高中数学优质课课件:二次函数的最值

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 题2: 已知 y x 1, 且 1 x 2 , 令S xy ,则: 2 1 1 小 (1)当x= 时,S有最 值,是 2
1 3 S (2) 函数S的取值范围是 2 2
(②号本P.4 T5改编)
题3: 有长为24米的篱笆,一面利用墙 (墙的最大可用长度a为10米),围成中间隔有一道 篱笆的长方形花圃.设花圃的宽AB为x米, 2 面积为S米 .
二次函数限定范围下的最值问题
桐庐县城关初中 申屠建华
课前热身 复习回顾
你会作二次函数
y x 2x 3
2
的图象吗?
例题重现 变式深入
例题 求函数 y x 2x 3 的最值
2
变式1:当x≥-1时,求函数的最值 变式2:当x ≥ 2呢? 变式3:当x ≤ -2 时呢? 变式4:当-2≤x≤2时呢?
X=1 对称轴在限定范围内 (-2≤x≤2)
变式5:已知二次函数y= (x-m)2-4,当 -2≤x≤2时,求函数的最小值
分类讨论
应用新知 展示自我
2 y 2 x 4 x 6 , 当 分别满足 题1:已知函数 下列条件时,求函数的最值.
(1)
x2Fra Baidu bibliotek
2 x 2
(2)
(①号本P.6 T2改编)
•求s关于x的函数关系式及自变量x的取值范围;
•怎样才能围出最大面积,最大面积是多少?
课堂小结 提炼精华
这节课你学到了哪些知识? 我们用到了哪些数学方法?
课后拓展 B组 2
数形结合
知识归纳 学会迁移
1、当函数自变量没有限定范围时,二次函数在 2、当函数自变量限定范围时,二次函数总是在
顶点处 取得最值
顶点或端点 处 取得最值,我们要讨论 对称轴与限定范围的位置关系
2 -2
2 -2
对称轴X=1
对称轴在限定范围左侧 (X<2)
X=1 对称轴在限定范围右侧 (X > -2)
相关文档
最新文档