1.1正数和负数知识点1.2有理数知识点

合集下载

初一数学上下册知识点集合

初一数学上下册知识点集合

初一数学上下册知识点集合初一数学上下册知识点集合第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

有理数知识点

有理数知识点

第一章有理数1.1正数和负数由小学所学知识,引入深入正负数。

如:①向东走3m记作:+3m,向西走4m记作:-4m ②零上6ºC记作:+6ºC,零下7ºC记作:-7ºC正数与负数表示相反的两个量。

如:规定了一个方向为“+”,另一个方向为“-”。

如:规定向东为+则向西为-;规定向西为+则规定向东为-。

正数前面的‘+’一般可以省略不写。

正负数还可以用来表示范围。

如:食品质量:500g±10g表示质量在490g~510g就合格。

1.2有理数1.2.1有理数有理数:除无限不循环小数外的数(整数,分数,正数,负数)1.2.2 数轴数轴三要素:原点(0点)-箭头(方向)-单位长度数轴上的点与数一一对应:数轴上的一个点对应一个数,一个数对应数轴上的一个点。

比较大小:通过在数轴上画图,比较两个数的大小。

右边的数大于左边的数。

①负数<0<正数②负数与负数比较,数字越大数越小。

1.2.3 相反数符号相反数字相同的两个数,互为相反数。

如:向东4m(+4m)与向西4m(-4m),零上7ºC(+7ºC)与零下7ºC(-7ºC)等讲解相反数。

相反数的和为0。

1.2.4 绝对值意义:一个点到原点的距离(≥0)。

即:这个点与原点(0点)间的距离,两点间的距离。

用‘||’表示。

如:|-3|表示:-3点到原点的距离,|5|表示:5点到原点的距离。

两点间的距离:两个数相减的绝对值。

如:5点与7点的距离为:|7-5|=|5-7|=2 a c 0 b如图化简:|a-c|+|a+c|+|b-c|+|a+b|,如图,可得:a<c<0<b,根据a<c,b>c可得:a-c<0,b-c>0,a+c<0,a+b<0所以,原式=(c-a)+[-(a+c)]+(b-c)+[-(a+b)]=c-a-a-c+b-c-a-b=-3a-c两个数相减,可由大小关系得到差的范围。

有理数知识点总结

有理数知识点总结

有理数知识点总结2016第一章有理数1.1正数和负数一、概念1、正数:大于零的数;有时根据需要在正数前面加“+”正号2、负数:在正数前面加上“—”负号的数说明:一个数前面的“+”“—”叫做它的号;其中“+”有时可以省略;但仍然表示正数;有时“+”是为了强调它是正数;但“—”号是绝对不能省略的..3、0既不是正数也不是负数;它是正负数的分界.. 说明:关于0的总结——实数;自然数;有理数;整数;非正数;非负数;偶数;相反数是本身;没有倒数;绝对值是本身;正负数分界二、实际应用在解决一些实际问题时;可以认为规定具有相反意义的量的正负.. 例如:收入为正;支出为负;收支平衡为0 零上为正;零下为负;分界为0 向北东走为正;向南西走为负;原地不动为0 加分为正;扣分为负;不加不扣为0 逆时针为正;顺时针为负超标为正;低标为负;标准为0 地上为正;地下为负;地面基准为0 盈余为正;亏空为负;收支平衡为0 水位上升为正;水位下降为负;水平面为0 高于平均分为正;低于平均分为负增加为正;减少为负;不增不减为0 海平面以上为正;以下为负;海平面记为0三、易错易误点1、-a一定是负数么答案:不一定;需要分类分析解析:当a大于0时;-a就是负数;当a 等于0时;-a为0;当a小于0时;-a是正数因此;a不一定是正数也不一定是负数;判断字母的正负时;需要分类讨论;也不能忽略0的存在..2、海拔0米并不表示没有海拔;而是说海拔中海平面的平均高度为0米..3、非正数:0和负数非负数:0和正数1.2 有理数一、概念1、有理数:正整数;0;负整数;正分数;负分数都可以写成分数含有限小数和无限循环小数的形式;这样的数称为有理数..2、无理数:既不是正数也不是分数;就一定不是有理数..如无限不循环小数π=3.1415926… 它不能化成分数形式..二、分类1、按定义分类;有理数分为整数正整数、0、负整数;分数正分数、负分数2、按性质符号分类;有理数分为正有理数正整数、正分数、0、负有理数负整数、负分数三、数轴1、定义:数轴是一条可以向两端无限延伸的直线规定三要素——原点;正方向;单位长度注意“规定”二字;是说三要素是根据实际需要认为规定的..2、画法:必须用直尺(1)先画一条直线2在直线上任取一点;作为原点;记为03选取适当的长度作为单位长度;从原点向右向左每隔一个单位长度取一点.. 3、与有理数的关系所有的有理数都可以用数轴上的点表示;通常“正右负左;原点中间”;但数轴上的点不都来表示有理数..四、相反数重点1、概念1几何定义:在数轴上分别位于原点两旁;到原点的距离相等的两个点所表示的数;叫做互为相反数..2代数定义:只有符号不同的两个数叫做互为相反数..例如;2和-2 ;0的相反数是0..2、表示方法以及多重符号的简化 1a的相反数是-a;这里a是任意有理数即正数、负数、0 当a大于0时;-a小于0正数的相反数是负数当a小于0时;-a大于0负数的相反数是正数当a等于0时;-a等于00的相反数是0 2多重符号化简方法:正数前有偶数个“—”;可以把“—”一起去掉 ~ 2 / 5 ~ 正数前有奇数个“—”;最后只留一个“—” 0前无论有多少个“—”;化简后仍是0五、绝对值1、概念1几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;记作|a|;读作a的绝对值;绝对值不能是负数..2代数定义:正数的绝对值是它本身;0的绝对值是0;负数的绝对值是它的相反数..2、做题时需要慎重考虑0的情况..六、有理数大小比较1、具体方法:将各数在同一条数轴上表示出来;那么从左到右的顺序就是从小到大的顺序;即为——负数<0<正数..2、两个负数;绝对值大的反而小..一、法则1、同号两数相加;取相同的符号;并把绝对值相加;2、绝对值不相等的异号两数相加;去绝对值较大的加数的符号;并用较大的绝对值减去较小的绝对值;3、互为相反数的两个数相加得0;4、一个数同0相加;仍得这个数..二、运算律1、加法交换律:两个数相加;交换加数的位置;和不变..a+b=b+a2、加法结合律:三个数相加;先把前两个数相加;或者先把后两个数相加;和不变..a+b+c=a+c+b减去一个数;等于加这个数的相反数..a-b=a+-b注意两变:减法变加法;减数变为它的相反数1.4 有理数的乘除法一、法则 1、两数相乘;同号得正;异号的负;并把绝对值相乘.. 2、任何数同0相乘;都得0..二、推广 1、几个不是0的数相乘;负因数的个数是偶数时;积是正数;负因数的个数是奇数时;积是负数..2、几个数相乘;有一个因数为0;则乘积为0..三、运算律 1、乘法交换律:两个数相乘;交换因数的位置;积相等..ab=ba2、乘法结合律:三个数相乘;先把前两个数相乘;或者先把后两个数相乘;积相等..abc=acb3、乘法分配律:一个数同两个数的和相乘;等于把这个数分别同这两个数相乘;再把积相加..ab+c=ab+ac四、倒数 1、乘积是1的两个数互为倒数..当a≠0时;与1/a互为倒数;当m≠0;n≠0时n/m 与m/n互为倒数2、注意:0没有倒数;做题时应当注意分母不为03、-1的倒数是-1;0~ -1之间的数的倒数比本身小;小于-1的数的倒数比本身大..1.4.2 有理数的除法一、法则 1、除以一个不等0的数;等于乘以这个数的倒数.. 2、两数相除;同号得正;异号得负;并把绝对值相除..0除以任何一个不等于0的数;都得0;0不能做除数..二、化简 1、分数可以理解为分子除以分母;分数线就是除号.. 2、0除以任何一个不等于0的数;都得0..三、混合运算1、乘除混合运算1如果一个带分数的整数部分和分数部分都能与某分数相乘时约分;则将这个带分数写成整数部分与分数部分的和;再利用分配律运算 2运算时应该从左至右;并将除法化成乘法再进行运算..3除法化乘法;算式化连乘;小数化分数;带分数化假分数;负因数的个数确定符号的正负.. 2、加减、乘除混合运算遵循原则:先乘除;后加减;按小括号、中括号、大括号依次计算;灵活运用分配律..1.5有理数的乘方一、乘方的意义 1、求n 个相同因数的积的运算;叫做乘方; 乘方的结果叫做幂..在a n中;a 叫做底数;n 叫做指数..2、一个数可以看做是这个数本身的一次方;指数1通常省略不写..3、因为a n就是n个a相乘;所以可以利用乘法运算计算乘方运算..二、乘方运算的性质 1、负数的奇次幂是负数;负数的偶次幂的正数; 2、正数的任何次幂都是正数;3、0的任何正整数次幂都是0..三、做有理数的混合运算时;应注意以下运算顺序:1.先乘方;再乘除;最后加减; 2.同级运算;从左到右进行; 3.如有括号;先做括号内的运算;按小括号;中括号;大括号依次进行....一、概念把一个大于10的数表示成ax10n的形式其中a是整数位只有一位的数;n是原数的整数位减1.即1≤|a|<10;n是正整数;这种计数方法叫做科学记数法..一、概念四舍五入的近似数;从左边第一个非0的数字起;到精确到的数位止;所有的数都叫做这个数的有效数字..二、说明一个数只是接近实际数;但与实际数还有差别;它是一个近似数.. 近似数与准确数的接近程度;可以用精确度表示..。

《有理数》的知识点汇总

《有理数》的知识点汇总

第一章有理数1.1 正数与负数1.正数和负数的概念①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:(3) 0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

第一章有理数 知识点梳理(苏教版)

第一章有理数 知识点梳理(苏教版)

第一章有理数1.1正数和负数负数:以前学过的0以外的数前面加上负号“-”的数叫做负数。

正数:以前学过的0以外的数叫做正数。

0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义 注:-a 不一定是负数,+a 也不一定是正数;1.2.1有理数:凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。

(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称 有理数.(2)有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:(1)是不是正数,也不是负数;(2)π不是有理数;无限不循环小数不是有理数。

无限循环小数是有理数;(3)小数也归为分数。

(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是 非正数.1.2.2数轴:规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设a 是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。

1.2.3.相反数:只有符号不同的两个数叫做相反数。

注意:(1)一般地,a 和-a 互为相反数,特别地,0的相反数还是0;(2) a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反 数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.一般地,设a 是一个正数,数轴上与原点的距离是a 的点有两个, 它们分别在原点左右,表示-a 和a ,我们说这两点关于原点对称1.2.4.绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。

讲义之有理数

讲义之有理数

第一章有理数知识点提要1.1正数和负数●0以外的数前面加上负号“-”的书叫做负数,其余叫做正数。

●数0既不是正数也不是负数,0是正数与负数的分界。

●在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

注意事项:比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

例题【考题1-1】|-22|的值是()A.-2 B.2 C.4 D.-4解C 点拨:由于-22=-4,而|-4|=4.故选C.【考题1-2】在下面等式的□内填数,○内填运算符号,使等号成立(两个算式中的运算符号不能相同):□○□=-6;□○□=-6.⊕ = -6点拨:此题考查有理数运算,答案不唯一,只要符合题目要求即可.【考题1-3】自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R ,它会掉入一个数字“陷断”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉人“陷井”的这个固定不变的数R=_________解:13 点拨:可任意举一个自然数去试验,如 15,(1+5)×3+1=19,(1+9)×3+1=31,(3+1)×3+1=13(1+3)×3+1=13,…….【考题1-4】在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m 处,商场在学校西200m 处,医院在学校东500m 处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m .(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.:解:(1)如图1-2-1所示:(2)300-(-200)=500(m );或|-200-300 |=500(m );或 300+|200|=500(m ).答:青少宫与商场之间的距离是 500m 。

初中数学各年级知识点总结(最新最全)

初中数学各年级知识点总结(最新最全)
高频
选择题
填空题
解答题
第11章
三角形
11.1 与三角形有关的线段
52.三角形的边
中频
选择题
填空题
53.三角形的高、中线与角平分线
中频
选择题
填空题
54.三角形的稳定性
中频
选择题
填空题
11.2 与三角形有关的角
55.三角形的内角
中频
选择题
填空题
56.三角形的外角
中频
选择题
填空题
11.3 多边形及其内角和
25.对顶角、余角和补角
低频
选择题
填空题
26.垂线
低频
选择题
填空题
27.同位角、内错角、同旁内角
低频
选择题
填空题
5.2 平行线及其判定
28.平行线的距离
中频
选择题
填空题
解答题
29.平行线的判定
中频
选择题
填空题
解答题
5.3 平行线的性质
30.平行线的性质
中频
选择题
填空题
解答题
31.命题、定理、证明
中频
高频
选择题
填空题
解答题第13章轴来自称13.1 轴对称63.轴对称概念
中频
选择题
填空题
解答题
64.线段的垂直平分线的性质
高频
选择题
填空题
解答题
13.2 画轴对称图形
65.轴对称的性质和画法
中频
选择题
填空题
解答题
13.3 等腰三角形
66.等腰三角形概念、性质、判定
中频
选择题
填空题
解答题
67.等边三角形概念、性质、判定

(完整版)有理数知识点总结

(完整版)有理数知识点总结

有理数知识点总结(2016)第一章有理数1.1正数和负数一、概念1、正数:大于零的数,有时根据需要在正数前面加“+”(正号)2、负数:在正数前面加上“—”(负号)的数说明:一个数前面的“+”“—”叫做它的号,其中“+”有时可以省略,但仍然表示正数,有时“+”是为了强调它是正数,但“—”号是绝对不能省略的。

3、0既不是正数也不是负数,它是正负数的分界。

说明:关于0的总结——实数,自然数,有理数,整数,非正数,非负数,偶数,相反数是本身,没有倒数,绝对值是本身,正负数分界二、实际应用在解决一些实际问题时,可以认为规定具有相反意义的量的正负。

例如:收入为正,支出为负,收支平衡为0 零上为正,零下为负,分界为0 向北(东)走为正,向南(西)走为负,原地不动为0 加分为正,扣分为负,不加不扣为0 逆时针为正,顺时针为负超标为正,低标为负,标准为0 地上为正,地下为负,地面基准为0 盈余为正,亏空为负,收支平衡为0 水位上升为正,水位下降为负,水平面为0 高于平均分为正,低于平均分为负增加为正,减少为负,不增不减为0 海平面以上为正,以下为负,海平面记为0三、易错易误点1、-a一定是负数么?答案:不一定,需要分类分析解析:当a大于0时,-a就是负数;当a等于0时,-a为0;当a小于0时,-a是正数因此,a不一定是正数也不一定是负数,判断字母的正负时,需要分类讨论,也不能忽略0的存在。

2、海拔0米并不表示没有海拔,而是说海拔中海平面的平均高度为0米。

3、非正数:0和负数非负数:0和正数1.2 有理数1、概念1、有理数:正整数,0,负整数,正分数,负分数都可以写成分数(含有限小数和无限循环小数)的形式,这样的数称为有理数。

2、无理数:既不是正数也不是分数,就一定不是有理数。

如无限不循环小数π=3.1415926…它不能化成分数形式。

2、分类1、按定义分类;有理数分为整数(正整数、0、负整数);分数(正分数、负分数)2、按性质符号分类;有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)三、数轴1、定义:数轴是一条可以向两端无限延伸的直线规定三要素——原点,正方向,单位长度注意“规定”二字,是说三要素是根据实际需要认为规定的。

有理数知识点汇总

有理数知识点汇总

有理数知识点汇总1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。

3、相反数只有符号不同的两个数互为相反数。

(如2的相反数是-2,0的相反数是0)4、绝对值(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律、结合律、分配律。

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

初一数学上下册知识点总结与重点难点、公式总结

初一数学上下册知识点总结与重点难点、公式总结

第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

新人教版七年级数学知识点归纳(上下册)

新人教版七年级数学知识点归纳(上下册)

一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

有理数知识点

有理数知识点

1.1正数和负数知识点归纳一、 正数和负数的定义0的数叫做正数。

根据需要,有时在正数前面加上正号“+”,但是正数前面的正号“+”,一般省略不写。

eg :-a 不一定是负数,因为字母a 可以表示任何数,当a 是正数时,-a 是负数;当a 表示负数时,-a 则是一个正数,而不是负数;当a 表示0时,-a 就是在0前面加上一个负号,仍是0,0不分正负。

二、具有相反意义的量正数和负数表示具有相反意义的量。

若用正数表示某种意义的量,则负数就表示与其相反的量,反之亦然。

常见的表示相反意义的量:零上和零下、前进和后退、海平面以上和海平面以下、收入和支出、向南和向北、盈利和亏损、升高和下降。

三、0的意义(重点理解)0℃是一个确定的温度,海拔0表示海平面的平均高度。

0的意义已经不仅是表示“没有”。

1.2.1有理数知识点归纳一、有理数的概念正整数、0注:(1)正整数、0(2(3)对于小数,只有能化成分数的小数才是有理数。

(4)我们把有限小数和无限循环小数都看做分数,因此有限小数和无限循环小数是有理数。

(5)无限循环小数不能化成分数,因此它不是分数,也不是整数,所以就不是有理数。

按数的种类分 按有理数的性质分有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数0 有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0注:(1)有理数的分类必须按同一标准,不漏、不重。

(2)0(3)0(4)0(5)01.2.2数轴知识点归纳一、数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

二、数轴的画法(重点)画数轴时,关键要体现数轴的三要素:原点、正方向、单位长度,三者缺一不可。

其步骤如下:1、画一条水平的直线;2、在直线上任意选取一点为原点,并用这点表示零(在原点下方标上“0”);3、确定正方向(一般规定向右为正),用箭头表示出来;4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度选取一点,依次表示1,2,3,…;从原点向左,每隔一个单位长度选取一点,依次表示-1,-2,-3,…。

初一数学知识点《有理数》解析

初一数学知识点《有理数》解析

初一数学知识点《有理数》解析第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号-的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上-号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的'点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

初中所有数学知识点总结归纳

初中所有数学知识点总结归纳

初一数学知识点初一上第一章有理数1.1正数和负数0以外的数前面加上负号“-”的数叫做负数。

大于0的数都是正数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

人教版七年级(上)数学第一章《有理数》知识点

人教版七年级(上)数学第一章《有理数》知识点

人教版七年级(上)数学 第一章《有理数》知识点姓名1.1、正数和负数(1)正数: 叫做正数。

负数: 叫做负数。

既不是正数,也不是负数。

(2)写法区别:正数前的‘+’可写可不写,但通常不写;负数前的‘ ’必须写。

(3)表示意义:在同一个问题中,分别用正数与负数表示 。

例如:气温零上与零下,海拔以上与海拔一下,收入与支出,向北与向南……1.2.1、有理数(1)有理数定义: 统称为有理数。

关于分数:包括真分数、假分数、带分数、百分数、有限小数、无限循环小数, 目前熟悉的无限不循环小数 不属于分数,也不属于有理数。

(2)有理数分类:(3)其他常见分类方法:例如:非正数、非正整数、非负整数、非负有理数……1.2.2、数轴(1)数轴定义:规定了 、 、 的的直线叫数轴,原点、正方向、单位长度为数轴的 ,缺一不可。

(2)数轴画法: a 、画 ,在直线上任取一点表示0,作为原点。

b 、规定 。

c 、任取 为单位长度,注意数轴上每一个表示的长度必须一致。

(3)数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示,但是数轴上的点所表示的数并不是有理数。

(4)数轴上两点间的距离:较大的数减去较小的数即使两点间的距离。

例如5与-3之间的距离为5-(-3)=8(5)数轴上的数越往右越 。

1.2.3、相反数(1)相反数的定义:只有 的两个数叫做互为相反数。

例如a 与 ,其中一个叫做另一个的相反数。

(2)互为相反数的两个数的 为零。

a 与b 互为相反数,则 。

(3)互为相反数的两个数常见表示方法:a 与-a 互为相反数;a+b=0,a 与b 互为相反数;a=-b ,a 与b 互为相反数。

1.2.3、绝对值(1) 绝对值定义:数轴上表示 点与原点的距离叫做数a 的绝对值,记作| a |。

例如:| -3 |表示 。

(2) 绝对值的非负性:由绝对值的定义知,绝对值用来表示一段距离,因此对于任何一个数a 都有 ;并且互为相反数的两个数的绝对值 。

正数和负数,有理数,数轴,相反数,绝对值知识点

正数和负数,有理数,数轴,相反数,绝对值知识点

第一章:有理数(1.1正数和负数)知识点1.正数和负数的定义(1)正数:大于0的数叫正数。

(2)负数:在正数前加上符号:“-”(负号)的数叫做负数,小于0的数叫负数. 注意:比0大的数是正数。

正数前面有“+”号,人们习惯将“+”号省略,在正数前面加“-”号,就是负数,负数前面必须有“-”号。

3)“0”既不是正数,也不是负数。

( 0是正数和负数的分界)2. 正数负数是表示具有相反意义的量(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,习惯上把升、上、零上为正 ,而相反为负;(2)具有相反意义的量一定是具体的数量;(3)具有相反意义的量中的两个量必须是同类量.不是同类量不具有对此性;(例如:上升和下降,零上和零下)(4)具有相反意义的量是成对出现的,单独的个量不能成为具有相反意义的量;考试点:用正数和负数表示具有相反意义的量时要明确“基准"。

为了计算方便,常把高于平均数,标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示。

1.2.1 有理数有理数的有关概念1.整数:正整数0、负整数统称为整数,如-3,-2,2,0,1,2,3等。

,0.2,-1.25等。

2.分数:正分数负分数统称为分数,如2133.有理数:整数和分数统称为有理数。

(m,n是整数,m≠0)的形式任何一个有理数都可以写成nm4.部分常用的数的名称正整数:如1,2,3,...负整数:如-1,-2,-3,..正分数:形如nm(m,n是正整数)的数,例如12,23,157…负分数:形如- nm(m,n是正整数)的数,例如-0.5,-52非负数:正数和0;非正数:负数和0.●注意:引入负数之后,小学学过的奇数和偶数的范围相应地扩大了,奇数和偶数也可以是负数,如-6,-4,-2都是偶数,也可以写成2n(n为整数)的形式;-5,-3,-1都是奇数,可以写成2n-1(n为整数)或2n+1(n为整数)的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、有理数的有关概念
1.整数:正整数0、负整数统称为整数,如-3,-2,2,0,1,2,3等。
2.分数:正分数负分数统称为分数,如2 ,0.2,-1.25等。
3.有理数:整数和分数统称为有理数。
任何一个有理数都可以写成 (m,n是整数,m≠0)的形式。
●注意(1)分数都可以化为有限小数或无限循环小数。
即(1)如果a>0,那么|a| =a;
(2)如果a=0,那么|a| =0;
(3)如果a<0,那么|a|= -a。
●注意:(1)在数轴上,表示一个数的点离原点越近,这个数的绝对值越小;离原点越远,这个数的绝对值越大。
(2)绝对值是它本身的数是非负数,即若lal =a,则a≥0;绝对值是其相反数的数是非正数,即若|a| = -a,则a≤0。
二、画数轴的步骤
(1)画直线,取原点:在直线上任取一个适当的点为原点。
(2)标正方向:通常规定直线上从原点向右(或上)为正方向,用箭头表示出来,箭头标在画出部分的最右边(或最上边),则从原点向左(或下)为负方向。
(3)选取单位长度,标数:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,…。
●注意:思在同一条数轴上,单位长度的大小必须统一根据所表示的数的度,也可以选取更长或更短的长度表示一个单位长度,大小灵活选取单位长度,例如可以选取2cm或0.5cm为一个单位长度。
三、数轴上的点与有理数的关系
任意一个有理数,都可以用数轴上的点来表示;但数轴上的点不都表示有理数。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
(1)正整数:如1,2,3,...
负整数:如-1,-2,-3,..
(2)正分数:形如 (m,n是正整数)的数,例如 …
负分数:形如- (m,n是正整数)的数,例如-0.5,-
(3)非负数:正数和0;
非正数:负数和0.
●注意:引入负数之后,小学学过的奇数和偶数的范围相应地扩大了,奇数和偶数也可以是负数,如-6,-4,-2都是偶数,也可以写成2n(n为整数)的形式;-5,-3,-1都是奇数,可以写成2n-1(n为整数)或2n+1(n为整数)的形式。
(2)具有相反意义的量必须是同类量,如向东走20米与出口200箱就不是具有相反意义的量。
(3)具有相反意义的量,只要求1具有相反意义和数量,不要求数量一定相等,所以与一个量成相反意义的量不止一个。例如,盈利300元,与它具有相反意义的量有很多,如亏损400元,亏损100元等。
1.2有理数
1.2.1有理数
1.1正数和负数
一、正数和负数
1.正数:像3,1.8%,3.5这样大于0的数叫做正数.
2.负数:像-3,-2.7.%,-4.5,-1.2这样在正数前加上符号“一”(负)的数叫做负数.
3.数的符号:一个数前面的“+”“一”号叫做它的符号。其中“+”号可以省略不写,而“一”号不能省略不写。有时为了明确表达意义,在正数前面也加上“+”(正)号.例如,+3,+2,+0.5,+ ,…就是3,2,0.5.
(2)求一个字母或一个式子的相反数时,只需在这个字母或这个式子的前面加上“一”号,如a的相反数为-a,a-b的相反数为-(a-b),注意这里的括号是必须要加的。
二、多重符号的化简
1.多重符号化简的依据:相反数的定义是多重符号化简的依据,例如:-(-5)表示-5的相反数,所以-(-5)=5。
2.多重符号的化简先省略所有的“+”号,然后由“-”号的个数确定结果的符号当“-”号的个数是偶数时,化简的结果为正数;当“-”号的个数是奇数时,化简的结果为负数。(奇负偶正)
●注意用数轴上的点表示有理数时,(1)正数用数轴上原点右边的点表示;(2)负数用数轴上原点左边的点表示;(3)0用数轴的原点表示。
1.2.3相反数
一、相和-5这样,只有符号不同的两个数叫做互为相反数。这就是说,2的相反数是-2,-2,-2的相反数是,2;5的相反数是-5,-5的相反数是5.一般地,a和-a互为相反数。特别地,0的相反数是0。这里,a表示任意一个数,可以是正数、负数,也可以是0。
4.0的意义:
(1)0既不是正数,也不是负数。
(2)0是正数与负数的分界。
(3)0不仅表示“没有”,还可以表示某种量的基准,如0 ℃可表示为实际温度为冰点时的计量结果。
二、用正数和负数表示具有相反意义的量
具有相反意义的量包括两层含义:
(1)具有相反意义;(2)具有数量。
●注意:(1)具有相反意义的量是成对出现的,单独的一个量不能称为具有相反意义的量。
1.2.4绝对值
一、绝对值
1.绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记作|a|,读作“a的绝对值”。
注意任何数都有绝对值,并且只有一个,数a的绝对值,是表示它的点到原点的距离。因为距离不可能是负数,所以数a的绝对值|al为非负数,即|a|≥0。
2.绝对值的性质
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
二、有理数分类
(1)按定义分类:(2)按性质符号分类:
1.2.2数轴
一、数轴
1.规定了原点、正方向和单位长度的直线叫做数轴。
●注意(1)数轴是一条直线;
(2)数轴的三要素:原点、正方向、单位长度,三者缺一不可;
(3)数轴的三要素都是规定的,在解决具体问题时,可以灵活选定原点的位置、正方向的朝向、单位长度的大小,但一经选定后就不能随意改变。
(2)数轴上与原点的距离是a(a是一个正数)的点有两个,分别在原点的左右两边,它们表示的数互为相反数。
3.相反数的性质
任何一个数都有相反数,而且只有一个。正数的相反数是负数;0的相反数是0;负数的相反数是正数。
0是唯一一个相反数等于它本身的数,即若a= -a,则a=0。
4.求一个数的相反数的方法:
(1)求一个数的相反数,只需改变这个数前面的符号,即可得到这个数的相反数。
数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
2.根据法则比较有理数的大小
(1)正数大于0,0大于负数,正数大于负数;
(2)两个负数,绝对值大的反而小。
●注意“只有符导不同”中“只有”是指除了符号不同之外,其他部分完全相同,不能理解为只要符号不同的两个数就互为相反数。例如,+5和-2虽然符号不同,但不能说它们互为相反数。
2.相反数的几何意义:在数轴上位于原点两侧且到原点的距离相等的两个点所表示的数互为相反数。
●注意(1)数轴上表示互为相反数的两个点到原点的距离相等;
(3)绝对值是某个正数的数有两个,它们互为相反数,即若1x1 =a(a>0),则x=士a,如x1 =2,则x=士2。
(4)互为相反数的两个数的绝对值相等,即若a= -b,则|a| = 161;绝对值相等的两个数相等或互为相反数,即若|a|=1b|,则a=b或a= -b。
二、有理数的大小比较
1.利用数轴比较有理数的大小
(2)小数可分为有限小数和无限小数,其中无限小数又分为无限循环小数和无限不循环小数,有限小数和无限循环小数都可以化为分数,如0.5= ,0.3333…= 。无限不循环小数不能化为分数,所以无限不循环小数不是有理数,如3.212 212 2..1每两个1之间2的个数逐次增加1),π.
4.部分常用的数的名称
相关文档
最新文档