配位化学
无机化学中的配位化学
无机化学中的配位化学无机化学是化学的一个分支,研究的是无机物质的性质、合成、结构和反应。
而无机化学中的配位化学则是其中一个重要的领域,研究的是配合物的性质和反应机理。
一、什么是配位化学?配位化学是指研究配合物的化学性质、结构和反应机理的一门学科。
配合物是由一个或多个叫配体的化学物质和一个中心离子或原子团通过配位键结合而成的。
二、配合物的基本结构在无机配位化学中,有一些基本的配合物结构,以下是其中几种常见的:1. 八面体型配合物八面体型配合物的一种常见形式是指一个中心金属离子被六个配体包围而成。
这种配合物包括了一些过渡金属物质,比如八面体的铁离子(Fe2+),铬离子(Cr3+)和钴离子(Co3+)等等。
2. 四面体型配合物四面体型配合物的中心离子被四个或更少的配体包围而成。
例如一个中心钴离子(Co2+)被四个氨分子包围而成的结构。
类似的四面体型配合物还包括了许多其他的过渡金属离子。
3. 矩形双桥型分子矩形双桥型分子是指由一个或多个金属中心和一个或多个桥联的配体组成的化合物。
这种化合物经常被用作催化剂。
4. 端基配位端基配位是指配体的一个原子与金属离子形成了一个配位键,而其它的配体分子则不与之配位。
这种结构的一个例子是钴离子与四个水分子和一个氯离子形成的结构。
以上这些结构只是无机配位化学中的几个例子,实际上在无机化学中还有许多其他的配合物结构。
了解这些结构的特点,可以帮助我们更好地了解配合物的性质和反应机理。
三、配位化学的应用无机配位化学有着广泛的应用,例如在工业、农业和医学等领域。
以下是其中的一些例子:1. 工业应用无机配位化学在工业生产中有着广泛的应用。
例如,许多催化剂都是配合物,它们被广泛地应用在成本高昂和复杂的化学反应中。
此外,许多电池和太阳能电池中也使用了配合物。
2. 农业应用农业领域中,配位化学也扮演着重要的角色。
例如,许多农药和肥料都是由稳定的配合物构成的。
3. 医学应用医学领域中,配位化学也有着广泛的应用。
配位化学精简版
C2O42-、RCOO-、R2O(醚类)
③含硫配体S2-、SCN(硫氰酸根)、RSH-(巯基)、R2S(硫 醚)
④含氮配体NH3、NO、NO2、NCS-(异硫氰酸根)、RNH2、
R2NH、
⑤含磷砷 ⑥含碳
PH3、PR3、PF3、PCl3、PBr3
CO、CN-
7
•2.按配位原子的数目分类 (1)单齿(单基)配位体只含一个配位原子的配位
2、中心原子一般都是带正电荷的正离子,多为过渡 金属离子,如Cu2+、Fe3+、Co3+等,但也有一些是中性 原子,如Fe(CO)5中的Fe原子。
3、有的配合物的中心原子不止一个,最典型的是 F在e包(含H22O、)3、463等+的多水个解铁,原在子形的成中F间e(产O物H,)都为多核配3的过程中,存 合物。
R'
CO
R"C
NN
CO_
R
1,10-二氮菲(邻菲咯啉)
β双酮
9
多齿配体
-OOC OOC
NCH2CH2N
-
-
COO COO -
六齿配体 EDTA
L
N
N
Co
O
O
四齿配体
二水杨醛缩乙二 胺合钴Co(Salen)
10
3.配位数
配体中直接与中心离子(或原子)结合的配位原子 的数目称为中心离子的配位数。
——单齿配位体的配位数即为配位体总数,如[Ag(NH3)2]+中Ag+ 离子的配位数为2,[Co(NH3)6]3+中Co3+的配位数为6。
6
2.配位体
指与中心原子直接相连的分子或离子叫配体
配位原子:在形成配合物时具有孤对电子的原子,在配体中。与中 心原子直接相连的原子。 常见的配位原子一般集中在周期表中的P区。
化学配位配位化学
化学配位配位化学化学配位,也被称为配位化学,是化学领域中的一个重要分支,涉及到配位化合物的合成、结构解析和反应机理等方面。
配位化学的发展对于理解和应用化学原理有着重要的意义。
本文将探讨化学配位的基本概念、配位化合物的结构和性质以及配位反应的机理等内容。
一、化学配位的基本概念在化学中,配位是指两个或多个化学物质通过共用一对或多对电子而结合在一起形成配位键的过程。
配位化学研究的主要对象是配位化合物,其中配位中心(通常是过渡金属离子)与一个或多个配体(通常是具有孤对电子的分子或离子)形成配位键。
这种配位键的形成使得配位化合物具有独特的结构和性质。
二、配位化合物的结构和性质配位化合物的结构与其性质密切相关。
在配位化合物中,配位中心与配体之间的配位键通常是通过配位基团上的孤对电子与配位中心的空轨道相互作用而形成的。
这种配位键的形成使得配位化合物呈现出各种不同的几何构型,如线性型、平面型、三角型、四角型等。
其中最常见的是八面体和四方形的结构。
配位化合物的性质主要由配位数、配位键的强度以及配体的性质等因素决定。
配位数指的是一个配位中心周围配体的数目。
根据配位中心的电子数和配体的空位数,可以分为单配位、双配位、多配位等不同类型。
配位键的强度取决于配位中心和配体之间的电荷转移情况,一般来说,配位键越强,配位化合物的稳定性越高。
此外,配体的性质也会对配位化合物的性质产生影响,常见的配体包括氨、水、羰基、氯离子等。
三、配位反应的机理配位反应是指在化学反应中,配位中心与配体之间的配位键发生断裂或形成的过程。
根据反应的特点,可以将配位反应分为配位置换反应、配位加成反应和配位消除反应等类型。
配位置换反应是最为常见的一类配位反应,指的是在配位化合物中,一个或多个配体被其他配体取代的过程。
这种反应通常涉及到金属离子与配位基团之间的键的断裂和形成。
配位置换反应的机理可以通过亲核取代机理、酸碱取代机理或配体内取代机理来解释。
配位加成反应是指在配位化合物中,通过配位中心与新的配体之间的配位键形成来实现新配位基团的引入。
配位化学的基本概念与配位化合物的性质
配位化学的基本概念与配位化合物的性质配位化学是研究过渡金属离子或中心离子与周围配体(配位体)之间配位键形成、结构及性质的科学。
配位化合物是由一个或多个配体与一个中心离子配位形成的化合物,具有独特的结构和性质。
本文将介绍配位化学的基本概念以及配位化合物的性质。
一、配位化学的基本概念配位化学的基本概念主要围绕着配位键形成、配体和中心离子的性质以及配合物的结构与性质展开。
1. 配位键形成配位键是配体中的一对电子与中心金属离子之间的共用键。
配位键的形成需要配体提供一个或多个孤对电子与中心离子形成配位键。
配位键的形成对配位化合物的性质起着关键作用。
2. 配体的性质配体是指能够提供一个或多个电子对与中心离子形成配位键的分子或离子。
配体的性质主要影响配位键的强弱和配位化合物的稳定性。
常见的配体有氨、水、氯等。
3. 中心离子的性质中心离子是指配位化合物中与配体形成配位键的金属离子或金属原子。
中心离子的性质包括电荷数、价态和配位数等。
中心离子的性质决定了配位化合物的结构和性质。
4. 配位化合物的结构与性质配位化合物的结构与性质主要受到配体种类、中心离子性质以及配位数等因素的影响。
配位化合物可以形成各种不同的结构,如线性、方向、平面、四面体等。
这些结构决定了配位化合物的性质,如颜色、磁性、溶解性等。
二、配位化合物的性质配位化合物具有许多独特的性质,以下将介绍其中的几个重要性质。
1. 颜色许多配位化合物显示出明亮的颜色,如蓝色、红色、黄色等。
这是由于配位键形成后,中心金属离子的d轨道发生分裂,产生能量差,吸收特定波长的光而呈现有色。
2. 磁性配位化合物可以表现出不同的磁性,包括顺磁性和反磁性。
顺磁性是指配位化合物中所含的未成对电子会受到外磁场的吸引,而提高磁性。
反磁性则相反,未成对电子会被排斥。
3. 溶解性配位化合物的溶解性与配体和中心离子的性质密切相关。
一般来说,具有极性配体的配位化合物在极性溶剂中溶解度较高,而中心离子大多数情况下并不直接影响溶解性。
化学反应的配位化学的计算
化学反应的配位化学的计算配位化学是研究配合物形成、反应机理和性质的学科,主要涉及配合物的形成和配位键的形成与破裂等。
在化学反应中,配位化学的计算是非常重要的,可以用来预测反应的可能性、探索机理以及优化实验条件。
本文将介绍几种常见的配位化学计算方法。
一、配位化学的基础概念1. 配位化学基础知识配位化学是指中心金属离子通过配位键与一个或多个配体形成配合物的过程。
在配合物中,中心金属离子和配体之间通过配位键连接。
配位键形成与破裂过程中可以伴随电子转移,导致配合物的性质和结构发生变化。
2. 配位数与配位键数配位数指的是中心金属离子周围配体的个数。
而配位键数则是指配位键的数量。
通过计算配位键数,可以确定配位数,同时也可以判断配体与中心金属离子之间的键的类型(配位键、离子键等)。
二、计算配位化学的方法1. 密度泛函理论(DFT)密度泛函理论是研究材料和分子的基本性质的一种方法。
在配位化学中,可以使用DFT方法计算配体分子和金属离子之间的结合能、键长、结构和电荷分布等。
通过计算可以得出配体的相对稳定性以及得到反应的能垒等信息。
2. 分子力学方法分子力学方法是一种计算化学中常用的近似计算方法,适用于大分子的计算。
在配位化学中,可以使用分子力学方法计算配体和金属离子之间的键长、键能以及配位平面的稳定性等。
分子力学方法计算速度快,但对于反应动力学和电子结构等细节缺乏精确描述。
3. 自洽反应场(SCRF)模型自洽反应场模型考虑了溶剂效应对配位化学的影响。
在计算过程中,可以考虑一个或多个溶剂分子与配体和金属离子的相互作用。
通过自洽反应场模型可以预测在溶液中的反应情况,预测络合物的稳定性等。
三、配位化学计算在实际应用中的例子1. 配位键的强度与稳定性通过配位化学的计算方法,可以预测配位键的强度和稳定性。
例如,可以计算不同配体与相同金属离子结合时的配位键能,并比较它们之间的强度差异。
这些计算结果可以帮助选择更合适的配体,提高配合物的稳定性。
名词解释配位化学
名词解释1,配位化合物:一类具有特征化学结构的化合物,由中心原子或离子(统称中心原子)和围绕它的称为配位体(简称配体)的分子或离子,完全或部分由配位键结合形成。
2,价键轨道理论:1.两个原子的成单电子若自旋相反则可两两配对形成共价键2.共价键的形成是原子轨道的重叠,重叠程度越大,共价键越稳定3.共价键有方向性和饱和性3,晶体场理论要点:1、中心离子与配体之间看作纯粹的静电作用2、中心离子d轨道在配体(场)作用下,发生能级分裂。
3、d电子在分裂后的d轨道上重排,改变了d电子的能量。
4,分子轨道理论:分子轨道理论从分子整体出发,考虑电子在分子内部的运动状态,是一种化学键的量子理论.该理论的要点有:1.在分子中电子不是属于某个特定的原子,电子不在某个原子轨道中运动,而是在分子轨道中运动.分子中每个运动状态则用波函数表示,即分子轨道;2.分子轨道是由分子中原子的原子轨道线性组合而成,组成后形成的分子轨道数目与结合前的原子轨道数目相等(轨道杂化则是同一原子的不同原子轨道的重新组合,而且分子轨道是多中心的,原子轨道只有一个中心);3.原子轨道线性组合得到分子轨道.其中能量高于原来原子轨道者成为反键分子轨道,能量低于原来原子轨道者称为成键分子轨道;4.每个分子轨道都有对应的图像.5,晶体场稳定化能:若d轨道不是处在全满或全空时,d电子分裂轨道后的总能量低于分裂前轨道的总能量。
这个总能量的降低值,称为晶体场稳定化能。
此能量越大,配合物越稳定。
6,姜泰勒效应:电子在简并轨道中的不对称占据会导致分子的几何构型发生畸变,从而降低分子的对称性和轨道的简并度,使体系的能量进一步下降,这种效应称为姜-泰勒效应。
7,电子组态:电子组态指原子内电子壳层排布的标示。
又称电子构型或核外电子排布。
8,微观态:如果使用分子数分布并且区分具体的分子来描写的系统状态叫热力学系统的微观态。
9,单重态:根据泡里不相容原理,在同一轨道上的两个电子的自旋方向要彼此相反,即基态分子的电子是自旋成对的,净自旋为零,这种电子都配对的分子电子能态称为单重态(singlet state),具有抗磁性。
配位化学
17
Inorganic C无he机m化ist学ry
普通光:电场可以在一切可能的平面上 振动。
偏振光:电场只能在一个平面上振动。 也称平面偏振光,简称偏光。
普通光通过偏振片可变成偏振光。 见书178页图4-13。 旋光物质:使偏光振动平面旋转的物质。 旋光度:偏光振动平面旋转的角度。 对映异构也称旋光异构或光学异构。
若配体对中心原子影响较大,则易于导致中心 原子价电子层的重排,从而形成内轨型配合物。
若配体对中心原子影响较小,则难于使中心原 子价电子层发生重排,从而形成外轨型配合物。
一般而言:对中心原子影响较大的配体有CN-、 NO2-、NH3等,对中心原子影响较小的是H2O、F等。
22
Inorganic C无he机m化ist学ry
结果:五个简并的d轨道在八面体场中分 裂成两组。
能量较高的dz2、dx2-y2,称为dγ轨道; 能量较低的dxy、dxz、dyz,称为dε轨道。 28
1
Inorganic C无he机m化ist学ry
NH3分子在溶液中有了更紧密的结合。 研究证实:
Co3+与NH3结合形成Co(NH3)63+,产物 [Co(NH3)6]Cl3。
化合价理论不能解释。
价键理论解释[Co(NH3)6]Cl3结合方式。 配位化合物:
由可以给出孤对电子或π电子的一定数目
的离子或分子(配体)和接受孤对电子或π电
分子中的未成对电子数与磁矩的对应关系:
未成对电子数 磁矩B.M.
1
1.73
2
2.83
3
3.87
4
《配位化学》课件
配位化合物的稳定性
总结词
配位化合物的稳定性
详细描述
配位化合物的稳定性取决于多个因素,包括中心原子或离子的性质、配位体的数目和类型、配位键的 数目和类型等。一般来说,配位数越大,配位化合物的稳定性越高。此外,具有强给电子能力的配位 体也能提高配位化合物的稳定性。
03
配位键理论
配位键的定义
总结词
配位键是一种特殊的共价键,由一个 中心原子和两个或更多的配位体通过 共享电子形成。
《配位化学》PPT课件
目录
• 配位化学简介 • 配位化合物 • 配位键理论 • 配位反应动力学 • 配位化学的应用
01
配位化学简介
配位化学的定义
配位化学是研究金属离子与有机配体 之间相互作用形成络合物的科学。
它主要关注配位键的形成、性质和反 应机制,以及络合物在催化、分离、 分析等领域的应用。
方向性是指配位键的形成要求中心原子和配 位体的电子云在特定的方向上重叠。这决定 了配合物的特定空间构型。饱和性则是指一 个中心原子最多只能与数目有限的配位体形 成配位键,这取决于中心原子的空轨道数量 和配位体的可用孤对电子数。
04
配位反应动力学
配位反应的动力学基础
反应速率
01
配位反应的速率是研究配位反应动力学的关键参数,它决定了
05
配位化学的应用
在工业生产中的应用
催化剂
配位化合物可以作为工业生产中的催化剂,如烯烃的氢化反应、 烷基化反应等。
分离和提纯
利用配位化合物的特性,可以实现工业生产中的分离和提纯过程 ,如金属离子的分离和提纯。
化学反应控制
通过配位化合物可以控制化学反应的速率、方向和选择性,从而 实现工业化生产中的优化。
配位化学知识点总结
配位化学知识点总结一、配位化学的基本概念配位化学是研究金属离子(或原子)与配体之间形成的配位化合物的结构、性质和反应的化学分支。
首先,我们来了解一下什么是配体。
配体是能够提供孤对电子与中心金属离子(或原子)形成配位键的分子或离子。
常见的配体有水分子、氨分子、氯离子等。
而中心金属离子(或原子)则具有空的价电子轨道,可以接受配体提供的孤对电子。
配位键是一种特殊的共价键,由配体提供孤对电子进入中心金属离子(或原子)的空轨道而形成。
配位化合物则是由中心金属离子(或原子)与配体通过配位键结合形成的具有一定空间结构和化学性质的化合物。
二、配位化合物的组成配位化合物通常由内界和外界两部分组成。
内界是配位化合物的核心部分,由中心金属离子(或原子)与配体紧密结合而成。
例如,在Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺就是内界。
外界则是与内界通过离子键结合的其他离子。
在上述例子中,SO₄²⁻就是外界。
中心金属离子(或原子)的化合价与配体的化合价之和等于配位化合物的总化合价。
配位数指的是直接与中心金属离子(或原子)结合的配体的数目。
常见的配位数有 2、4、6 等。
三、配位化合物的结构配位化合物具有特定的空间结构。
常见的配位几何构型有直线型、平面三角形、四面体、八面体等。
例如,配位数为 2 时,通常形成直线型结构;配位数为 4 时,可能是平面正方形或四面体结构;配位数为 6 时,多为八面体结构。
这些结构的形成取决于中心金属离子(或原子)的电子构型和配体的大小、形状等因素。
四、配位化合物的命名配位化合物的命名有一套严格的规则。
先命名外界离子,然后是内界。
内界的命名顺序为:配体名称在前,中心金属离子(或原子)名称在后。
配体的命名顺序遵循先无机配体,后有机配体;先阴离子配体,后中性分子配体。
对于同类配体,按配体中原子个数由少到多的顺序命名。
如果配体中含有多种原子,先列出阴离子配体,再列出中性分子配体。
高中化学中的配位化学与高分子化学
高中化学中的配位化学与高分子化学化学是一门广泛的科学领域,其中配位化学与高分子化学是高中化学课程中的重要内容。
配位化学研究的是金属离子与配体之间的相互作用,而高分子化学则研究的是由大量重复单元构成的聚合物。
这两个领域在现代科学和工业中都有着重要的应用。
一、配位化学1. 配位化学的基本概念配位化学是研究金属离子与配体之间形成配位键的化学学科。
在配位化学中,金属离子作为中心原子或离子,通过配位键与配体结合形成配合物。
配体是指能够提供孤对电子的分子或离子,例如水、氯化物离子等。
2. 配位键的形成配位键是金属离子与配体之间的化学键。
配位键的形成依赖于金属离子的空位和配体提供的孤对电子。
常见的配位键有配位键、共价键和离子键等。
3. 配合物的性质与应用配合物具有独特的性质和应用。
例如,过渡金属配合物具有良好的催化性能,广泛应用于工业生产中。
另外,配合物还可以用于医学、环境保护等领域。
二、高分子化学1. 高分子化学的基本概念高分子化学是研究由大量重复单元构成的聚合物的化学学科。
聚合物是由单体分子通过共价键连接而成的大分子化合物。
常见的聚合物有塑料、橡胶、纤维等。
2. 聚合反应的机理聚合反应是指将单体分子通过共价键连接成聚合物的过程。
聚合反应包括加成聚合、缩聚聚合和环聚合等。
其中,加成聚合是最常见的聚合反应类型。
3. 聚合物的性质与应用聚合物具有多种性质和应用。
例如,聚乙烯是一种常见的塑料,具有良好的绝缘性能和耐腐蚀性,广泛应用于包装、建筑等领域。
此外,聚合物还可以用于制备纤维、涂料、胶粘剂等。
三、配位化学与高分子化学的联系1. 配位聚合物配位聚合物是一类特殊的聚合物,它们由金属离子和配体通过配位键连接而成。
这些聚合物具有独特的结构和性质,广泛应用于催化、传感等领域。
2. 配位聚合反应配位聚合反应是一种通过配位键连接单体分子的聚合反应。
这种反应可以在常温下进行,并且具有高效、选择性好等优点。
3. 配位聚合物的应用配位聚合物在催化、传感、药物等领域具有广泛的应用。
第一章 配位化学简介
配体体积越大,则中心离子周围可容纳的配体数越 少,配位数减小。 [AlF6]3-、 [AlCl4]-
外界条件指配体浓度、反应温度等,他们也会影响 配位数的大小
综上所述,影响配位数的因素是复杂的,但一般地 讲,在一定条件范围下,某中心离子有一个特征的 配位数
1.2.3 配合物的分类
(Types of Coordination Complex)
第一章 配位化学简介
1.1 配位化学的发展简史 1.2 配合物的基本概念 1.3 配合物的命名法 1.4 配合物的应用
1.1 配位化学的发展简史
(The History of Coordination Chemistry)
国外最早记载的配合物-普鲁士蓝染料。1704年普鲁士 染料厂工人迪斯巴赫把兽皮或牛血和碳酸钠在铁锅中 煮沸得到的蓝色沉淀,后经证明为[NaFeIII(CN)6FeII]x
按照配体中配位原子的个数分类
单齿配体(monodentate ligand)
只含有一个配位原子的配体。如X-、OH-和NH3等 双齿和多齿配体(bidentate and polydentate ligand)
含有两个或两个以上配位原子并能同时和中心离子相 结合的配体
N
N
CH2 H2N
CH2 NH2
(2) 配体(ligand)
在配合物中与中心离子结合的阴离子或分子称 为配位体(简称配体);在配体中直接与中心 离子相结合的原子称为配位原子
X
H2
O
O H( 羟基) C N C O (羰基)
N
H3
N
O(2 硝基)
N
CS( 异硫氰根)
有机化学基础知识配位化学和配位反应
有机化学基础知识配位化学和配位反应有机化学基础知识: 配位化学和配位反应配位化学是有机化学中一个重要的分支,它研究的是配位化合物的形成、结构、性质及其反应。
配位化学广泛应用于无机领域,在有机化学中也发挥着重要作用。
本文将介绍有机化学基础知识中的配位化学和配位反应。
一、配位化学1. 配位键的形成配位化学研究的首要问题是如何形成金属与配体之间的配位键。
通常,金属原子通过空位和配体中的锯齿型电子云形成配位键。
配位键的形成可以通过配位键理论来解释,其中最常见的是单线性理论和自由电子对瓦伦希巴理论。
2. 配位数和配位几何一个金属离子可以与一个或多个配体形成配位键,其中与金属离子形成化学键的配体被称为配体场。
而金属离子与配体形成的化学键被称为配位键。
配位数指的是与金属离子形成配位键的配体数量,不同的金属离子具有不同的配位数。
配位几何是指配体在金属离子周围的三维排列方式,常见的配位几何有线性、平面四方形、正四面体和八面体等。
二、配位反应1. 配位镜像异构配位镜像异构是指当一个金属离子的配位体在一定方向上排列成对称镜像的两种形式时,这两种形式被称为配位镜像异构体。
配位镜像异构体之间可以通过外部环境的改变或者配体的交换来转化。
2. 配位取代反应配位取代反应是指当一个或多个配体被其他配体取代时发生的反应。
配位取代反应是有机化学中常见的反应类型之一,通过改变配体可以改变配位化合物的性质。
配位取代反应的速率往往受到配体的电子效应、空间位阻和化学平衡的影响。
不同的配体具有不同的取代反应活性,从而导致不同的反应速率和选择性。
3. 配位加成反应配位加成反应是指当一个或多个配体与金属离子形成新的配位键时发生的反应。
配位加成反应可以使得金属离子的配位数增加,从而改变化合物的结构和性质。
配位加成反应的选择性往往由配体的电子构型、酸碱性和空间位阻等因素决定。
不同的配体具有不同的加成反应活性,从而导致不同的反应速率和选择性。
总结:配位化学是有机化学中重要的一个分支,研究配位化合物的形成、结构和性质。
化学中的配位化学
化学中的配位化学化学中的配位化学是现代化学的重要分支之一,它研究的是含有配体的化合物的性质和反应机理。
在配位化学中,分子中的中心原子和其周围的配体之间形成了一种特殊的结构——配合物。
这些配合物具有独特的物理化学性质,如催化反应、生物酶的活性、光学活性等等。
本文将简要介绍配位化学的相关概念和应用。
配体和配位键配体是指在配合物中与中心原子形成配位键的化学物质。
配体可以是单个原子或者是一个复杂的分子。
常见的配体包括水、氨、卤素、羰基、氮气和磷酸基等等。
在配合物中,配体以配位键的形式与中心原子结合,形成一个有机功能团体。
配合物中的配位键是一种新的化学键,它由配位原子和中心原子之间的电子共享所形成。
配合物的构成和稳定性一个配合物通常是由一个中心原子和若干个配体组成的化合物。
在配合物中,配体通过形成配位键与中心原子结合,在配位键的形成中充当了一个具有强吸电子特性的末端原子。
一个配合物中通常会存在多个配位键,这样就构成了一个三维的配位空间。
由于分子中的配体和中心原子之间的相互作用,配合物具有较高的稳定性和较低的反应活性。
配合物的结构与电子排布在配合物中,中心原子和配体之间形成的配位键具有不同的构型和电子排布。
大多数情况下,配合物的排布是球形对称的。
但是也存在一些不规则的配合物,如四面体和八面体配合物等等。
配位键的形成导致了分子中的原子的电子状态的改变,大部分配合物具有复杂的电子排布。
特别地,在一些过渡金属化合物中,d 轨道的电子也参与到配位键的形成中,这样就会产生一些更加复杂的配位键结构。
配合物的性质和应用配合物具有广泛的应用价值,在医药、催化剂、材料科学、化学分析等领域有着重要的应用。
其中,医药领域中的金属配合物被广泛用于肿瘤治疗、抗病毒治疗等。
催化剂领域中的过渡金属配合物可以通过空间位阻和电子效应的调节来提高催化剂的催化效率和选择性。
材料科学领域中的金属配合物可以被用于纳米材料的制备、电子材料的研究等。
化学分析领域中的金属配合物也被广泛用于水污染、重金属检测等方面。
配位化学知识点总结
配位化学知识点总结配位化学是化学的一个重要分支,它探讨的是化学中的配位作用,即两个或多个分子相互作用形成复合物。
在高分子材料、医药、冶金、土木工程和环境科学等领域应用广泛。
配位化学的基础知识和技能是化学专业学生和研究人员必备的求生技能之一。
本文将介绍配位化学的基本概念、重要原则以及主要应用。
一、配位化学的基本概念1. 配位体在化学中,配位体是指通过给体原子与金属中心之间的化学键与金属形成配合物的分子或离子。
著名的例子有氨、水、五硝基吡啶、乙二胺等。
2. 配位作用配位作用是指配位体的给体原子利用孤对电子与金属中心形成协同共振化学键的过程。
配位能力取决于给体原子的化学性质。
一般来说,仅具有孤对电子的原子或离子能够作为配位体。
在配位作用中,给体原子发生了电子的向金属中心的迁移,原子中的孤对电子与金属中心的未配对电子形成共价键。
3. 配位数配位数是一个复合物中与离子或分子互相作用的中心原子数量。
通常,金属离子具有高配位数,而范德瓦尔斯复合物和氢键配合物具有较低的配位数。
二、配位化学的重要原则1. 八面体配位八面体配位是指配合物中金属中心周围八个空间位置上配位体的均匀分布,也是最常见的配位几何形态之一。
一些典型的八面体配位化合物包括六氟合铁酸钾和硫脲铜硫脲。
2. 方阵配位方阵配位是一种由四个配位体组成的四面体形态的配位体,常见的方阵配位化合物包括四氟合镍和四氯合钴。
3. 配体场理论配体场理论是解释元素化学、配位化学和配位化合物性质的一种理论。
该理论通过将配位体组合成简单的场点,进而表征复合物的化学键结构和物理性质。
三、配位化学的主要应用1. 工业催化工业化学中的催化剂往往是由配位化合物构成,钯的催化反应、铂的催化脱氢和钨的催化氧化反应都是利用了配位体的协同作用完成的。
例如,五氯甲基钌配合物和卟啉钴配合物在氧气氧化和n 桥苯甲基乙烯二醇转移反应中均被用作催化剂。
2. 生物学知识生物配合物(例如血红蛋白和维生素B12)中的重要化学反应是由于配位体与活性中心原子之间的化学反应所形成的。
第4章_配位化学
H4[Fe(CN)6] 六氰合铁(II)酸
含配阳离子的配合物命名
命名时,阴离子在前,阳离子在后,与无机盐、无 机碱的命名同, 如:
[Co(NH3)6]Cl3 三氯化六氨合钴(III) [Cu(NH3)4]SO4 硫酸四氨合铜(II) [Ag(NH3)2](OH) 氢氧化二氨合银(1+)
(5) 配离子与形成体的电荷数
A()g(S2O3)23, (P2)tC3l(NH3)
K3(F3e)(CN6) 赤血盐 , K4(F2e)(CN6)
C(3o)C3l(NH3)3 ,
(0)
Fe(CO5)
黄血盐
1.3 命名(nomenclature)
f) 配体中化学式相同但配位原子不同(如–SCN, – NCS), 则按配位原子元素符号字母顺序排列;若配位原子尚不清 楚,则以配位个体的化学式中所列的顺序为准。 如:
(2)多核配合物的命名
在桥联的配体前加前缀 “μ”,例如 [{Cr(NH3)5}2(μ-OH)]Cl5
五氯化 μ-羟-二(五氨合铬(III))
H
CN O F
P S Cl
As Se Br
Sb Te I 最常见的是N、O,其次是P、S。
配体的分类:
①、按成键方式不同可分为:
经典配体:提供孤电子对,形成配位键,亦称σ配体。例
NH3、en。其特征是含有孤对电子对的分子或离子。
非经典 配体:
π配体:C2H4、C2H2等提供不定域电子。 其特征:既是电子对给体,又是受体。
配位单元:由一个简单阳离子或原子和一定数目的中性分子或阴
离子以配位键结合,按一定的组成和空间构型形成一
配位化学知识点总结
配位化学知识点总结配位化学是无机化学的一个重要分支,它研究的是金属离子或原子与配体之间通过配位键形成的配合物的结构、性质和反应。
以下是对配位化学知识点的总结。
一、配位化合物的定义与组成配位化合物,简称配合物,是由中心原子(或离子)和围绕它的配体通过配位键结合而成的化合物。
中心原子通常是金属离子或原子,具有空的价电子轨道,能够接受配体提供的电子对。
常见的中心原子有过渡金属离子,如铜离子(Cu²⁺)、铁离子(Fe³⁺)等。
配体是能够提供孤对电子的分子或离子。
配体可以分为单齿配体和多齿配体。
单齿配体只有一个配位原子,如氨(NH₃);多齿配体则有两个或两个以上的配位原子,如乙二胺(H₂NCH₂CH₂NH₂)。
在配合物中,中心原子和配体组成内界,内界通常用方括号括起来。
方括号外的离子则称为外界。
例如,Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺是内界,SO₄²⁻是外界。
二、配位键的形成配位键是一种特殊的共价键,是由配体提供孤对电子进入中心原子的空轨道形成的。
配位键的形成条件是中心原子有空轨道,配体有孤对电子。
例如,在 Cu(NH₃)₄²⁺中,氨分子中的氮原子有一对孤对电子,铜离子的价电子层有空轨道,氮原子的孤对电子进入铜离子的空轨道,形成配位键。
三、配合物的命名配合物的命名遵循一定的规则。
对于内界,先列出中心原子的名称,然后依次列出配体的名称。
配体的命名顺序是先阴离子,后中性分子;先简单配体,后复杂配体。
在配体名称之间用“·”隔开,配体的个数用一、二、三等数字表示。
如果有多种配体,用罗马数字表示其价态。
例如,Co(NH₃)₅ClCl₂命名为氯化一氯·五氨合钴(Ⅲ)。
四、配合物的空间结构配合物的空间结构取决于中心原子的杂化轨道类型和配体的空间排列。
常见的杂化轨道类型有 sp、sp²、sp³、dsp²、d²sp³等。
配位化学分类
配位化学分类配位化学是无机化学的一个重要分支,研究的是金属离子或中心原子与周围配体之间的相互作用和配位化合物的性质。
根据配位物中配体的种类和数量,配位化学可以分为多种类型。
一、单一配体配位化合物单一配体配位化合物是指配位物中只含有一种配体的化合物。
根据配体的性质,可以将单一配体配位化合物分为阴离子配位化合物、中性配位化合物和阳离子配位化合物。
1. 阴离子配位化合物阴离子配位化合物是指配位物中的配体为阴离子的化合物。
常见的阴离子配体有氰离子(CN-)、氨基(NH2-)、氯离子(Cl-)等。
阴离子配体可以通过给予金属离子一个或多个电子对来形成配位键。
2. 中性配位化合物中性配位化合物是指配位物中的配体为中性分子的化合物。
常见的中性配体有水(H2O)、一氧化碳(CO)、氨(NH3)等。
中性配体可以通过与金属离子之间的协同作用来形成配位键。
3. 阳离子配位化合物阳离子配位化合物是指配位物中的金属离子为阳离子的化合物。
常见的阳离子配体有氯离子(Cl-)、溴离子(Br-)、碘离子(I-)等。
阳离子配体可以通过给予金属离子一个或多个电子对来形成配位键。
二、多配体配位化合物多配体配位化合物是指配位物中含有多种配体的化合物。
根据配体的数量和结构,多配体配位化合物可以进一步分为双核配位化合物、多核配位化合物和大环配位化合物。
1. 双核配位化合物双核配位化合物是指配位物中含有两个金属离子的化合物。
双核配位化合物可以通过两个金属离子之间的配位键连接起来,形成一个稳定的配位体系。
2. 多核配位化合物多核配位化合物是指配位物中含有多个金属离子的化合物。
多核配位化合物可以通过多个金属离子之间的配位键连接起来,形成一个复杂的配位体系。
3. 大环配位化合物大环配位化合物是指配位物中含有大环结构的化合物。
大环配位化合物可以通过大环结构中的配体与金属离子之间的配位键形成。
三、配位聚合物配位聚合物是指配位物中含有多个相同或不同金属离子的化合物。
第三章配位化学
几何异构
立体异构可分为几何异构和光学异构两种 1 几何异构
在配合物中, 配体可以占据中心原子周围的不同位置。所研 究的配体如果处于相邻的位置, 我们称之为顺式结构, 如果配体 处于相对的位置, 我们称之为反式结构。由于配体所处顺、反位 置不同而造成的异构现象称为顺-反异构。
很显然, 配位数为2的配合物, 配体只有相对的位置, 没有顺 式结构, 配位数为3和配位数为4的四面体, 所有的配位位置都是 相邻的, 因而不存在反式异构体, 然而在平面四边形和八面体配 位化合物中, 顺-反异构是很常见的。
例1. 命名及组成 (1) [Co Cl (NCS)(en)2]NO3
(1) 硝酸一氯·一异硫氰根·二(乙二胺)合钴 (Ⅲ) Co3+;Cl-、NCS-、en;Cl、N、N、N;配位数:6
(2) [CoCl2(NH3)3(H2O)]Cl
(2) 氯化二氯·三氨·一水合钴(Ⅲ) Co3+;Cl-、NH3、H2O;Cl、N、O;配位数:6
亚硝基配合物, 是通过O进行配位的。类似的例子还有 SCN-和CN-, 前者可用S或N进行配位, 后者可用C和
N进行配位。
从理论上说, 生成键合异构的必要条件是配体的两
个不同原子都含有孤电子对。如, :N≡C-S:-, 它的N和S
上都有孤电子对, 以致它既可以通过N原子又可以通过
S原子同金属相联结。
的核心,它们必须具有空的价轨道,通常是金属(尤 其是周期表中的过渡金属) 离子或原子。
配体:含有孤对电子的分子或离子均可作为配体的
配位原子。
配位数:直接同中心离子(或原子)相连的配位原
子数目叫中心离子(或原子)的配位数。
二、配合物的命名
1.总体原则:与无机化合物相似,先阴离子后阳离子。
配位化学_概论_(Introduction)
狭义的定义:配合物不包括中心原子为非金属的物种, 如 H3NBF3, NH4+, (CH3)3NBF3 不属于配合物。 习惯和历史的原因 如, 认为MnO42-是Mn6+与O2-构成的配离子,而SO42却不认为是配离子。又如 像有机金属化合物Zn(C2H5)2 和Si(CH3)4 也不被认为是配合物。
对于配合物定义的讨论
广义的定义:凡形成配位键的化合物,也叫授-受 加合物(adduct),不分金属与非金属均称作配合 物。如下列反应生成物:
(CH3)3N(l) + BF3(g)
(CH3)3N→BF3(s) (adduct) H3N→BF3(s) (adduct)
NH4F + BF3
NH3(g) + BF3(g)
第一章 概论 (Introduction)
2. 配合物的定义(Definition)
至今,配合物的定义还是不够严格的,这是因 为一方面受历史和习惯的影响;另一方面是 因为配位化学的研究领域日益扩展的结果。 不过实用上仍有大家可普遍接受和使用方便 的定义。 即 配合物可定义如下:
配合物(coordination compound)是由含有孤 对电子(lone-pair electrons)或π-电子的电子给 予体(donor,配位体,路易斯碱)与具有低 能量空轨道(low-lying empty orbital)的电子 接受体(acceptor,中心金属离子或原子,路易 斯酸)构成的化合物。例如 BF3(g) + N(CH3)3(l) F3B N(CH3)3 (s)
配
化学分析 有机化学—微量元素分析化学 医药 药物化学 高分子化学 化学仿生 物理化学 结构化学 量子化学 有机合成 有机合成化学—金属有机化学 生物化学—生物无机化学 材料合成化学 半导体化学 工业化学 鞣革 染色 催化化学 环境化学 能源化学 冶金 原子能 火箭 超导 化肥 现代理论化学 农业化学 计算机化学 现代计算技术 现代测量技术 营养化学
配位化学:第一章 配位化学的基本概念
第一章配位化学的基本概念一、什么是配位化合物二、配合物的组成三、配合物的命名四、配合物的异构现象一、什么是配位化合物1. 配合物的形成1.1 铜氨络离子的形成•向氯化铜溶液中逐滴加入NH3·H2O溶液,首先得到蓝色Cu(OH)2沉淀。
•继续向溶液中加入NH3·H2O溶液,Cu(OH)2沉淀则逐渐溶解,溶液变为深蓝色•向溶液中加入95%乙醇,则可以得到深蓝色沉淀,抽滤后,取少量沉淀,用水溶解,加入过量NaOH (10%)溶液,溶液无明显变化CuSO4 + 2NH3·H2O → Cu(OH)2↓ + 2NH4+NH3·H2O——-——→ [Cu(NH3)4]SO4(深蓝色) + 4H2O[Cu(NH3)4]SO4 ——配位化合物[Cu(NH3)4]2+ ——配离子(1)定义:具有孤对电子的离子或分子和具有空轨道的原子或离子组成的化合物。
二、配合物的组成内界: 中心体(原子或离子)与配位体,以配位键成键外界:与内界电荷平衡的相反离子(1)中心离子(或原子):提供空的价电子轨道①过渡金属阳离子。
②某些非金属元素:如[SiF6]2-中的Si(IV) 。
③中性原子:如Ni(CO)4和Fe(CO)5中的Ni 和Fe(2)配体的分类按配体所含配位原子的数目分:单齿配体:只含一个配位原子的配体(NH3,H2O等)多齿配体:含有两个或两个以上的配位原子的配体(3)配位数:直接与中心原子结合的配位原子的数目。
①若为单齿配体,配位数=配位体数。
例:[Ag(NH3)2]+ 、[Cu(NH3)4]2+、[CoCl3(NH3)3]和[Co(NH3)6]3+的配位数分别为2、4、6和6。
②若为多齿配体,配位数≠配位体数。
例:[Cu(en)2]2+的配位数为4,Cu-edta的配位数为6。
一般中心原子的配位数为2,4,6,8。
最常见的4,6。
而5,7或更高配位数则较少见。
(4)配离子的电荷:中心原子和配体电荷的代数和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有满 p 轨道的配体——OH-、X- 、 H2O
(低能占有轨道)
——弱场配体
使Δ 减小
*
t2g d
t2g π∗
M
L
ML
形成M→L 反馈π配位键
有空d轨道的配体——PR3、AsR3、SR2
有多重键、空π*轨道的配体——CO、CN-、C2H2
(高能空轨道)
——强场配体
使Δ 增大
(2)分裂能 影影响响分分裂裂能能△△值值大大小小的的因因素素
CFT:纯金属原子轨道
t2g、eg*轨道
MOT:近似看作原d电子轨道
其中t2g:无 π 配键时—可看作纯金属轨道
有 π 配键时—不看作纯金属轨道
CCFFTT与与MMOOTT比比较较
③ 处理t2g、eg轨道分裂上有所不同 CFT: t2g、eg轨道能量与球型场中比较
在Mn+周围静电场影响下分裂 MOБайду номын сангаас:形成分子时,原子轨道能量的变化主要起因于
Δ ≈ Δet + Δσ
+
静电作用
σ键
正贡献
Δπ(M→L) -
π键(M→L) 正贡献
Δπ(L → M)
π键(L→M) 负贡献
CCFFTT与与MMOOTT比比较较
相同:d轨道分裂 定性讨论配合物的磁学、光学、热化学等现象
重要区别: ① M-L间作用 CFT:纯离子键 MOT:共价键
②
t2g、eg轨道
强的π电子给予体 (I-, Br-、Cl-、SCN-)
<弱的π电子给予体 (F-、OH-)
<很小或无π相互作用(H2O、NH3)
<弱的π接受体
(phen)
<强的π接受体
(NO2-、CN-、CO)
(2)分裂能
MOT: 考虑M-L间σ键作用与π键作用 能级关系可用于讨论:光学、磁学性质
分裂能 Δ 来自四种贡献:
用 于 估 算 ∆o 的 f 值 和 g 值
f
配体
f
0.72
CS (NH2 )2
1.01
0.75
NCS-
1.02
0.78
NCSe-
1.03
0.80
NC-
1.15
金属离子 Mn2+ Ni2+ Co2+ V2+
0.82
CH3NH2
1.17
0.83
NH2CH2CO2 1.18
0.85
CH3CN
1.22
0.9
s
x2+y2+z2
d
(2z2-x2-y2, x2-y2)
(RX,RY,RZ) (xy, xz, yz) d
(x,y,z) p
可参与形成 σ 键
可参与形成 π 键
(1)配合物分子轨道的形成
ML6的Oh场
对称性匹配
σ–非键
MO形成的结果: 金属的d轨道分裂为t2g和eg*
高、低自旋
M的d电子可占据
6e
12e
配体的电子进入成键轨道 ——相当于配位键
对称性匹配
t2g轨道dxy、dxz、dyz条件合适时可形成 π 键
含有 π 型轨道的配体 CO、CN-:空π*轨道 P、As、S配位原子(PR3、AsR3、SR2):空d轨道 F-、Cl- 、 H2O:满p轨道
t2g p ML
M
L
形成L→M π 配位键
③ 配体的性质
(2)分裂能 Δ
晶体场理论可解释: I- < Br- < Cl- < F-
能否解释: OH- < H2O
Jorgenson总结: Δo = f (配体) × g (中心离子)
配体
BrSCNCl(C2H5O)2PSe2-
OPCl3 N3 (C2H5O)2PS2F(C2H5)2NCS2(CH3)2SO CO(NH3)2 CH3COOH C2H5OH (CH3)2NCHO C2O42H2O
可与中心轨道重叠形成 σ-配键
空π*轨道 空d轨道 满p轨道
如C2H2的π* 如Pph3的3d 如F-的2p 可与中心轨道重叠生成 π-配键
对称性匹配——中心轨道
Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd
A1g 1 1 1 1 1 1 1 1 1 1 A2g 1 1 -1 -1 1 1 -1 1 1 -1 Eg 2 -1 0 0 2 2 0 -1 2 0 T1g 3 0 -1 1 -1 3 1 0 -1 -1 T2g 3 0 1 -1 -1 3 -1 0 -1 1 A1u 1 1 1 1 1 -1 -1 -1 -1 -1 A2u 1 1 -1 -1 1 -1 1 -1 -1 1 Eu 2 -1 0 0 2 -2 0 1 -2 0 T1u 3 0 -1 1 -1 -3 -1 0 1 1 T2u 3 0 1 -1 -1 -3 1 0 1 -1
§ 3-1 配合物的异构现象 § 3-2 配合物的化学键理论 § 3-3 配合物的电子光谱
§ 3-2 配合物的化学键理论
1. 价键理论 VBT Valence Bond Theory 2. 晶体场理论 CFT Crystal Field Theory 3. 分子轨道理论MOT Molecular Orbital Theory
Py
1.23
0.90
NH3
1.25
0.91
en
1.28
0.92
dien
1.29
0.94
SO32-
1.3
0.97
dipy
1.33
0.98
NO2-
1.4
0.99
CN-
1.7
1.00
Fe3+ Cu2+ Cr3+ Co3+ Ru2+ Ag3+ Ni4+ Mn4+ Mo5+ Rh3+ Pd4+ Tc4+
g×103cm-1 8.0 8.7 9 12.0
晶体场稳定化能 CFSE
2. 晶体场理论
学习线索
(1)d 轨道的分裂
(2)分裂能 Δ
(3)电子在 d 轨道中的排布 (4)晶体场稳定化能 CFSE
(1)d轨道的分裂
在Oh场中的分裂
dz2
dx2-y2
dyz
dxz
dxy
分裂能
Δo = 10 Dq Dq:场强参数,
具有能量单位
D:中心离子的极化度 q:配体电荷
1. 价键理论
自自己己复复习习
要点:中心原子杂化 配体提供孤对电子
可解释:配位数、立体构型、磁性 定性讨论部分配合物的稳定性
缺陷:难定量计算、无法说明激发态的问题
例如:配合物的颜色、吸收光谱 六配位M(II)的相对稳定性
2. 晶体场理论 Crystal Field Theory (CFT)
作用力:静电作用 配体:点电荷与偶极子
14.0 15.7 17.4 18.2 20 20.4 22 24 24.6 27 29 31
(3)电子在d轨道中的排布
Δo>P:电子尽可能填入能量低的轨道
未配对电子数较少
——强场低自旋(LS)
Δo<P:电子尽可能分占不同的d轨道
未配对电子数较多
——弱场高自旋(HS)
例:Co3+在Oh场中
[CoF6]3-
① 配体场的类型 ② 金属离子的性质
例:Δt = 4/9 Δo
同L,Mn+电荷高者Dq大(正常价态)
[M(H2O)6]3+ Dq~20000 cm-1
[M(H2O)6]2+ Dq~10000 cm-1
同L,Mn+半径3d
4d
Δo
通常相差 40%~80%
5d 增大 增大
40~50% 20~30%
第二、三过渡系列配合物几乎都是低自旋
F-:弱场
Δo(13000 cm-1) < P(21000 cm-1)
高自旋
[Co(NH3)6]3+ NH3 :较强场
Δo(23000 cm-1) > P(21000 cm-1)
低自旋
(3)电子在d轨道中的排布
电子在Td场d轨道中的填充
相同条件下, Δt = 4/9 Δo
P:一般变化不大
Δt < P
4. 配合物化学键理论的应用举例
本本章章要要求求
§3-2 配合物的化学键理论
能说出晶体场理论的要点,能分析d轨道在八面体 场和四面体场中分裂的模式。
理解分裂能Δ、电子成对能P、晶体场稳定化能 CFSE的意义。
能说出d轨道分裂的后果。能判断配合物分子的磁
性并计算磁矩μ,能计算CFSE。
了解光谱化学序列,能说出常见配体在光谱化学序 列中的位置,并能用分子轨道理论定性解释。
正方形 四角锥 正八面体 正四面体
点群
D∞ h D3h D3h D5h D4h D4v Oh Td
d轨道的分裂情况
dxy
dxz
dz2
dx2-y2, dyz ,
dxz dyz , dxy , dx2-y2 , dz2
dxy
dxz
dx2-y2
dyz
dz2
(2)分裂能 Δ
Δo = 10 Dq D:中心离子的极化度 q:配体电荷 影响Δ大小的因素
四面体配合物大多数是高自旋配合物
(4) 晶体场稳定化能CFSE Crystal Field Stabilization Energy
填充在分裂的d轨道中的d电子总能量与填充在未分裂
的d轨道中时相比有所降低
降低的这一部分能量——CFSE
例: 弱Oh场中 d6: (t2g)4(eg)2
高自旋