面积.【详解】A ,C 之间的距离为6,2017÷6=336…1,故点P 离x 轴的距离与点B 离x 轴的距离相同, 在y=4x+2中,当y=6时,x=1,即点P 离x 轴的距离为6, ∴m=6,2020﹣2017=3,故点Q 与点P 的水平距离为3, ∵6,1k =解得k=6, 双曲线6,y x= 1+3=4,63,42y == 即点Q 离x 轴的距离为32, ∴32n =,∵四边形PDEQ 的面积是()6 1.534524+⨯=.故选:C . 【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大. 12.D 【解析】 【分析】根据中心对称图形的概念求解. 【详解】解:A .不是中心对称图形,本选项错误; B .不是中心对称图形,本选项错误; C .不是中心对称图形,本选项错误; D .是中心对称图形,本选项正确. 故选D . 【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.14. 2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=12AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般. 15.S=1n-1【解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)×1=12;n=4时,S=1+(4-2)×1=18;…;所以,S 与n 的关系是:S=1+(n-2)×1=1n-1. 故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.-1【解析】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k1yx+=,得:k121+=-,解得:k=-1.17.1【解析】【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1.18.1.【解析】【分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=000 18046=672-.又∵PA是⊙O是切线,AO为半径,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°. 故答案为:1此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)1【解析】【分析】(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC 即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.【详解】(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵EAO FCOAO COAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形;(2)设AF=x.∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.20.(1)k=11;(1)C(2,0).【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=kx即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.(1)∵点A在直线y=2x上,其横坐标为1.∴y=2×1=6,∴A(1,6),把点A(1,6)代入kyx=,得62k=,解得:k=11;(1)由(1)得:12yx =,∵点B为此反比例函数图象上一点,其纵坐标为2,∴123yx==,解得x= 4,∴B(4,2),∵CB∥OA,∴设直线BC的解析式为y=2x+b,把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直线BC的解析式为y=2x﹣9,当y=0时,2x﹣9=0,解得:x=2,∴C(2,0).21.15元.【解析】【分析】首先设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元,根据题意列出一元一次方程进行求解. 【详解】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元.根据题意,列方程得:200=120(25)x x-,解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)证明见解析;(1)证明见解析;(3)1.【解析】【分析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,∵∠BAD和∠BOD是»BD所对的圆周角和圆心角,∠CAD和∠COD是»CD所对的圆周角和圆心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴»BD=»CD;(1)如图1,过点O作OM⊥AD于点M,∴∠OMA=90°,AM=DM,∵BE⊥AD于点E,CF⊥AD于点F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴OC FM OB EM,∵OB=OC,∴OC FMOB EM=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延长EO交AB于点H,连接CG,连接OA.∵BC为⊙O直径,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四边形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=12×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=CFAC,即sin45°=2CF,∴CF=1×222,∴2,∴2,∴2,在Rt△AEB中,∠AEB=90°,∴AB=cos452AE=︒,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC ∴△HBO∽△ABC,∴26 HO ACHB AB==,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.23.(1)(﹣2,,(﹣10,16﹣,(2a,b);(2)见解析;(3)直线PP'与x轴的交,0)【解析】【分析】(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=12P'A=2,,即可得出结论;②当P'(-5,16)时,确定出P'A=10,PA=PA'=10,得出结论;③当P(a,b)时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出y PP,即可得出结论.【详解】解:(1)如图1,①当P (﹣4,2)时,∵PA ⊥y 轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt △P'AH 中,P'H=12P'A=2, ∴AH=3P'H=23,∴OH=OA+AH=2+23,∴P'(﹣2,2+23),②当P'(﹣5,16)时,在Rt △P'AH 中,∠P'AH=30°,P'H=5,∴P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH ﹣AH=16﹣53,∴P (﹣10,16﹣53),③当P (a ,b )时,同①的方法得,P'(a 2,b ﹣3a ), 故答案为:(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a ); (2)如图2,过点Q 作QB ⊥y 轴于B ,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y轴,PA⊥y轴,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)设y PP'=kx+b',由题意知,k=3,∵直线经过点(3,6),∴b'=3,∴y PP'=3x+3,令y=0,∴x=3∴直线PP'与x30).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.24.(1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】【分析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.【详解】(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=3,连接OF;(3)在CD边上取点G,使CG=2,连接OG;(4)在DA边上取点H,使DH=1,连接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.25.(1)抛物线的解析式为232y x x =-+.(2)平移后的抛物线解析式为:231y x x =-+.(3)点N 的坐标为(1,1)-或(3,1).【解析】分析:(1)利用待定系数法,将点A ,B 的坐标代入解析式即可求得;(2)根据旋转的知识可得:A (1,0),B (0,2),∴OA=1,OB=2,可得旋转后C 点的坐标为(3,1),当x=3时,由y=x 2-3x+2得y=2,可知抛物线y=x 2-3x+2过点(3,2)∴将原抛物线沿y 轴向下平移1个单位后过点C .∴平移后的抛物线解析式为:y=x 2-3x+1;(3)首先求得B 1,D 1的坐标,根据图形分别求得即可,要注意利用方程思想.详解: (1)已知抛物线2y x bx c =++经过()1,0A ,()0,2B , ∴01200b c c =++⎧⎨=++⎩,解得32b c =-⎧⎨=⎩, ∴所求抛物线的解析式为232y x x =-+.(2)∵()1,0A ,()0,2B ,∴1OA =,2OB =,可得旋转后C 点的坐标为()3,1.当3x =时,由232y x x =-+得2y =,可知抛物线232y x x =-+过点()3,2. ∴将原抛物线沿y 轴向下平移1个单位长度后过点C .∴平移后的抛物线解析式为:231y x x =-+.(3)∵点N 在231y x x =-+上,可设N 点坐标为()2000,31x x x -+, 将231y x x =-+配方得23524y x ⎛⎫=-- ⎪⎝⎭,∴其对称轴为32x =.由题得B1(0,1). ①当0302x <<时,如图①,∵112NBB NDD S S ∆∆=, ∴00113121222x x ⎛⎫⨯⨯=⨯⨯⨯- ⎪⎝⎭, ∴01x =,此时200311x x -+=-,∴N 点的坐标为()1,1-.②当032x >时,如图②,同理可得0011312222x x ⎛⎫⨯⨯=⨯⨯- ⎪⎝⎭, ∴03x =,此时200311x x -+=,∴N 点的坐标为()3,1.综上,点N 的坐标为()1,1-或()3,1.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.26. (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】【分析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在2225x <…范围内的数据有3个,在2831x <…范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.27.证明见解析.【解析】证明:∵AC//DF ∴在和中 ∴△ABC ≌△DEF (SAS )。
2019-2020学年高中数学(人教版必修2)阶段质量检测(二) Word版含答案
阶段质量检测(二)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直答案:D2.(浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥αC.若m⊥β,n⊥β,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C3.如图在四面体中,若直线EF和GH相交,则它们的交点一定( )A.在直线DB上B.在直线AB上C.在直线CB上D.都不对答案:A4.如图所示,在正方体ABCDA1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.AC B.BDC.A1D D.A1D1答案:B5.给定下列四个命题:①若两个平面有无数个公共点,则这两个平面重合;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为正确的命题的是( )A.①和②B.②和③C.③和④D.②和④6.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是( )A.12B.32C.63D.62答案:C7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角ACDB的余弦值为( )A.12B.13C.33D.23答案:C8.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中正确的说法个数是( )A.3 B.2C.1 D.0答案:B9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D10.已知平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC,BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度为( )A.13 B.151 C.12 3 D.15答案:A二、填空题(共4小题,每小题5分,共20分)11.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为答案:BM⊥PC(其他合理即可)12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个说法:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,α⊥β,则a⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确的个数为________.答案:313.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=3,则异面直线AD与BC所成角的大小为________.答案:60°14.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.答案:①②三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.又CD⊥PC,PA∩PC=P,∴CD⊥平面PAC.(2)∵AD∥BC,AB⊥BC,AB=BC=1,∴∠BAC=45°,∠CAD=45°,AC= 2.∵CD⊥平面PAC,∴CD⊥CA,∴AD=2.又∵E为AD的中点,∴AE=BC=1,∴AE綊BC,∴四边形ABCE是平行四边形,又∵AB⊂平面PAB,CE⊄平面PAB,∴CE∥平面PAB.16.(本小题满分12分)(山东高考)如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形.所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF. 因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB=12 AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.17.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,AB⊥平面BB1C1C,BB1=2BC,D,E,F分别是CC1,A1C1,B1C1的中点,G在BB1上,且BG=3GB1.求证:(1)B1D⊥平面ABD;(2)平面GEF∥平面ABD.证明:(1)取BB1的中点为M,连接MD,如图所示.因为BB1=2BC,且四边形BB1C1C为平行四边形,所以四边形CDMB和四边形DMB1C1均为菱形.故∠CDB=∠BDM,∠MDB1=∠B1DC1,所以∠BDM+∠MDB1=90°,即BD⊥B1D.又AB⊥平面BB1C1C,B1D⊂平面BB1C1C,所以AB⊥B1D.又AB∩BD=B,所以B1D⊥平面ABD.又F为B1C1的中点,所以GF∥MC1.又MB綊C1D,所以四边形BMC1D为平行四边形,所以MC1∥BD,故GF∥BD.又BD⊂平面ABD,所以GF∥平面ABD.又EF∥A1B1,A1B1∥AB,AB⊂平面ABD,所以EF∥平面ABD.又EF∩GF=F,故平面GEF∥平面ABD.18.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE =EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点G.∵EF∥AG,且EF=1,AG=12AC=1,∴四边形AGEF为平行四边形.所以AF∥EG. ∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG.∵EF∥CG,EF=CG=1,且CE=1,∴四边形CEFG为菱形.∴CF⊥EG.∵四边形ABCD为正方形,∴BD⊥AC.又∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF.∴CF⊥BD.又BD∩EG=G,∴CF⊥平面BDE.(1)AO 与A ′C ′所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的度数. 解:(1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵OC ⊥OB ,AB ⊥平面BC ′,∴OC ⊥AB .又AB ∩BO =B ,∴OC ⊥平面ABO . 又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°. 即AO 与A ′C ′所成角的度数为30°. (2)如图所示,作OE ⊥BC 于E ,连接AE . ∵平面BC ′⊥平面ABCD ,∴OE ⊥平面ABCD ,∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝ ⎛⎭⎪⎫122=52, ∴tan ∠OAE =OE AE =55.(3)∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =O , ∴OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成角的度数为90°.M ,N 分别是边AD ,CD 上的点,且2AM =MD ,2CN =ND ,如图①,将△ABD 沿对角线BD 折叠,使得平面ABD ⊥平面BCD ,并连接AC ,MN (如图②).(1)证明:MN ∥平面ABC ; (2)证明:AD ⊥BC ;(3)若BC =1,求三棱锥A BCD 的体积. 解:(1)证明:在△ACD 中, ∵2AM =MD,2CN =ND , ∴MN ∥AC ,又∵MN ⊄平面ABC ,AC ⊂平面ABC , ∴MN ∥平面ABC .(2)证明:在△ABD 中,AB =AD ,∠A =90°, ∴∠ABD =45°.∵在平面四边形ABCD 中,∠B =135°, ∴BC ⊥BD .又∵平面ABD ⊥平面BCD ,且BC ⊂平面BCD ,平面ABD ∩平面BCD =BD , ∴BC ⊥平面ABD ,又AD ⊂平面ABD , ∴AD ⊥BC . (3)在△BCD 中,∵BC =1,∠CBD =90°,∠BCD =60°, ∴BD = 3.在△ABD 中,∵∠A =90°,AB =AD , ∴AB =AD =62, ∴S △ABD =12AB ·AD =34,由(2)知BC ⊥平面ABD , ∴V A BCD =V C ABD =13×34×1=14.(B卷能力素养提升)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.空间两个角α,β的两边分别对应平行,且α=60°,则β为( )A.60°B.120°C.30°D.60°或120°解析:选D 由等角定理可知β=60°或120°.2.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( ) A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB 与CD平行;若不共面,则直线AB与CD是异面直线.3.如图,正方体ABCDA1B1C1D1中,①DA1与BC1平行;②DD1与BC1垂直;③BC1与AC所成角为60°.以上三个结论中,正确结论的序号是( )A.①B.②C.③D.②③解析:选C ①错,应为DA1⊥BC1;②错,两直线所成角为45°;③正确,将BC1平移至AD1,由于三角形AD1C为等边三角形,故两异面直线所成角为60°,即正确命题序号为③,故选C.4.已知l是直线,α、β是两个不同的平面,下列命题中的真命题( )A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l∥α,α∥β,则l∥βD.若l⊥α,l∥β,则α⊥β解析:选D 对于A,若l∥α,l∥β,则α∥β或α与β相交,所以A错;对于B,若α⊥β,l∥α,则l∥β或l⊥β或l⊂β或l与β相交,所以B错;对于C,若l∥α,α∥β,则l∥β或l⊂β,所以C错;对于D,若l⊥α,l∥β,则α⊥β,由面面垂直的判定可知选项D正确.5.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC∥截面PQMNC.AC=BD解析:选C ∵MN∥PQ,由线面平行的性质定理可得MN∥AC,从而AC∥截面PQMN,B正确;同理可得MQ∥BD,故AC⊥BD,A正确;又∠PMQ=45°,故D正确.6.α,β,γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是( )A.①或②B.②或③C.①或③D.只有②解析:选C 若填入①,则由a∥γ,b⊂β,b⊂γ,b=β∩γ,又a⊂β,则a∥b;若填入③,则由a⊂γ,a=α∩β,则a是三个平面α、β、γ的交线,又b∥β,b⊂γ,则b∥a;若填入②,不能推出a∥b,可以举出反例,例如使β∥γ,b⊂γ,画一草图可知,此时能有a∥γ,b∥β,但不一定a∥b,有可能异面.从而A、B、D都不正确,只有C正确.7.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是( )A.c与a,b都异面B.c与a,b都相交C.c至少与a,b中的一条相交D.c与a,b都平行解析:选D 如图,以三棱柱为模型.∵a∥b,a⊄γ,b⊂γ,∴a∥γ.又∵a⊂β,β∩γ=c,∴a∥c.∴a∥b∥c.8.如下图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是( )A.平行B.相交且垂直C.异面D.相交成60°解析:选D 还原几何体,如图.可知D点与B点重合,△ABC是正三角形,所以选D.成的角为( )A .30°B .45°C .60°D .90°解析:选A 如图,二面角αl β为45°,AB ⊂β,且与棱l 成45°角,过A 作AO ⊥α于O ,作AH ⊥l 于H .连接OH 、OB ,则∠AHO 为二面角αl β的平面角,∠ABO 为AB 与平面α所成角.不妨设AH =2,在Rt △AOH 中,易得AO =1;在Rt △ABH 中,易得AB =2.故在Rt △ABO 中,sin ∠ABO =AO AB =12, ∴∠ABO =30°,为所求线面角.10.如图(1)所示,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为H ,如图(2)所示,那么,在四面体A EFH 中必有( )A .AH ⊥△EFH 所在平面B .AG ⊥△EFH 所在平面C .HF ⊥△AEF 所在平面D .HG ⊥△EFH 所在平面解析:选A 折成的四面体中有AH ⊥EH ,AH ⊥FH ,∴AH ⊥平面HEF .故选A. 二、填空题(共4小题,每小题5分,共20分)11.如图,直四棱柱ABCD A 1B 1C 1D 1的底面是边长为1的正方形,侧棱长AA 1=2,则异面直线A 1B 1与BD 1的夹角大小等于________.解析:∵A 1B 1∥AB ,∴AB 与BD 1所成的角即是A 1B 1与BD 1所成的角.连接AD 1, 可知AB ⊥AD 1,在Rt △BAD 1中,AB =1,AD 1=3,∴tan ∠ABD 1=AD1AB=3, ∴∠ABD 1=60°,故A 1B 1与BD 1的夹角为60°. 答案:60°12.如图,在正三棱柱ABC A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC ,A 1C 1的中点E ,E 1,连接BE ,B 1E 1,EE 1,由题意知平面BEE 1B 1⊥平面AC 1,过D 作DF ⊥EE 1于F ,连接AF ,则DF ⊥平面AC 1.∴∠DAF 即为AD 与平面AC 1所成的角.可求得AD =2,DF =32,∴sin ∠DAF =DF AD =64. 答案:6413.设a ,b ,c 是空间中的三条直线,下面给出五个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线; ⑤若a ,b 与c 成等角,则a ∥b .上述命题中正确的命题是________(只填序号). 解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 答案:①14.给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a ,b 中一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面; ③一定存在平面α同时和异面直线a ,b 都平行. 其中正确的命题为________.(写出所有正确命题的序号)解析:①中,异面直线a ,b 可以都与c 相交,故不正确;②中,直线异面不具有传递性,故不正确;③中,过直线b 上一点P 作a ′∥a ,则a ′、b 确定一平面,则与该平面平行的任一平面(平面内不包含直线a 、b )都与异面直线a 、b 平行,故正确.答案:③三、解答题(共6小题,共70分,解答时应写出文字说明,证明过程或演算过程) 15.(本小题满分10分)如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.解:在平面AA 1D 1D 内,延长D 1F ,∵D 1F 与DA 不平行,∴D 1F 与DA 必相交于一点,设为P ,则P ∈D 1F ,P ∈DA .又∵D 1F ⊂平面BED 1F ,AD ⊂平面ABCD ,∴P ∈平面BED 1F ,P ∈平面ABCD .又B 为平面ABCD 与平面BED 1F 的公共点,连接PB ,∴PB 即为平面BED 1F 与平面ABCD 的交线.如图所示.16.(本小题满分12分)在右图的几何体中,面ABC ∥面DEFG, ∠BAC =∠EDG=120°,四边形ABED 是矩形,四边形ADGC 是直角梯形,∠ADG =90°,四边形DEFG是梯形, EF ∥DG ,AB =AC =AD =EF =1,DG =2.(1)求证:FG ⊥面ADF ; (2)求四面体 CDFG 的体积.解:(1)连接DF 、AF ,作DG 的中点H , 连接FH ,EH ,∵EF ∥DH ,EF =DH =ED =1, ∴四边形DEFH 是菱形,∴EH ⊥DF , 又∵EF ∥HG, EF =HG , ∴四边形EFGH 是平行四边形, ∴FG ∥EH ,∴FG ⊥DF ,由已知条件可知AD ⊥DG ,AD ⊥ED , 所以AD ⊥面EDGF ,所以AD ⊥FG .又∵⎩⎪⎨⎪⎧FG⊥AD,FG⊥DF,AD ⊂面ADF ,DF ⊂面ADF ,AD∩DF=D ,∴FG ⊥面ADF .(2)因为DH ∥AC 且DH =AC , 所以四边形ADHC 为平行四边形, 所以CH ∥AD ,CH =AD =1,由(1)知AD ⊥面EDGF , 所以CH ⊥面DEFG .由已知,可知在三角形DEF 中,ED =EF =1,∠DEF =60°,所以,△DEF 为正三角形,DF =1,∠FDG =60°, S △DEG =12·DF ·DG ·sin∠FDG =32. 四面体CDFG =13·S △DFG ·CH=13×32×1=36. 17.(本小题满分12分)如图所示,在四棱锥P ABCD 中,PA ⊥平面ABCD ,AD ⊥AB ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,N 为线段PB 的中点,G在线段BM 上,且BGGM=2.(1)求证:AB ⊥PD ; (2)求证:GN ∥平面PCD . 证明:(1)因为PA ⊥平面ABCD , 所以PA ⊥AB .又因为AD ⊥AB ,AD ∩PA =A ,所以AB ⊥平面PAD .又PD ⊂平面PAD ,所以AB ⊥PD .(2)因为△ABC 是正三角形,且M 是AC 的中点,所以BM ⊥AC . 在直角三角形AMD 中,∠MAD =30°, 所以MD =12AD .在直角三角形ABD 中,∠ABD =30°, 所以AD =12BD ,所以MD =14BD .又因为BGGM=2,所以BG =GD .又N 为线段PB 的中点,所以GN ∥PD . 又GN ⊄平面PCD ,PD ⊂平面PCD , 所以GN ∥平面PCD .18.(本小题满分12分)(浙江高考)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.解:(1)证明:设E为BC的中点,连接AE,A1E,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.又因为A1E,BC⊂平面A1BC,A1E∩BC=E,故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,AE∩A1E=E,所以BC⊥平面AA1DE.所以BC⊥A1F.又因为DE∩BC=E,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.19.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.解:(1)证明:在三棱柱ABCA1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG=12AC,EC1=12A1C1.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB=AC2-BC2= 3.所以三棱锥EABC的体积V=13S△ABC·AA1=13×12×3×1×2=33.20.(本小题满分12分)如图所示,在棱长为2的正方体ABCDA1B1C1D1中,E,F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求三棱锥VB1EFC的体积;(3)求二面角ECFB1的大小.解:(1)证明:连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则EF为中位线,∴EF∥D1B,而D1B⊂面ABC1D1,EF⊄面ABC1D1,∴EF∥面ABC1D1.(2)等腰直角三角形BCD中,F为BD中点,∴CF⊥BD.①∵ABCDA1B1C1D1是正方体,∴DD1⊥面ABCD,又CF⊂面ABCD,∴DD1⊥CF.②综合①②,且DD1∩BD=D,DD1,BD⊂面BDD1B1,∴CF ⊥平面EFB 1即CF 为高,CF =BF = 2. ∵EF =12BD 1=3,B 1F =BF2+BB21=2+22=6, B 1E =B1D21+D1E2=12+2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴S △B 1EF =12EF ·B 1F =322,∴VB 1EFC =VC B 1EF =13·S △B 1EF ·CF=13×322×2=1. (3)∵CF ⊥平面BDD 1B 1,∴二面角E CF B 1的平面角为∠EFB 1. 由(2)知∠EFB 1=90°∴二面角E CF B 1的大小为90°.。
2020年贵州省贵阳市中考数学试卷(解析版)
14.如图, ABC 是 O 的内接正三角形,点 O 是圆心,点 D , E 分别在边 AC , AB 上,若 DA EB , 则 DOE 的度数是____度.
15.如图, ABC 中,点 E 在边 AC 上, EB EA , A 2CBE , CD 垂直于 BE 的延长线于点 D , BD 8 , AC 11 ,则边 BC 的长为_____.
【详解】解:原式=−3×2=−6, 故选:A.
【点睛】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.
2.下列 4 个袋子中,装有除颜色外完全相同的 10 个小球,任意摸出一个球,摸到红球可能性最大的是( )
A.
B.
C.
D.
【答案】D
【解析】
【分析】
要求可能性的大小,只需求出各袋中红球所占的比例大小即可.
A.
B.
C.
D.
3.2020 年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得
到某栋楼 60 岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数
据的方法是( )
A. 直接观察
B. 实验
C. 调查
4.如图,直线 a , b 相交于点 O ,如果 1 2 60 ,那么 3 是( )
故选:A.
【点睛】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的
关键.
5.当 x 1 时,下列分式没有意义的是( )
x 1
A.
x
x B. x 1
x 1
C.
x
x D. x 1
【答案】B
【解析】
【分析】
2019-2020学年贵阳市名校七年级第二学期期末学业质量监测数学试题含解析
解:0.0007=7×10﹣4
故选C.
【点睛】
本题考查科学计数法,难度不大.
二、填空题
11.“b的 与c的和是负数”用不等式表示为_________.
【答案】 b+c<0
【解析】
“b的 与c的和是负数”用不等式表示为: .
故答案为: .
12.如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=________cm.
三、解答题
18.解不等式组 并写出它的整数解.
【答案】不等式组的解集为 ,整数解为:2,3和1
【解析】
【分析】
先求出不等式组的解集,再求出不等式组的整数解即可.
【详解】
解:
由①得
由②得
该不等式组的解集为: ,
该不等式组的整数解为:2,3和1.
【点睛】
本题考查解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解题的关键.
19.△ABC中,∠C=60°,点D,E分别是边AC,BC上的点,点P是直线AB上一动点,连接PD,PE,设∠DPE=α.
(1)如图①所示,如果点P在线段BA上,且α=30°,那么∠PEB+∠PDA=___;
(2)如图②所示,如果点P在线段BA上运动,
①依据题意补全图形;
②写出∠PEB+∠PDA的大小(用含α的式子表示);并说明理由。
∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
故答案为﹣2≤m≤1.
【点睛】
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
2019-2020学年高中数学人教版必修三阶段质量检测(二) Word版含答案
阶段质量检测(二) (A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6. 10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12. 答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57,∴s 2甲<s 2乙,故甲车间产品比较稳定.16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M=0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2, b ^=--+--+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a×0.5,解得a=0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是( )A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是( )A.总体B.个体C .样本D .样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是( )A .1,2,…,106B .0,1,2,…,105C .00,01,…,105D .000,001,…,105解析:选D 由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定; ③乙队几乎每场都进球;④甲队的表现时好时坏. A .1个 B .2个 C .3个D .4个解析:选D 因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s 甲=3,s 乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是( )A .①B .②C .③D .①②③④解析:选D 运用计算公式x =1n (x 1+x 2+…+x n ),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n ,则n ×(0.1+0.12)×1=11,所以n =50,故所求的城市数为50×0.18=9. 答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?解:(2)(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲82 81 79 78 95 88 93 84乙92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∵x 甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x2i =280,∑i =17x i y i =3 487,(1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17xiyi -7x - y-∑i =17x2i -7x 2=3 487-7×6×79.86280-7×62≈4.75.a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15.(2)∵0.000 2×(1 500-1 000)=0.1,0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-+0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25,所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).。
2019-2020学年人教A版贵州省贵阳市高二第一学期(上)期末数学试卷试题及答案(理科) 含解析
2019-2020学年高二第一学期(上)期末数学试卷(理科)一、选择题1.若命题p:∀x∈R,2x﹣x>0,则¬p是()A.∀x∈R,2x﹣x<0 B.∀x∈R,2x﹣x≤0C.D.2.贵阳市某中学高二年级共有学生1800人,为进行体质监测,现按性别用分层抽样的方法从中抽取一个容量为36的样本,已知样本中共有女生17人,则高二年级的男生人数约为()A.850 B.950 C.1050 D.11003.把十进制数19转化为三进制数时,其末位数字是()A.3 B.2 C.1 D.04.抛物线y=3x2的准线方程为()A.B.C.D.5.平面α的一个法向量是=(4,1,﹣),平面β的一个法向量是=(,﹣1,3),则平面α与平面β的位置关系是()A.垂直B.平行C.既不平行也不垂直D.不确定6.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A.B.C.D.7.在某校举行的校园十佳歌手大赛中,五位评委给一位歌手给出的评分分别为x1=9.5,x2=9.6,x3=9.7,x4=9.8,x5=9.9,运行程序框图,其中是这五个数据的平均值,则输出的S值及其统计意义分别是()A.S=0.02,即5个数据的标准差为0.02B.S=0.02,即5个数据的方差为0.02C.S=9.7,即5个数据的标准差为9.7D.S=9.7,即5个数据的方差为9.78.已知关于变量x,y的线性回归方程为,且x,y的一些相关数据如表所示,则表格中m的值为()x 1 2 3 4y0.8 m 1.4 1.5A.1 B.1.05 C.1.2 D.29.有下列三个命题:①设命题p:若m是质数,则m一定是奇数.那么¬p真命题;②在△ABC中,“sin A=sin B”是“cos A=cos B”的充要条件;③“若x>1,则|x|>1”的否命题是“若x>1,则|x|≤1”.其中真命题的个数为()A.3 B.2 C.1 D.010.已知椭圆的左右焦点分别为F1,F2,焦距为2c.若直线与椭圆的一个交点M满足∠MF2F1=2∠MF1F2,则该椭圆的离心率等于()A.B.C.D.二.填空题(每题4分,共20分)11.84和126的最大公约数为.12.已知F1(﹣3,0),F2(3,0)是双曲线C的两个焦点,且直线是该双曲线的一条渐近线,则此双曲线的标准方程为.13.如图茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件),若这两组数据的中位数和平均数都相等,则x+y的值为.14.如图,在三棱锥S﹣ABC中,已知SA⊥平面ABC,AB⊥AC,SA=AC=AB,点E、F分别在SC和BC上,且,,则直线EF与直线AC所成角的余弦值为.15.设P为方程表示的曲线上的点,M、N分别为圆(x+4)2+y2=4和圆(x﹣4)2+y2=1上的点,则|PM|+|PN|的最小值为.三.解答题(每题8分,共32分)16.设命题p:方程表示双曲线;命题q:“方程表示焦点在x轴上的椭圆”.(1)若p和q均为真命题,求m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.17.某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表:组号分组频率第1组[160,165)0.05第2组[165,170)0.35第3组[170,175)①第4组[175,180)0.20第5组[180,185] 0.10(1)求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;(2)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数(结果都保留两位小数).18.在四棱锥P﹣ABCD中,底面ABCD为菱形,,侧面△ADP为等腰直角三角形,PA=PD,AB=PB=2,点E为棱AD的中点.(1)求证:PE⊥平面ABCD;(2)求直线AB与平面PBC所成角的正弦值.19.在区间[1,6]上任取一个数记为a,在区间[1,5]上任取一个数记为b.(1)若a,b∈N*,求直线ax﹣by=1的斜率为的概率;(2)若a,b∈R,求直线ax﹣by=1的斜率为的概率.四.阅读与探究(本题8分)20.阅读以下材料,然后回答(1)、(2)两个问题:例3如图1,设点A,B的坐标分别为(﹣5,0),(5,0),直线AM,BM的斜率之积是,求点M的轨迹方程.分析:设点M的坐标为(x,y),那么直线AM,BM的斜率就可以用含x,y的式子表示,由于直线AM,BM的斜率之积是,因此可以建立x,y之间的关系式,得出点M的轨迹方程.解:设点M的坐标为(x,y),因为点A的坐标是(﹣5,0),所以,直线AMD的斜率同理,直线BM的斜率由已知有:化简,得点M的轨迹方程为:.(1)如图2,点A,B的坐标分别是(﹣5,0),(5,0),直线AM,BM相交于点M,且他们的斜率之积是,试求点M的轨迹方程,并判断轨迹的形状;(2)结合阅读材料及(1)的结果,你有什么发现?请写出你的结论(不需证明).以下第(3)问是附加题,考生可选做,做对的2分,不做不扣分.(3)仿照材料中例3和问题(1),请你提出一个变式问题,不需解答.参考答案一、选择题(每题4分,共40分)1.若命题p:∀x∈R,2x﹣x>0,则¬p是()A.∀x∈R,2x﹣x<0 B.∀x∈R,2x﹣x≤0C.D.解:命题为全称命题,则命题p:∀x∈R,2x﹣x>0,则¬p是.故选:D.2.贵阳市某中学高二年级共有学生1800人,为进行体质监测,现按性别用分层抽样的方法从中抽取一个容量为36的样本,已知样本中共有女生17人,则高二年级的男生人数约为()A.850 B.950 C.1050 D.1100解:贵阳市某中学高二年级共有学生1800人,按性别用分层抽样的方法从中抽取一个容量为36的样本,样本中共有女生17人,则高二年级的男生人数约为:1800×=950.故选:B.3.把十进制数19转化为三进制数时,其末位数字是()A.3 B.2 C.1 D.0解:19÷3=6 (1)6÷3=2 02÷3=0 (2)故19(10)=201(3),可得把十进制数19转化为三进制数时,其末位数字是1,故选:C.4.抛物线y=3x2的准线方程为()A.B.C.D.解:抛物线y=3x2的标准方程为:x2=y,所以抛物线的标准方程为:y=﹣.故选:D.5.平面α的一个法向量是=(4,1,﹣),平面β的一个法向量是=(,﹣1,3),则平面α与平面β的位置关系是()A.垂直B.平行C.既不平行也不垂直D.不确定解:∵平面α的一个法向量是=(4,1,﹣),平面β的一个法向量是=(,﹣1,3),=4×+1×(﹣1)+(﹣)×3=0,∴平面α与平面β的位置关系是垂直.故选:A.6.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A.B.C.D.解:如图所示,设圆的半径为R,则圆的面积为πR2,圆内接正六边形的边长为R,面积为6××R2×sin=;则所求的概率为P==.故选:B.7.在某校举行的校园十佳歌手大赛中,五位评委给一位歌手给出的评分分别为x1=9.5,x2=9.6,x3=9.7,x4=9.8,x5=9.9,运行程序框图,其中是这五个数据的平均值,则输出的S值及其统计意义分别是()A.S=0.02,即5个数据的标准差为0.02B.S=0.02,即5个数据的方差为0.02C.S=9.7,即5个数据的标准差为9.7D.S=9.7,即5个数据的方差为9.7解:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S=,由x1=9.5,x2=9.6,x3=9.7,x4=9.8,x5=9.9的平均数为9.7,故S表示5个数据的方差,代入计算可得:S=0.02,故选:B.8.已知关于变量x,y的线性回归方程为,且x,y的一些相关数据如表所示,则表格中m的值为()x 1 2 3 4y0.8 m 1.4 1.5A.1 B.1.05 C.1.2 D.2解:,,样本点的中心为(2.5,),代入线性回归方程为,得,解得:m=1.故选:A.9.有下列三个命题:①设命题p:若m是质数,则m一定是奇数.那么¬p真命题;②在△ABC中,“sin A=sin B”是“cos A=cos B”的充要条件;③“若x>1,则|x|>1”的否命题是“若x>1,则|x|≤1”.其中真命题的个数为()A.3 B.2 C.1 D.0解:①设命题p:若m是质数,则m一定是奇数.例如2是质数,但是偶数,所以命题是假命题,那么¬p真命题;所以①正确;②在△ABC中,若sin A=sin B,则A=B,故有cos A=cos B,反之成立,故在△ABC中,“sin A=sin B”是“cos A=cos B”的充要条件;②正确;③“若x>1,则|x|>1”的否命题是“若x≤1,则|x|≤1”.所以③不正确;故选:B.10.已知椭圆的左右焦点分别为F1,F2,焦距为2c.若直线与椭圆的一个交点M满足∠MF2F1=2∠MF1F2,则该椭圆的离心率等于()A.B.C.D.解:因为直线过椭圆左焦点,且斜率为,所以∠MF1F2=30°,又∠MF1F2=2∠MF2F1,所以∠MF2F1=20°,∠F1MF2=90°,故|MF1|=c,|MF2|=c,由点M在椭圆上知,c+c=2a.故离心率e===.故选:D.二.填空题(每题4分,共20分)11.84和126的最大公约数为42 .解:126=84+42,84=42×2.∴84和126的最大公约数为42.故答案为:42.12.已知F1(﹣3,0),F2(3,0)是双曲线C的两个焦点,且直线是该双曲线的一条渐近线,则此双曲线的标准方程为.解:由题意,c=3,双曲线的焦点坐标在x轴上,直线是该双曲线的一条渐近线,所以=,a2+b2=9,∴b=,a=2,∴双曲线C的标准方程为:;故答案为:;13.如图茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件),若这两组数据的中位数和平均数都相等,则x+y的值为12 .解:由已知中甲组数据:43,51,56,64,60+x;的中位数为56,故乙组数据:45,53,50+y,59,67;的中位数也为65,即y=6,将y=6,代入乙组可得乙组数据的平均数为:56,这两组数据的平均值也相等,故x=6,所以:x+y=6+6=12;故答案为:12.14.如图,在三棱锥S﹣ABC中,已知SA⊥平面ABC,AB⊥AC,SA=AC=AB,点E、F分别在SC和BC上,且,,则直线EF与直线AC所成角的余弦值为.解:∵SA⊥平面ABC,AB⊥AC,∴以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,设SA=AC=AB=3,∵点E、F分别在SC和BC上,且,,∴E(0,2,1),F(2,1,0),A(0,0,0),C(0,3,0),=(2,﹣1,﹣1),=(0,3,0),设直线EF与直线AC所成角为θ,则cosθ===,∴直线EF与直线AC所成角的余弦值为.故答案为:.15.设P为方程表示的曲线上的点,M、N分别为圆(x+4)2+y2=4和圆(x﹣4)2+y2=1上的点,则|PM|+|PN|的最小值为9 .解:∵P为方程表示的曲线上的点,∴P是椭圆方程为上任意一点,∴其焦点坐标为F1(﹣4,0),F2(4,0),∴两圆:(x+4)2+y2=4和(x﹣4)2+y2=1的圆心分别为F1(﹣4,0),F2(4,0),又点P为椭圆为上任意一点,∴|PF1|+|PF2|=12,由图可知,|PM|+|PN|的最小值为|PF1|+|PF2|﹣3=9;故答案为:9.三.解答题(每题8分,共32分)16.设命题p:方程表示双曲线;命题q:“方程表示焦点在x轴上的椭圆”.(1)若p和q均为真命题,求m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.解:(1)若p为真命题,则(1﹣m)(m+2)<0,得m>1,或m<﹣2,若q为真命题,则m2>2m>0,得m>2,故p和q均为真命题时,取交集得,m的取值范围为:m>2.(2)因为p∨q为真命题,p∧q为假命题,所以p,q一真一假,当p真q假时,,解得m<﹣2,或1<m≤2,当p假q真时,,无解综上,实数m的取值范围为m<﹣2或1<m≤2.17.某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表:组号分组频率第1组[160,165)0.05第2组[165,170)0.35第3组[170,175)①第4组[175,180)0.20第5组[180,185] 0.10(1)求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;(2)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数(结果都保留两位小数).解:(1)由频率分布表的性质得:①处应填写的数据为:1﹣(0.05+0.35+0.20+0.10)=0.30.完成频率分布直方图如下:(2)平均数为:0.05×162.5+0.35×167.5+0.3×172.5+0.2×177.5+0.1×182.5=172.25.∵0.05+0.35+x=0.5,解得x=0.1,∴中位数为:170+0.1=170.10.18.在四棱锥P﹣ABCD中,底面ABCD为菱形,,侧面△ADP为等腰直角三角形,PA=PD,AB=PB=2,点E为棱AD的中点.(1)求证:PE⊥平面ABCD;(2)求直线AB与平面PBC所成角的正弦值.解:(1)证明:∵在四棱锥P﹣ABCD中,底面ABCD为菱形,,侧面△ADP为等腰直角三角形,PA=PD,AB=PB=2,点E为棱AD的中点.∴PE⊥AD,PE=1,BE⊥AD,BE==,∴PE2+BE2=PB2,∴PE⊥BE,∵AD∩BE=E,∴PE⊥平面ABCD.(2)解:以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,A(1,0,0),B(0,,0),P(0,0,1),C(﹣2,,0),=(1,﹣,0),=(0,,﹣1),=(﹣2,,﹣1),设平面PBC的法向量=(x,y,z),则,取y=1,得=(0,1,),设直线AB与平面PBC所成角为θ,∴直线AB与平面PBC所成角的正弦值为:sinθ===.19.在区间[1,6]上任取一个数记为a,在区间[1,5]上任取一个数记为b.(1)若a,b∈N*,求直线ax﹣by=1的斜率为的概率;(2)若a,b∈R,求直线ax﹣by=1的斜率为的概率.解:(1)∵在区间[1,6]上任取一个数记为a,在区间[1,5]上任取一个数记为b,a,b∈N*,∴a=1,2,3,4,5,6,n=1,2,3,4,5.∴基本事件总数N=6×5=30,直线ax﹣by=1的斜率为,即,也就是2a≤b,满足条件的基本事件(a,b)有6个,分别是:(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),∴直线ax﹣by=1的斜率为的概率P=;(2))∵在区间[1,6]上任取一个数记为a,在区间[1,5]上任取一个数记为b,a,b ∈R,∴有序实数对(a,b)满足,而满足直线ax﹣by=1的斜率为,即,如图:S ABCD=5×4=20,.∴直线ax﹣by=1的斜率为的概率P=.四.阅读与探究(本题8分)20.阅读以下材料,然后回答(1)、(2)两个问题:例3如图1,设点A,B的坐标分别为(﹣5,0),(5,0),直线AM,BM的斜率之积是,求点M的轨迹方程.分析:设点M的坐标为(x,y),那么直线AM,BM的斜率就可以用含x,y的式子表示,由于直线AM,BM的斜率之积是,因此可以建立x,y之间的关系式,得出点M的轨迹方程.解:设点M的坐标为(x,y),因为点A的坐标是(﹣5,0),所以,直线AMD的斜率同理,直线BM的斜率由已知有:化简,得点M的轨迹方程为:.(1)如图2,点A,B的坐标分别是(﹣5,0),(5,0),直线AM,BM相交于点M,且他们的斜率之积是,试求点M的轨迹方程,并判断轨迹的形状;(2)结合阅读材料及(1)的结果,你有什么发现?请写出你的结论(不需证明).以下第(3)问是附加题,考生可选做,做对的2分,不做不扣分.(3)仿照材料中例3和问题(1),请你提出一个变式问题,不需解答.解:(1)设M(x,y),则AM斜率k1=,BM斜率k2=.∴k1k2=•=(y≠0),整理得,4x2﹣9y2=100(y≠0),即(y≠0);(2)点A,B的坐标分别是(﹣5,0),(5,0),直线AM,BM相交于点M,且他们的斜率之积是k时,①当k<0(k≠﹣1)时,M的轨迹为焦点在x轴或y轴的椭圆(不含与x轴的交点或y ≠0);②当k>0时,点M的轨迹为焦点在x轴的双曲线(不含与x轴的交点);(3)设点A、B的坐标分别为(﹣5,0)、(5,0),直线AM、BM相交于M,且它们的斜率之积为﹣1时.求点M的轨迹方程.。
2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)
2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。
贵州省贵阳市2019-2020学年九年级数学第一学期期末考试试卷答案及评分标准
九年级数学参考答案 第1页(共4页)贵阳市普通中学2019—2020学年度第一学期期末监测考试试卷九年级数学参考答案及评分建议说明:1.本次考试成绩仅作为学生期末评价的一个方面,学生期末的总体评价还应包括“知识与技能”、“过程和方法”、“情感、态度和价值观”三个方面的动态评价。
本次考试成绩的量17.(本题满分5分)(1) ① 20 ;② 0…….……………..……………... ................................................…(4分) (2)矩形“接近度”的合理定义为:根据矩形与正方形的接近程度称为“接近度”,定义矩形“接近度”为n n. ...............................(5分)九年级数学参考答案 第2页(共4页)4250)5400)(2540(=+m m --18.(本题满分5分) 解:(1.…………...........................…..…..……............………(2分) (2) 画树状图如下:19 如图所示,线段FG 即为所求. 20答:八,九这两个月的月平均增长率为25% . ………………………......(4分) (2)设:当农产品每袋降价m 元时,该淘宝网店10月份获利4250元.根据题意可得:解得:m 1=5,m 2=-70(不合题意舍去).答:当农产品每袋降价5元时,该淘宝网店10月份获利4250元. …. ...(7分)开始第17题图九年级数学参考答案 第3页(共4页)21.(本题满分8分)解:(1) ∵AB ⊥CD ,AC ⊥BC ,∴∠A+∠ACD =90°,∠BCD+∠ACD =90°, ∴∠A =∠BCD ,又∵NM ⊥BM ,AC ⊥BC ,∴∠AMN+∠BMC =90°,∠CBM+∠BMC =90°,22九年级数学参考答案 第4页(共4页)23.(本题满分8分)解:(1) 6-x ; ……………………….............................................................. . ..............(2分) (2)在Rt △ACB 中,由勾股定理有:222AB BC AC =+,且BC=8,AB=10,∴AC=6,又∵A 1是BC 的中点, (3又∵∠A =∠DA 1E ,∠A =∠DA 1E =∠CDA 1 EA 1//AD∴四边形ADA 1E 是平行四边形, ∵DA =DA 1,∴平行四边形ADA 1E 是菱形. .................................................................…….......(8分)(第23题图)(第23题备用图)。
贵州省贵阳市2023-2024学年度第二学期期末监测试卷高一数学试题(含答案)
;
(2)若
uuur AB
uuur × AC
=
0
且
AB
=
3,
AC
=
2
,求
uuur CD
.
试卷第41 页,共33 页
17.在 VABC 中,角 A, B,C 的对边分别为 a, b, c ,已知 b =
2,c =
5, cosC = -
2. 2
(1)求 sinB 的值;
(2)求 VABC 的面积. 18.根据央视网消息显示,贵州省文旅厅网站 5 月 1 日公布《2023 年“五一”假期前三天 全省文化旅游情况》,其中显示,假期前三天,根据抽样调查结果,全省接待游客 2038.26
D.0
二、多选题
试卷第21 页,共33 页
9. VABC 中角 A, B,C 所对的边分别为 a,b, c ,若 c = 4, B = 30o ,则下列结论正确的有 ()
A.若 b = 2 ,则 VABC 有一个解 B.若 VABC 有两个解,则 a 有可能等于 3 3
C.若
VABC
为等腰三角形,则 b
=
43 3
或
4
D.若 VABC 为直角三角形,则 b 一定为 2
10.如图,在正方体 ABCD - A1B1C1D1 中,点 P 在线段 BC1 上运动时(包括 B、C1 点),下列 命题正确的是( )
A.三棱锥 A - D1PC 的体积不变 B.直线 AD 一定与平面 PA1D1 平行
C.直线
C1
ar
=
r b
=
2,
ar
+
r b
=
2
3
,则
ar
×
【附5套中考模拟试卷】贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(3)含解析
贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若()292m m --=1,则符合条件的m 有( ) A .1个 B .2个 C .3个 D .4个2.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )A .甲B .乙C .甲乙同样稳定D .无法确定3.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A .0.15B .0.2C .0.25D .0.34.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°5.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a - 6.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④7.如图所示,在长方形纸片ABCD 中,AB=32cm ,把长方形纸片沿AC 折叠,点B 落在点E 处,AE 交DC 于点F ,AF=25cm ,则AD 的长为( )A.16cm B.20cm C.24cm D.28cm 8.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b39.4的平方根是( )A.2 B.2C.±2 D.±2 10.-3的相反数是()A.13B.3 C.13D.-311.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠412.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为.15.若式子23x 有意义,则x 的取值范围是______. 16.反比例函数y=1k x与正比例函数y=k 2x 的图象的一个交点为(2,m ),则12k k =____. 17.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.18.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ABC=90°,以AB 为直径的⊙O 与AC 边交于点D ,过点D 的直线交BC 边于点E ,∠BDE=∠A .判断直线DE 与⊙O 的位置关系,并说明理由.若⊙O 的半径R=5,tanA=34,求线段CD的长.20.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21.(6分)雾霾天气严重影响市民的生活质量。
2019-2020学年高中数学人教A版必修4同步作业与测评:1.4.1 正弦函数、余弦函数的图象 Word版含解析
1.4三角函数的图象与性质第9课时正弦函数、余弦函数的图象答案B解析由y=sin x,x∈[0,2π]的图象,作出y=-sin x,x∈[0,2π]的图象,再画出y=1-sin x,x∈[0,2π]的图象.A.只关于x轴对称B.关于原点对称C.关于原点、x轴对称D.关于原点、坐标轴对称答案C解析作出函数y=cos x与函数y=-cos x的简图(图略),易知选C.3.函数y=cos x+|cos x|,x∈[0,2π]的大致图象为()答案D解析 由题意得y =⎩⎪⎨⎪⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.4.函数y =-cos x (x >0)的图象中与y 轴距离最近的最高点的坐标为( ) A .π2,1 B .(π,1) C .(0,1) D .(2π,1) 答案 B解析 作出函数y =-cos x (x >0)的图象,如图所示,由图易知与y 轴距离最近的最高点的坐标为(π,1).A .π4,3π4B .π4,π2∪5π4,3π2C .π4,π2D .5π4,7π4 答案 A解析 ∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈π4,3π4.6.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题:(1)观察函数图象,写出满足下列条件的x的区间.①y>1,②y<1;(2)若直线y=a与y=1-2sin x,x∈[-π,π]的图象有两个交点,求a的取值范围.解列表如下:描点并将它们用光滑的曲线连接起来,如图.(1)由图象可知图象在直线y=1上方部分时y>1,在直线y=1下方部位时y<1,所以①当x∈(-π,0)时,y>1;②当x∈(0,π)时,y<1.(2)如图所示,当直线y=a与y=1-2sin x,x∈[-π,π]的图象有两个交点时,1<a<3或-1<a<1,所以a的取值范围是(-1,1)∪(1,3).7.方程sin x=1-a2在x∈π3,π上有两个实数根,求a的取值范围.解首先作出y=sin x,x∈π3,π的图象,然后再作出y=1-a2的图象,如果y =sin x ,x ∈π3,π与y =1-a 2的图象有两个交点,方程sin x =1-a 2,x ∈π3,π就有两个实数根.设y 1=sin x ,x ∈π3,π,y 2=1-a 2. y 1=sin x ,x ∈π3,π的图象如图.由图象可知,当32≤1-a 2<1,即-1<a ≤1-3时,y =sin x ,x ∈π3,π的图象与y =1-a 2的图象有两个交点,即方程sin x =1-a 2在x ∈π3,π上有两个实根,所以a 的取值范围为-1<a ≤1-3.一、选择题1.若sin θ=1-log 2x ,则实数x 的取值范围是( ) A .[1,4] B .14,1 C .[2,4] D .14,4 答案 A解析 由正弦函数的图象,可知-1≤sin θ≤1,所以-1≤1-log 2x ≤1,整理得0≤log 2x ≤2,解得1≤x ≤4,故选A .2.要得到函数y =-sin x 的图象,只需将函数y =cos x 的图象( ) A .向右平移π2个单位长度 B .向右平移π个单位长度 C .向左平移π2个单位长度 D .向左平移π个单位长度 答案 C解析 因为y =cos ⎝ ⎛⎭⎪⎫π2+x =-sin x ,由图象平移变换可知,由y =cos x 图象向左平移π2个单位即可得到y =-sin x 的图象,故选C .3.在[0,2π]上,满足sin x ≥32的x 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤0,π3 B .⎣⎢⎡⎦⎥⎤π3,5π3C .⎣⎢⎡⎦⎥⎤π3,2π3D .⎣⎢⎡⎦⎥⎤5π6,π答案 C解析 y =32与y =sin x 的两个交点为π3,32,2π3,32,∴x 的取值范围为⎣⎢⎡⎦⎥⎤π3,2π3.4.方程sin x =lg x 的解有( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 如图所示,由于y =lg x 的图象过点(10,1),故两图象有3个公共点,所以方程sin x =lg x 有3个解.5.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =2交点的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =2只有1个交点.二、填空题6.关于三角函数的图象,有下列命题:①y =sin|x |与y =sin x 的图象关于y 轴对称; ②y =cos(-x )与y =cos|x |的图象相同; ③y =|sin x |与y =sin(-x )的图象关于x 轴对称; ④y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中真命题是________.(写出所有真命题的序号) 答案 ②④解析 对于②,y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同;对于④,y =cos(-x )=cos x ,故其图象关于y 轴对称;由图可知①③均不正确.故真命题是②④.7.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点坐标为________. 答案 ⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4解析 作出函数y =cos x +4,x ∈[0,2π]的图象(图略),容易发现它与直线y =4的交点坐标为⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4.8.已知函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.答案 (1,3)解析 f (x )=sin x +2|sin x |=⎩⎨⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π]的图象如图.若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据图象可得k 的取值范围是(1,3).三、解答题9.分别作出下列函数的图象.(1)y =|cos x |,x ∈R ; (2)y =sin|x |,x ∈R .解(1)y =|cos x |=⎩⎪⎨⎪⎧cos x 2k π-π2≤x ≤2k π+π2,-cos x 2k π+π2<x <2k π+3π2(k ∈Z ).其图象如图所示.(2)y =sin|x |=⎩⎨⎧sin x (x ≥0),-sin x (x <0),其图象如图所示.10.已知0≤x ≤2π,试探索sin x 与cos x 的大小关系. 解 用“五点法”作出y =sin x ,y =cos x (0≤x ≤2π)的简图. 由图象可知,①当x =π4或x =5π4时,sin x =cos x ; ②当π4<x <5π4时,sin x >cos x ;③当0≤x <π4或5π4<x ≤2π时,sin x <cos x .。
2019-2020学年高中学业水平数学模拟测试卷5
高中学业水平考试模拟测试卷(五)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={1,2,3},B={2,4,5},则A∪B=()A.{2} B.{6}C.{1,3,4,5,6} D.{1,2,3,4,5}解析:A∪B={1,2,3}∪{2,4,5}={1,2,3,4,5},故选D.答案:D2.设p:log2x2>2,q:x>2,则p是q成立的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:由log2x2>2得,x2>4,解得x<-2或x>2,所以p是q成立的必要不充分条件.故选A.答案:A3.角θ的终边经过点P(4,y),且sin θ=-35,则tan θ=()A.-43 B.43C.-34 D.34解析:因为角θ的终边经过点P(4,y),且sin θ=-35=y16+y2,所以y=-3,则tan θ=y4=-34,故选C.答案:C4.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A .8桶B .9桶C .10桶D .11桶解析:易得第一层有4桶,第二层最少有3桶,第三层最少有2桶,所以至少共有9桶,故选B.答案:B5.在等差数列{a n }中,a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8等于( )A .45B .75C .180D .360解析:由a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5=5a 5=450,得到a 5=90,则a 2+a 8=2a 5=180.故选C.答案:C6.已知过点A (-2,m )和B (m ,4)的直线与直线2x +y +1=0平行,则m 的值为( )A .-8B .0C .2D .10解析:因为直线2x +y +1=0的斜率等于-2,且过点A (-2,m )和B (m ,4)的直线与直线2x +y +1=0平行,所以k AB =-2,所以4-mm +2=-2,解得m =-8,故选A. 答案:A7.已知向量a =(3,0),b =(0,-1),c =(k ,3),若(a -2b )⊥c ,则k =( )A .2B .-2C.32D .-32解析:由a =(3,0),b =(0,-1),得a -2b =(3,2),若(a -2b )⊥c ,则(a -2b )·c =0,所以3k +23=0,所以k =-2,故选B.答案:B8.设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若l ⊥α,α⊥β,则l ⊂βB .若l ∥α,α∥β,则l ⊂βC .若l ⊥α,α∥β,则l ⊥βD .若l ∥α,α⊥β,则l ⊥β 解析:由α,β是两个不同的平面,l 是一条直线,知: 在A 中,若l ⊥α,α⊥β,则l ∥β或l ⊂β,故A 错误; 在B 中,若l ∥α,α∥β,则l ∥β或l ⊂β,故B 错误; 在C 中,若l ⊥α,α∥β,则由线面垂直的判定定理得l ⊥β,故C 正确;在D 中,若l ∥α,α⊥β,则l 与β相交、平行或l ⊂β,故D 错误,故选C.答案:C9.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sin 2A +sin 2B -sin 2C =0,a 2+c 2-b 2-ac =0,c =2,则a =( )A. 3B .1C.12D.32解析:因为sin 2A +sin 2B -sin 2C =0, 所以a 2+b 2-c 2=0,即C 为直角, 因为a 2+c 2-b 2-ac =0,所以cos B =a 2+c 2-b 22ac =12,B =π3,因此a =c cos π3=1.故选B.答案:B10.已知等比数列{a n }的前n 项和为S n ,且满足2S n =2n +1+λ,则λ的值为( )A .4B .2C .-2D .-4解析:根据题意,当n =1时,2S 1=2a 1=4+λ,当n ≥2时,a n=S n -S n -1=2n -1.因为数列{a n }是等比数列,所以a 1=1,故4+λ2=1,解得λ=-2.故选C.答案:C11.若以双曲线x 22-y 2b 2=1(b >0)的左、右焦点和点(1,2)为顶点的三角形为直角三角形,则b 等于( )A.12B .1C. 2D .2解析:由题意,双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为(-c ,0)、(c ,0),因为两焦点和点(1,2)为顶点的三角形为直角三角形,所以(1-c ,2)·(1+c ,2)=0,所以1-c 2+2=0,所以c =3,因为a =2,所以b =1.故选B. 答案:B12.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( )A .x =π12B .x =π4C .x =π3D .x =2π3解析:由题意得g (x )=2sin[2(x -π6)+π6]=2sin ⎝ ⎛⎭⎪⎫2x -π6,令2x -π6=k π+π2,k ∈Z ,得x =k π2+π3,k ∈Z ,当k =0时,得x =π3,所以函数g (x )图象的一条对称轴方程为x =π3.故选C.答案:C13.已知正方体ABCD-A 1B 1C 1D 1中,点E 是线段BC 的中点,点M 是直线BD 1上异于B ,D 1的点,则平面DEM 可能经过下列点中的( )A .AB .C 1C .A 1D .C解析:连接A 1D ,A 1E ,因为A 1D 1∥BE ,所以A 1,D 1,B ,E 四点共面.设A 1E ∩BD 1=M ,显然平面DEM 与平面A 1DE 重合,从而平面DEM 经过点A 1.故答案为C.答案:C14.已知x 、y 满足⎩⎪⎨⎪⎧x -y ≥0,x +y -4≥0,x ≤4,则3x -y 的最小值为()A .4B .6C .12D .16解析:由约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≥0,x ≤4,作出可行域如图,联立⎩⎪⎨⎪⎧x +y -4=0,x -y =0,解得A (2,2),令z =3x -y ,化为y =3x -z ,由图可知,当直线y =3x -z 过点A 时,直线在y 轴上的截距最大,z 有最小值为4.故选A.答案:A15.若正数x ,y 满足x +4y -xy =0,则3x +y的最大值为( ) A.13B.38C.37D .1解析:由x +4y -xy =0可得x +4y =xy ,左右两边同时除以xy 得1y +4x =1,求3x +y的最大值,即求x +y 3=x 3+y 3的最小值, 所以⎝ ⎛⎭⎪⎫x 3+y 3×1=⎝ ⎛⎭⎪⎫x 3+y 3×⎝ ⎛⎭⎪⎫1y +4x =x 3y +4y 3x +13+43≥2x 3y ×4y3x+13+43=3,当且仅当x 3y =4y3x 时取等号,所以3x +y 的最大值为13.所以选A.答案:A二、填空题(共4小题,每小题4分,共16分.) 16.函数f (x )=1-x +x +3-1的定义域是________.解析:要使函数f (x )有意义,则⎩⎪⎨⎪⎧1-x ≥0,x +3≥0,即⎩⎪⎨⎪⎧x ≤1,x ≥-3,解得-3≤x ≤1,故函数的定义域为[-3,1].答案:[-3,1]17.已知一个长方体的同一顶点处的三条棱长分别为1,3,2,则其外接球的半径为________,表面积为________.解析:设长方体的外接球的半径为R ,则长方体的体对角线长就等于外接球的直径,即2R =12+(3)2+22,解得R =2,所以外接球的表面积为S =4πR 2=8π.答案:2 8π18.在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________.解析:因为圆心在y =-2x 上,所以可设圆心坐标为(a ,-2a ),又因为圆过A (2,-1),且圆C 和直线x +y =1相切,所以(a -2)2+(-2a +1)2=|a -2a -1|2,解得a =1,所以圆半径r=|1-2-1|2=2,圆心坐标为(1,-2),所以圆方程为(x -1)2+(y +2)2=2.答案:(x -1)2+(y +2)2=219.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m ,若函数f (x )有5个零点,则实数m 的取值范围是________.解析:由题意,函数f (x )是奇函数,f (x )有5个零点,其中x =0是1个,只需x >0时有2个零点即可,当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m ,转化为函数y =-m 和f (x )=⎝ ⎛⎭⎪⎫12|x -1|的图象交点个数即可,画出函数的图象,如图所示.结合图象可知只需12<-m <1,即-1<m <-12.答案:⎝ ⎛⎭⎪⎫-1,-12 三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.在锐角△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)已知c =2,AC 边上的高BD =3217,求△ABC 的面积S 的值.解:(1)因为(2c -a )cos B -b cos A =0,所以由正弦定理得(2sin C -sin A )cos B -sin B cos A =0, 所以2sin C cos B -sin(A +B )=0, 因为A +B =π-C 且sin C ≠0,所以2sin C cos B -sin C =0,即cos B =12.因为B ∈(0,π),所以B =π3.(2)因为S =12ac sin ∠ABC =12BD ·b ,代入c ,BD =3217,sin ∠ABC =32,得b =73a , 由余弦定理得:b 2=a 2+c 2-2ac ·cos ∠ABC =a 2+4-2a .代入b =73a ,得a 2-9a +18=0,解得⎩⎪⎨⎪⎧a =3,b =7,或⎩⎪⎨⎪⎧a =6,b =27,又因为△ABC 是锐角三角形, 所以a 2<c 2+b 2,所以a =3,所以S △ABC =12ac sin ∠ABC =12×2×3×32=332.21.设椭圆C :x 2a 2+y 2b 2=1(a >b >0),其右顶点是A (2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点M ,N (M ,N 不同于点A ),若AM →·AN →=0,求证:直线l 过定点,并求出定点坐标.(1)解:因为椭圆C 的右顶点是A (2,0),离心率为12,所以a =2,c a =12,所以c =1,则b =3,所以椭圆的标准方程为x 24+y 23=1.(2)证明:当直线MN 斜率不存在时,设MN :x =m , 与椭圆方程x 24+y 23=1联立得:|y |=3⎝ ⎛⎭⎪⎫1-m 24,|MN |=23⎝ ⎛⎭⎪⎫1-m 24. 设直线MN 与x 轴交于点B ,则|MB |=|AB |,即3⎝ ⎛⎭⎪⎫1-m 24=2-m ,所以m =27或m =2(舍),所以直线l 过定点⎝⎛⎭⎪⎫27,0.当直线MN 斜率存在时,设直线MN 斜率为k ,M (x 1,y 1),N (x 2,y 2),则直线MN :y =kx +n (k ≠0),与椭圆方程x 24+y 23=1联立,得(4k 2+3)x 2+8knx +4n 2-12=0,所以x 1+x 2=-8kn4k 2+3,x 1x 2=4n 2-124k 2+3,Δ=(8kn )2-4(4k 2+3)(4n 2-12)>0,k ∈R.所以y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+kn (x 1+x 2)+n 2, 由AM →·AN →=0,则(x 1-2,y 1)·(x 2-2,y 2)=0,即x 1x 2-2(x 1+x 2)+4+y 1y 2=0,所以7n 2+4k 2+16kn =0,所以n =-27k 或n =-2k ,所以直线MN :y =k ⎝ ⎛⎭⎪⎫x -27或y =k (x -2), 所以直线过定点⎝ ⎛⎭⎪⎫27,0或(2,0)(舍去). 综上知,直线过定点⎝ ⎛⎭⎪⎫27,0.。
2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析
2019-2020学年高中数学必修二《第3章直线与方程》测试卷一.选择题(共30小题)
1.直线y﹣3=﹣(x+4)的斜率为k,在y轴上的截距为b,则有()A.k =﹣,b=3B.k =﹣,b=﹣2C.k =﹣,b=﹣3D.k =﹣,b=﹣3 2.若直线过点(1,2),(4,2+)则此直线的倾斜角是()
A .
B .
C .
D .
3.已知点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()
A.k ≥B.k≤﹣2C.k或k≤﹣2D.﹣2≤k ≤
4.若点A(﹣2,﹣3),B(﹣3,﹣2),直线L过点P(1,1)且与线段AB相交,则L的斜率k的取值范围是()
A.k ≤或k ≥B.k ≤﹣或k ≥﹣
C .≤k ≤
D .﹣≤k ≤﹣
5.与直线垂直,且过(2,0)点的直线方程是()
A.y=﹣2x+4B .C.y=﹣2x﹣4D .
6.已知O为△ABC 内一点,且,,若B,O,D三点共线,则t 的值为()
A .
B .
C .
D .
7.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1B.﹣2C.1或﹣2D.﹣1或2
8.下列说法正确的是()
A.一条直线的斜率为k=tanα,则这条直线的倾斜角是α
B.过点A(x1,y1)和点B(x2,y2)的直线的方程为=
C.若两直线平行,则它们的斜率相等
D.若两直线斜率之积等于﹣1,则两直线垂直
第1 页共18 页。
2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析
阶段质量检测(二)基本初等函数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(lg 9-1)2等于()A.lg 9-1 B.1-lg 9C.8 D.2 2解析:因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.答案:B解析:方法一当a>1时,y=x a与y=log a x均为增函数,但y=x a 增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除由于y=x a递增较慢,所以选D.=x a的图象不过(0,1)点,故A的图象知0<a<1,而此时幂函数f(x)=xB错,D对;C项中由对数函数x)=x a的图象应是增长越来越快的变化趋势,2⎝⎭4a =±3,又a >0,∴a = 3.答案:A12.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫a -14x ,x ≥1,a x ,x <1,在R 上为减函数,则实数的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎭⎪⎫14,1∴f(x)的减区间为(-∞,1].答案:(-∞,1]16.若函数f(x)=(m-1)xα是幂函数,则函数g(x)=log a(x-m)(其中a>0≠1)的图象过定点A的坐标为________.解析:若函数f(x)=(m-1)xα是幂函数,则m=2,则函数g(x)=log a(x-m)=log a(x-2)(其中a>0,a≠1),令x-2=1,则x=3,g(x)=0,其图象过定点A的坐标为(3,0).答案:(3,0)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)43所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2323,所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2334.19.(12分)已知f (x )=log 2(1+x )+log 2(1-x ). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明;(3)求f ⎝ ⎛⎭⎪⎫22的值.解析:(1)由⎩⎪⎨⎪⎧ 1+x >0,1-x >0,得⎩⎪⎨⎪⎧x >-1x <1,即-1<x <1.⎩⎪g (x ),f (x )>g (x ),解析:(1)设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以(2)2,解得α=2,即f (x )=x 2.设g (x )=x β,因为点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图象上,所以2β=12,解得=-1,即g (x )=x -1.(2)在同一平面直角坐标系中画出函数f (x )=x 2和g (x )=x -1的图象,可得函数h (x )的图象如图所示.的解析式及图象可知,函数h (。
2019-2020学年高中数学人教B版选修2-3学业分层测评 第二章 概率 13 Word版含答案
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M :“出现的点数为奇数”,事件N :“出现的点数为偶数”; ②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M :“第1次摸到白球”,事件N :“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M :“第1枚为正面”,事件N :“两枚结果相同”. 这三个问题中,M ,N 是相互独立事件的有( )A.3个B.2个C.1个D.0个【解析】①中,M ,N 是互斥事件;②中,P (M )=35, P (N )=12.即事件M 的结果对事件N 的结果有影响,所以M ,N 不是相互独立事件;③中,P (M )=12, P (N )=12,P (M ∩N )=14,P (M ∩N )=P (M )P (N ),因此M ,N 是相互独立事件. 【答案】C2.(2016·东莞调研)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23表示( )【导学号:62980046】A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率【解析】分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P (A )=13,P (B )=12,由于A ,B 相互独立,所以1-P (A )P (B )=1-23×12=23.根据互斥事件可知C 正确. 【答案】C3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.34B.23C.35D.12【解析】问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34. 【答案】A4.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2-2-2所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )图2-2-2A.13B.29C.49D.827【解析】青蛙跳三次要回到A 只有两条途径:第一条:按A →B →C →A ,P 1=23×23×23=827; 第二条,按A →C →B →A ,P 2=13×13×13=127. 所以跳三次之后停在A 叶上的概率为P =P 1+P 2=827+127=13. 【答案】A5.如图2-2-3所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )图2-2-3A.49B.29C.23D.13【解析】“左边圆盘指针落在奇数区域”记为事件A ,则P (A )=46=23,“右边圆盘指针落在奇数区域”。
贵州省贵阳市2019-2020学年八年级(下)开学数学试卷(含解析)
2019-2020学年贵州省贵阳市八年级(下)开学数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,295.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,16.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是千米;(2)甲的速度是千米∕小时,乙的速度是千米∕小时;(3)小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.2019-2020学年贵州省贵阳市八年级(下)开学数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,,∴,,是有理数,π是无理数.故选:D.2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm【分析】先求出斜边的平方,进而可得出结论.【解答】解:设直角三角形的斜边长为x,∵三边的平方和为1800cm2,∴x2=900cm2,解得x=30cm.故选:A.3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)【分析】根据A(1,1),B(2,0),再结合图形即可确定出点C的坐标.【解答】解:∵点A的坐标是:(1,1),点B的坐标是:(2,0),∴点C的坐标是:(4,﹣1).故选:C.4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,29【分析】根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.【解答】解:29出现了3次,出现的次数最多,则众数是29;把这组数据从小到大排列27,28,28,29,29,29,30,最中间的数是29,则中位数是29;故选:D.5.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,1【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:由点A(m+3,2)与点B(1,n﹣1)关于x轴对称,得m+3=1,n﹣1=﹣2,解得m=﹣2,n=﹣1,故选:B.6.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选:A.7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.【分析】根据一次函数图象:k>0,b>0图象经过一二三象限,k>0,b<0图象经过一三四象限,k<0,b<0,图象经过二三四象限,k<0,b<0图象经过一二四象限,可得答案.【解答】解:当k>0时,﹣k<0,图象经过一三四象限,A、k>0,﹣k>0,故A不符合题意;B、k>0,﹣k<0,故B符合题意;C、k<0,﹣k<0,故C不符合题意;D、k<0,﹣k=0,故D不符合题意;故选:B.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【解答】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC =CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.【分析】根据一个正数的平方根有两个,它们互为相反数求出a的值即可.【解答】解:∵一个正数的两个平方根分别是2a﹣3和a﹣2,∴2a﹣3+a﹣2=0,解得:a=,故答案为:.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=﹣.【分析】把点A(m,m+5)代入y=﹣2x+1得到关于m的一元一次方程,解之即可.【解答】解:把点A(m,m+5)代入y=﹣2x+1得:m+5=﹣2m+1,解得:m=﹣,故答案为:﹣.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=100°.【分析】连接AO,延长AO交BC于点D,利用三角形的外角性质可得出∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,结合∠BOC=∠BOD+∠COD,∠BAC=∠BAO+∠CAO,即可求出∠BOC的度数.【解答】解:连接AO,延长AO交BC于点D,如图所示.∵∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,∴∠BOC=∠BOD+∠COD=∠1+∠BAO+∠2+∠CAO=∠BAC+∠1+∠2=40°+25°+35°=100°.故答案为:100°.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是5.【分析】作PF⊥AB于F,根据角平分线的性质解答即可.【解答】解:作PF⊥AB于F,∵AD是∠BAC的平分线,PE⊥AC,PF⊥AB,∴PF=PE=5,故答案为:5.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)【分析】(1)先算乘方,二次根式,绝对值,再算乘法即可求解;(2)根据因式分解法解方程即可求解.【解答】解:(1)原式==﹣1+2+π﹣3=π﹣2;(2)3x(x﹣2)=2(x﹣2),3x(x﹣2)﹣2(x﹣2)=0,(x﹣2)(3x﹣2)=0,x﹣2=0或3x﹣2=0,解得.17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF【分析】先由AB∥CD知∠CDE=∠AED,结合∠CDE=∠ABF得∠AED=∠ABF,据此即可得证.【解答】证明:∵AB∥CD,∴∠CDE=∠AED.∵∠CDE=∠ABF,∴∠AED=∠ABF.∴DE∥BF.18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.【分析】(1)用长方形的面积减去三个小三角形的面积即可求出△ABC的面积.(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:(1)△ABC的面积=4×8﹣1×8÷2﹣2×3÷2﹣6×4÷2=13.故△ABC的面积为13;(2)∵正方形小方格边长为1∴AC==,AB==,BC==2,∵在△ABC中,AB2+BC2=13+52=65,AC2=65,∴AB2+BC2=AC2,∴网格中的△ABC是直角三角形.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)根据三角形的面积公式解答即可;(3)利用轴对称求最短路线的方法分析得出答案.【解答】解:(1)如图△A1B1C1即为所求.(﹣3,4);;(3)如图,点P即为所求.(2,0)20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:(1)甲==51(千克),==51(千克);乙(2)S甲2=[(45﹣51)2+(44﹣51)2+(48﹣51)2+(42﹣51)2+(57﹣51)2+(55﹣51)2+(66﹣51)2]=,S乙2=[48﹣51)2+(44﹣51)2+(47﹣51)2+(54﹣51)2+(51﹣51)2+(53﹣51)2+(60﹣51)2]=,∵S甲2>S乙2,∴乙种水果销量比较稳定.21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是28千米;(2)甲的速度是40千米∕小时,乙的速度是12千米∕小时;(3)1小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)【分析】(1)由函数图象可以直接得出C市离A市的距离是28千米;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时;(3)由函数图象可以直接得出1小时,甲追上乙;(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由待定系数法求出其解即可.【解答】解:(1)由函数图象可以直接得出C市离A市的距离是28千米.故答案为:28;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时.故答案为:40,12;(3)由函数图象可以直接得出1小时,甲追上乙.故答案为:1.(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由题意,得40=k1,∴y甲=40x(0≤x≤2.5).,解得:,∴y乙=12x+28(0≤x≤6).22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【分析】(1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.【解答】解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得解这个方程组,得答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.【分析】(1)将两坐标代入函数求得k,b,即求出了一次函数解析式;(2)求出两直线的交点坐标及两直线分别与y轴相交得到的交点坐标,再根据三角形面积公式求得结果.【解答】解:(1)将(0,3)(3,0)代入y=kx+b解得:∴一次函数解析式y=﹣x+3(2)一次函数y=﹣x+3与y轴的交点坐标为(0,3)直线y=2x﹣3与y轴的交点坐标为(0,﹣3)两直线的交点坐标解得交点坐标(2,1)∴S△==6.。
2019-2020学年高中学业水平数学模拟测试卷3
高中学业水平考试模拟测试卷(三)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={-1,0,1},N ={x |x 2=x },则M ∩N =( ) A .{1}B .{0,1}C .{-1,0}D .{-1,0,1}解析:x 2-x =0⇒x (x -1)=0⇒N ={0,1},所以M ∩N ={0,1}. 答案:B2.已知等比数列{a n }的公比为2,则a 4a 2值为( )A.14B.12C .2D .4解析:a 4a 2=q 2=4.答案:D3.已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与ka -b 互相垂直,则k 的值为( )A .-32B.32C .±32D .1解析:命题“存在x 0∈R ,x 20-1=0”的否定为“对任意的x ∈R ,x 2-1≠0”.答案:D4.直线l 过点(1,-2),且与直线2x +3y -1=0垂直,则l 的方程是( )A .2x +3y +4=0B .2x +3y -8=0C .3x -2y -7=0D .3x -2y -1=0解析:设直线l :3x -2y +c =0,因为(1,-2)在直线上,所以3-2×(-2)+c =0,解得c =-7,即直线l 的方程为3x -2y -7=0.答案:C5.已知直线的点斜式方程是y -2=-3(x -1),那么此直线的倾斜角为( )A.π6B.π3C.2π3D.5π6解析:因为k =tan α=-3, 所以α=π-π3=2π3,故选C.答案:C6.已知复数z 满足z i =2+i ,i 是虚数单位,则|z |=( ) A.2B. 3C .2D. 5解析:由题意得z =2+ii =1-2i ,所以|z |= 5. 答案:D7.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位解析:y =cos 2x →y =cos(2x +1)=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +12.故选C.答案:C8.下列说法不正确的是( )A .空间中,一组对边平行且相等的四边形一定是平行四边形B .同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直解析:A.一组对边平行且相等就决定了是平行四边形,故A正确;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B正确;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C正确;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D不正确.故选D.答案:D9.函数f(x)=x3-2的零点所在的区间是()A.(-2,0) B.(0,1) C.(1,2) D.(2,3)解析:因为f(1)=13-2=-1<0,f(2)=23-2=6>0.所以零点所在的区间为(1,2).答案:C10.已知等差数列{a n}中,a2=2,a4=6,则前4项的和S4等于()A.8 B.10 C.12 D.14解析:设等差数列{a n}的公差为d,则a4=a2+(4-2)d⇒d=6-2 2=2,a1=a2-d=2-2=0,所以S4=4(a1+a4)2=2(0+6)=12.故选C.答案:C11.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是()A .6B .9C .18D .36解析:由题意可知,几何体是以正视图为底面的三棱柱, 其底面面积S =12×4×52-42=6,高是3,所以它的体积为V=Sh =18.故选C.答案:C12.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( )A.12B .1或3C.1+22D.2-12解析:因为双曲线的焦点为(2,0),在x 轴上且c =2,所以m +3+m =c 2=4,所以m =12.答案:A13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -6≤0,x -3y +2≤0,3x -y -2≥0,则z =x -2y 的最小值为( )A .-10B .-6C .-1D .0解析:由z =x -2y 得y =12x -z2,作出不等式组对应的平面区域如图(阴影部分),平移直线y =12x -z2,由图象可知,当直线y =12x -z 2过点B 时,直线y =12x -z2的截距最大,此时z 最小,由⎩⎪⎨⎪⎧x +y -6=0,3x -y -2=0,解得⎩⎪⎨⎪⎧x =2,y =4,即B (2,4).代入目标函数z =x-2y ,得z =2-8=-6,所以目标函数z =x -2y 的最小值是-6.故选B. 答案:B14.sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12C.12D.32解析:sin 47°-sin 17°cos 30°cos 17°=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.故选C.答案:C15.小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为b (a >b >0),他往返甲、乙两地的平均速度为v ,则( )A .v =a +b 2B .v =ab C.ab <v <a +b 2 D .b <v <ab解析:设甲地到乙地的距离为s .则他往返甲、乙两地的平均速度为v =2ss a +s b=2aba +b ,因为a >b >0,所以2aa +b>1, 所以v =2ab a +b >b .v =2ab a +b <2ab2ab =ab .所以b <v <ab .故选D. 答案:D二、填空题(共4小题,每小题4分,共16分.)16.首项为1,公比为2的等比数列的前4项和S 4=________. 解析:S 4=1-241-2=15.答案:1517.若函数f (x )=log a (x +m )+1(a >0且a ≠1)恒过定点(2,n ),则m +n 的值为________.解析:f (x )=log a (x +m )+1过定点(2,n ),则log a (2+m )+1=n恒成立,所以⎩⎪⎨⎪⎧2+m =1,1=n ,⇒⎩⎪⎨⎪⎧m =-1,n =1,所以m +n =0.答案:018.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:f ⎝ ⎛⎭⎪⎫14=log 214=-2,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2=19.答案:1919.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的方程为______________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),将点(-5,4)代入得25a 2+16b2=1, 又离心率e =ca =55,即e 2=c 2a 2=a 2-b 2a 2=15,所以a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=1三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知圆C :(x -1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,求直线l 的方程; (3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x -1)2+y 2=9的圆心为C (1,0),因为直线过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y =2(x -1),即2x -y -2=0.(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y -2=-12(x-2),即x +2y -6=0.(3)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为y -2=x -2,即x -y =0.圆心到直线l 的距离为12,圆的半径为3,所以弦AB 的长为232-⎝ ⎛⎭⎪⎫122=34.21.已知等差数列{a n }满足a 2+a 5=8,a 6-a 3=3. (1)求数列{a n }的前n 项和S n ;(2)若b n =1S n+3·2n -2,求数列{b n }的前n 项和T n .解:(1)由a 6-a 3=3得数列{a n }的公差d =a 6-a 33=1,由a 2+a 5=8,得2a 1+5d =8,解得a 1=32,所以S n =na 1+n (n -1)2d =n (n +2)2.(2)由(1)可得1S n =2n (n +2)=1n -1n +2,所以b n =1S n +3·2n -2=1n -1n +2+3·2n -2.所以T n =b 1+b 2+b 3+…+b n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2+32(1+2+…+2n -1)= ⎝⎛⎭⎪⎫1+12+13+…+1n -(13+14+…+1n +1n +1+1n +2)+32×2n -12-1=32-1n +1-1n +2+32×(2n -1)=3·2n -1-1n +1-1n +2.。