三个数的均值不等式
选修4-5 基本不等式(三元均值不等式)
![选修4-5 基本不等式(三元均值不等式)](https://img.taocdn.com/s3/m/571d61bef524ccbff1218418.png)
a b c 3abc,
3 3 3
当且仅当a b c时,等号成立.
问题探讨
abc 3 怎么证明不等式 abc (a, b, c R )? 3
证: a b c
3 3
a3 b3 c3 3abc(a, b, c R )
3 3 3 3
( a) ( b) ( c) 3 abc ,
3
3
x
a
例3. 已知a, b, c R ,求证: abc 3 ab 3( abc ) 2( ab ). 3 2
1 1. 求函数 y x (1 5 x) (0 x ) 的最大值. 5 2 4 答案:当 x 时, ymax . 15 675
2
课堂练习:
a1 a2 , an R , 则 n
an
≥ n a1a2
an .
小 结
2.基本不等式的变形: ab 2 ①若a, b R , 则ab ( ). 2
③若a1 , a2 , , an R , 则a1a2
abc 3 ②若a, b, c R , 则abc ( ). 3a a a 1 2 n
an ( n
).
n
作业: P10 11-15
12 1.求函数y = 3x + 2 x > 0 的最小值. x 12 3 3 12 3 3 12 3 解 :∵ y = 3x + 2 = x + x + 2 3 x× x× 2 = 9 x 2 2 x 2 2 x 3 12 ∴当且仅当 x = 2 , 即x = 2 时,y min = 9. 2 x
三个正数的算术-几何 平均不等式
2017年4月22日星期六
均值不等式法
![均值不等式法](https://img.taocdn.com/s3/m/0ae90999d05abe23482fb4daa58da0116c171ffa.png)
均值不等式法均值不等式是数学中的一种重要的不等式定理,被广泛应用于各个数学领域中。
它可以帮助我们求解各种数学问题,特别是在求最值问题时非常有用。
本文将介绍均值不等式的定义、证明及其应用,重点讨论算术均值不等式、几何均值不等式和平方均值不等式的性质和应用。
首先,我们来介绍均值不等式的定义。
均值不等式是指若a,b是非负实数且a≥b,则有关于a和b的某种函数f(a,b)成立不等式a≥f(a, b)≥b。
其中,f(a, b)是对a,b进行某种运算的函数。
在均值不等式中,我们常用到的运算有算术平均数、几何平均数和平方平均数。
对应的不等式就是算术均值不小于几何均值,几何均值不小于平方均值。
由此可以得出三个主要的均值不等式:算术均值不等式、几何均值不等式和平方均值不等式。
接下来,我们来证明这三个均值不等式。
首先是算术均值不等式。
对于任意非负实数a1,a2,...,an,我们有:(a1+a2+...+an)/n ≥ √(a1a2...an)即算术平均数不小于几何平均数。
证明如下:设a1,a2,...,an为非负实数,令A = (a1+a2+...+an)/n,G = √(a1a2...an)。
根据等差平均不等式,对于任意的非负实数ai,我们有:(A-ai) + (G/√ai) ≥ 0将上述不等式对i从1到n分别求和,我们有:nA - (a1+a2+...+an) + G(1/√a1 + 1/√a2 + ... + 1/√an)≥ 0由于A = (a1+a2+...+an)/n,所以上述不等式等价于:nA - nA + G(1/√a1 + 1/√a2 + ...+ 1/√an) ≥ 0化简得:G(1/√a1 + 1/√a2 + ... + 1/√an) ≥ 0由于√ai是非负实数,所以1/√ai也是非负实数。
所以上述不等式恒成立。
证毕。
其次是几何均值不等式。
对于任意非负实数a1,a2,...,an,我们有:√(a1a2...an) ≥ (a1+a2+...+an)/n即几何平均数不小于算术平均数。
均值不等式的证明精选多的篇
![均值不等式的证明精选多的篇](https://img.taocdn.com/s3/m/68b9ec94b04e852458fb770bf78a6529647d35fd.png)
均值不等式的证明篇一:均值不等式(AM-GM不等式)是数学中常用的一种不等式关系,它说明了算术平均数和几何平均数之间的关系。
具体表达式为:对于任意非负实数集合{a1,a2,an},有(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)其中,等号成立当且仅当所有的非负数都相等。
下面,我们将给出AM-GM不等式的证明。
证明:首先,我们可以假设所有的a1,a2,an都是正实数。
因为AM-GM不等式对于非负实数也是成立的,所以我们可以通过限制条件来放缩实数集合。
考虑对数变换。
定义函数f(x) = ln(x),其中x>0。
因为ln(x)在整个定义域都是凸函数,所以根据对数函数的性质,我们有:f((a1+a2+.+an)/n) ≥ (1/n)(f(a1)+f(a2)+.+f(an))即,ln((a1+a2+.+an)/n) ≥ (1/n)(ln(a1)+ln(a2)+.+ln(an))这是因为凸函数的定义是在一条直线上任取两个点,它总是在两点的连线上方。
继续推导,根据ln的性质,我们有:ln(a1 a2 .*an) = ln(a1) + ln(a2) + . + ln(an)将上述不等式代入这个等式中,得到ln((a1+a2+.+an)/n) ≥ ln(a1 a2 .*an)^(1/n)移项化简得到(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)即AM-GM不等式得证。
最后,我们来说明等号成立的条件。
根据对数函数的性质,等号成立当且仅当所有的非负数的对数都相等,即a1 = a2 = . = an。
至此,我们完成了AM-GM不等式的证明。
总结: AM-GM不等式是数学中常用的一种不等式关系。
它表明算术平均数大于等于几何平均数,并且等号成立的条件是所有的非负数相等。
该不等式的证明可以通过对数变换和凸函数的性质进行推导得到。
篇二:在数学中,均值不等式是一类用于比较多个数的重要不等式。
均值不等式知识点
![均值不等式知识点](https://img.taocdn.com/s3/m/f244e1a9b9f67c1cfad6195f312b3169a451eaa0.png)
均值不等式知识点均值不等式是高等数学中的一种重要的数学不等式,其在解决各类数学问题中起到了重要的作用。
本文将通过逐步思考的方式,详细介绍均值不等式的相关知识点。
1.均值不等式的基本概念均值不等式是指对于一组实数,其算术平均数大于等于几何平均数,即若有n个正实数x1、x2、……、xn,则它们的算术平均数A≥它们的几何平均数G。
这一不等式可表示为:(x1 + x2 + …… + xn)/ n ≥ (x1 * x2 * …… * xn) ^ (1/n)2.均值不等式的证明为了证明均值不等式,可以使用数学归纳法或其他数学方法。
下面以数学归纳法为例,来证明均值不等式。
首先,当n=2时,我们有:(x1 + x2)/ 2 ≥ √(x1 * x2) 化简可得:x1 + x2 ≥2√(x1 * x2) 这是一种常见的数学不等式,称为算术平均数和几何平均数之间的不等式。
接下来,假设当n=k时,均值不等式成立。
即对于任意的k个正实数x1、x2、……、xk,有:(x1 + x2 + …… + xk)/ k ≥ (x1 * x2 * …… * xk) ^ (1/k)然后,我们来证明当n=k+1时,均值不等式也成立。
即对于任意的k+1个正实数x1、x2、……、xk+1,有:(x1 + x2 + …… + xk + xk+1)/ (k+1) ≥ (x1 * x2* …… * xk * xk+1) ^ (1/(k+1))我们可以将左边的式子进行拆分,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1)≥ [(x1 * x2 * …… * xk) * xk+1] ^ (1/(k+1))根据不等式的性质,我们有:(x1 + x2 + …… + xk) / k ≥ (x1 * x2 * …… * xk) ^(1/k) 即:[(x1 + x2 + …… + xk) / k] * k ≥ [(x1 * x2 * …… * xk) ^ (1/k)] * k将上式代入前面的不等式,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1) ≥ [(x1 *x2 * …… * xk) * xk+1] ^ (1/(k+1))这样,我们证明了当n=k+1时,均值不等式也成立。
高中数学公式(均值不等式)
![高中数学公式(均值不等式)](https://img.taocdn.com/s3/m/780a815ca66e58fafab069dc5022aaea988f4165.png)
高中数学公式(均值不等式)高中数学公式(均值不等式)公式的数学本质是用简洁的语言准确地描述数学问题。
在高中数学中,均值不等式是一个重要而又常用的工具。
它可以帮助我们证明和解决各种数学问题。
本文将介绍均值不等式的定义、性质和应用。
一、均值不等式的定义均值不等式是数学中一类重要的不等式。
它表述了若干个数的某种“平均值”与这些数之间的大小关系。
常见的均值不等式有算术平均不等式、几何平均不等式和平方平均不等式。
1. 算术平均不等式算术平均不等式是指若干个正数的算术平均值不小于它们的几何平均值。
设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,几何平均值为GM,则有AM ≥ GM。
2. 几何平均不等式几何平均不等式是指若干个正数的几何平均值不大于它们的算术平均值。
设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,几何平均值为GM,则有GM ≤ AM。
3. 平方平均不等式平方平均不等式是指若干个正数的平方平均值不小于它们的算术平均值。
设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,平方平均值为QM,则有QM ≥ AM。
二、均值不等式的性质均值不等式有一些基本性质可以帮助我们进行各种推导。
1. 对称性均值不等式具有对称性,即对数x₁、x₂、...、xₙ的排列顺序不影响不等式的成立。
例如,若AM ≥ GM成立,则交换任意两个数的位置,不等式仍然成立。
2. 反序性均值不等式具有反序性,即改变不等式中的不等号方向,不等式仍然成立。
例如,若AM ≥ GM成立,则取倒数得到1/AM ≤ 1/GM,不等式仍然成立。
3. 结合性均值不等式具有结合性,即若AM₁ ≥ GM₁和AM₂ ≥ GM₂成立,则有AM₁ * AM₂ ≥ GM₁ * GM₂。
这一性质可以帮助我们将不等式进行合并和推导。
三、均值不等式的应用均值不等式具有广泛的应用场景,涉及各个数学领域。
1. 不等式证明均值不等式可以用于证明其他的数学不等式。
均值不等式公式四个
![均值不等式公式四个](https://img.taocdn.com/s3/m/4e75b225a7c30c22590102020740be1e650eccdf.png)
均值不等式公式如下:
不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。
公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
基本性质
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)。
高中数学人教版必修5——第十三讲均值不等式(解析版)
![高中数学人教版必修5——第十三讲均值不等式(解析版)](https://img.taocdn.com/s3/m/27e72e3000f69e3143323968011ca300a7c3f673.png)
高中数学人教版必修5——第十三讲均值不等式(解析版)第十三讲均值不等式(解析版)在高中数学的学习中,均值不等式是一条非常重要的数学定理。
它能够帮助我们找到一组数的平均值与其他特定的数值之间的关系。
本文将详细解析高中数学人教版必修5中的第十三讲——均值不等式。
一、均值不等式的定义和性质均值不等式实际上是按平均值来衡量一组数与其他数值之间的大小关系。
它包含了算术平均值、几何平均值和平方平均值等不同的形式。
算术平均值是最为熟悉的一种形式,它表示一组数相加后除以元素个数得到的结果。
几何平均值是将一组数相乘后开根号得到的结果。
平方平均值是将一组数的平方相加后除以元素个数再开根号得到的结果。
在不等式的关系中,对于正实数来说,有以下几个性质:1. 当所有元素相等时,算术平均值、几何平均值和平方平均值相等。
2. 当所有元素不相等时,算术平均值大于几何平均值,而几何平均值大于平方平均值。
3. 对于正实数来说,算术平均值大于几何平均值,并且它们都大于平方平均值。
二、均值不等式的应用均值不等式在数学问题的解决中具有广泛的应用。
它可以帮助我们证明和推导其他重要的数学关系。
1. 证明与推导在证明和推导方面,均值不等式可以帮助我们解决一些复杂的不等式问题。
通过运用不同形式的均值不等式,我们可以逐步地推导出更为严格的不等式关系。
例如,在求证某个不等式问题时,我们可以使用算术平均值与几何平均值之间的关系来逐步推导出正确的结论。
2. 理解与比较均值不等式还能够帮助我们理解和比较数列的大小关系。
通过对数列的算术平均值、几何平均值和平方平均值的比较,我们可以得出一些关于数列性质的结论。
例如,当一组数的算术平均值大于几何平均值时,就能够说明这组数存在着某种程度的波动和不均匀性。
三、均值不等式的例题解析下面,我们将通过一些例题来具体解析均值不等式的应用。
例题1:已知a、b、c为正实数,证明(a+b)(a+c)(b+c)≥8abc。
解析:我们可以通过均值不等式来证明这个不等式关系。
三个数的均值不等式
![三个数的均值不等式](https://img.taocdn.com/s3/m/2f1671a979563c1ec4da7154.png)
a b c a2 b2 c2 ab bc ca
1 2
a
b
c
a b2 b c2 c a2
0.
所以 a3 b3 c3 3ab,当且仅当a b c时, 等号成立.
对上述结果作简单的恒等变形, 就可以得到
定 理3
如果a,b, c
R
,
那
么a
b 3
c
3
abc,
当且仅当a b c时,等号成立.
3 x3 y3 x y x2 xy y2 .
证明 因为a3 b3 c3 3abc
a b3 3a2b 3ab2 c3 3abc a b3 c3 3a2b 3ab2 3abc
a b c a b2 a bc c2 3aba b c
a b c a2 2ab b2 ac bc c2 3ab
例5 已知x, y, z R ,求证x y z3 27xyz.
证明
因为 x y 3
z
3
xyz
0,
所以 x y
27
z 3
xyz,即x
y
z 3
27 x yz .
例6 如图1.1 5 , 把一块
x
长是a的正方形铁片的各
角切 去 大小相同的小 正
方形,再将它的边沿虚线
a
折 转 作成一个无盖方底
证明
引申探究 若本例条件不变,求证:b+ac-a+c+ab-b+a+bc-c≥3.
b+c-a c+a-b a+b-c
证明
a+b+c
=ba+bc+ac+ac+ba+bc-3
3
≥3
ba·bc·ac+3 3
ac·ab·bc-3=6-3=3,
当且仅当a=b=c时取等号.
三个正数的均值不等式
![三个正数的均值不等式](https://img.taocdn.com/s3/m/9ccf68f7856a561253d36f02.png)
利用垂直判定定理来判断三角形的形状,及时掌握直线垂直判断的运用
练习:
A、0B、1C、D、
A、4B、
C、6D、非上述答案
巩固本节课所学过的知识。
学生独立完成,教师检查反馈。
小结:
这节课我们讨论了利用平均值定理求某些函数的最值问题。现在,我们又多了一种求正变量在定积或定和条件下的函数最值的方法。这是平均值定理的一个重要应用也是本章的重点内容,应用定理时需注意“一正二定三相等”这三个条件缺一不可,不可直接利用定理时,要善于转化,这里关键是掌握好转化的条件,通过运用有关变形的具体方法,以达到化归的目的。
。
利用练习强化对判断定理的认识。
学生思考,教师引导。
例题:
例1求函数的最小值.
下面解法是否正确?为什么?
解法1:由知,则
当且仅当
解法2:由知,则
引导学生利用平行判定定理来判断四边形的形状,及时掌握直线平行判断的运用。
(正解)解法3:由知,则
小结:以上是解题过程中最容易出现的几种错误,结合这些错误,在使用均值不等式求最值时必须强调三个条件:
当且仅当 时,等号成立。
这个等式表述为:三个正数的算术—几何平均不等式
注:
1、若三个正数的积是一个常数,那么当且仅当这三个正数相等时,它们的和有最小值。
2、若三个正数的和是一个常数,那么当且仅当这三个正数相等时,它们的积有最大值。
事实上,基本不等式可以推广到一般的情形:
即:n个正数的算术—几何平均不等式:
例2如下图,把一块边长是a的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?
均值不等式
![均值不等式](https://img.taocdn.com/s3/m/be16c032eefdc8d376ee323f.png)
均值不等式及其应用一、 均值不等式的含义及成立的条件(一) 原型: ;2:22ab b a R b a ≥+∈,都有、对于任意的实数 .3,333abc c b a R c b a ≥++∈+都有:、、对于任意的正数(二) 均值不等式:任意n 个正数的算术平均值不小于这n 个正数的几何平均值两个数的均值不等式:若,a b R +∈,则2a b+a b =时成立)三个数的均值不等式:若,,a b c R +∈,则a b c ++≥a b c ==时成立) (等号仅当a b c ===d 时成立) (三)均值不等式常见的变形时取得最小值)为常数,则若时取得最小值)(注意当且仅当的最小值为,则常数若、、、对于任意的正数b a ((b a .22,122=≤=+=+≥+=∈+mm ab m b a m b a m b a m ab R c b a注意当且仅当若(注意当且仅当则常数、若c b a (c b a ,2===++==+=m c b a b a m abc3、几个常用不等式:① ab 2 ⎪⎝⎭233b c ++⎫⎪⎝⎭;③如果,a b R ∈≥2a b +2a b+(可以推广到n 的情形)【均值不等式的几何证明------用几何意义加深对不等式的理解】 (1)的几何意义ab b a 222≥+:如右图,不妨设0>>a b ,两个正方体的体积 之和为22b a +,两个矩形的面积之和为:ab 2 显然,这两部分面积之差ab b a 2-22+为图中 阴影部分面积..4,4abcd d c b a R d c b a ≥+++∈+都有:、、、对于任意 b(2)的几何意义ab ba ≥+2: 【其一】分析:设ab x =,其意义是什么?联想到圆幂定理:ab x =2如右图:设a AB =,b AC =,则a b BC -=,以BC 为直径作圆,切线AD 与圆相切于D 点,则有:AD=ab ,AO=2ba +(为什么?). 显然,AD AO ≥ 【其二】原式即的几何意义)(ab b a ≥+22: 如右图,设a AC =,b AB =,中点为BC D ,则,2b a AD +=,正方形ADEF 的面积=22)(b a + 矩形ACHG 的面积= ab ,这两面积的差= MHNE S 矩形,(为什么?)即22)(b a +=ab +S 矩形(注意:CD EN S S 矩形=(3)如右图:设a AC =,则,2ba AD +=, 则222b a +而b a )(22+这两个面积的差等于MNG S ∆即222b a +=22)(b a ++MNG S ∆(为什么?)ABCODFA BC D二、均值不等式的应用【适应性预备练习】1、课本P11练习1、2、32、课本P11习题1、2、3、4、6;2(4);(3);411)2( ;2211 ,322ab ba abab abb a )ba b)((a abb a R b a >+>+>++>++∈+)()成立的是(则下列不等式中一定不、、设 zxyz xy z y x R z y x cba b a c a c b R c b a ++≥++∈≥+++++∈+222,2614求证:、、)已知:(,证明:、、)已知:、( 【方法三种:均值不等式、构造函数的方法、配方法】(一)应用于证明不等式--------值不等式证之.1、 证明:log 5lg 42<(2)12222222444c b b a b a c b a R c b a ++++≥++∈)(、、、已知;(2) 4;))((13222c b a ac c b b a c b a c b a R a 、、b、c ++≥++≥++++∈+),求证:(、设9)111)(( (3)≥++++cb ac b a .8)1-1)(1-1)(1-1231,14≥≤++=++∈+cb ac b a c b a R a 、、b、)(;()(求证:,若、设 9111 (3)≥++c b a ; ;31)4(222≥++c b a )(2,,5222zx yz xy z cb a y b ac x a c b R c b a R z y x ++≥+++++∈∈+求证:、、、、、若4171(4).225)b 1(b )1(3)( ;425)b 1)(b 1)(2( ;811111,0,0622≥+≥+++≥++≥++=+>>ab ab a a a a ab b a b a b a )(,求证:、设【第(1)题方法:具有代表性,五种方法。
高中数学 均值不等式
![高中数学 均值不等式](https://img.taocdn.com/s3/m/cf1fbe316ad97f192279168884868762caaebb10.png)
高中数学均值不等式均值不等式是高中数学中一个重要的概念。
它是数学中一个重要的公式,它可以帮助我们了解和解决许多数学问题。
均值不等式可以用来比较和比较给定的数据,因此它可以帮助我们更好地理解和掌握更多的知识。
它可以用来测量数据之间的差异,以及不同数据集合之间的差异。
通过应用均值不等式,我们可以更准确地比较和分析数据,从而得出更好的结论。
均值不等式的基本原理是根据一组数据的总和和个数的相对比例关系来确定的。
均值不等式的基本形式是:$$frac{数据总和}{数据个数} =均数$$ 中,平均数是给定的数据的总和除以其数量得到的一个量,它表示数据集中每个数据值的平均值。
均值不等式可以用来求解许多数学问题,例如:如果一位学生在5次考试中的平均分为80分,则我们可以用均值不等式来求出其5次考试的总分。
假设这学生在第一次考试中获得了90分,在第二次考试中获得了85分,在第三次考试中获得了75分,在第四次考试中获得了60分,在第五次考试中获得了95分。
因此,我们可以根据均值不等式来求出这位学生在5次考试中的总分:$$frac{90+85+75+60+95}{5}=80$$从上面的例子中可以看出,均值不等式可以用来计算数据集中各项数据的总和和平均值,从而帮助我们更好地理解和分析数据,从而得出更准确的结论。
均值不等式还可以用来计算数学中不等式的解,只要认真推敲这一公式,就可以很容易地解决许多不等式的求解问题。
例如,假设有一个不等式,其中$x$的取值范围是从$3$到$9$,对于上述给定的取值范围,我们可以用均值不等式来求解:$$frac{3+4+5+6+7+8+9}{7}=x$$很容易就可以得到结果$x=6$。
由此可见,均值不等式在高中数学中具有重要意义。
它不仅可以用来比较和比较给定数据,还可以用来计算数学中不等式的解,从而帮助我们更好地理解和掌握更多的知识。
只要认真推敲均值不等式,就可以解决许多数学问题,从而有效地提高学习效率。
均值不等式公式四个及证明
![均值不等式公式四个及证明](https://img.taocdn.com/s3/m/8cadc64adf80d4d8d15abe23482fb4daa48d1d14.png)
均值不等式公式四个及证明1.算术均值-几何均值不等式(AM-GM不等式):对于非负实数 a1, a2, ..., an,有以下不等式成立:(a1+a2+...+an)/n ≥ √(a1*a2*...*an)证明:当n=2时,不等式成立。
因为(a1+a2)/2≥√(a1*a2),即a1+a2≥2√(a1*a2)。
假设当 n=k 时,不等式成立,即(a1+a2+...+ak)/k ≥√(a1*a2*...*ak)。
现在考虑 n=k+1 的情况,即要证明(a1+a2+...+ak+ak+1)/(k+1) ≥ √(a1*a2*...*ak*ak+1)。
根据已知条件,我们有:(a1+a2+...+ak+ak+1)/(k+1) = [(a1+a2+...+ak)/k]*(k/(k+1)) + ak+1/(k+1)由归纳假设,(a1+a2+...+ak)/k ≥ √(a1*a2*...*ak)。
因此,上式可以表示为:(a1+a2+...+ak+ak+1)/(k+1) ≥ (√(a1*a2*...*ak))*(k/(k+1)) + ak+1/(k+1)根据加权平均不等式,我们有:(√(a1*a2*...*ak))*(k/(k+1)) + ak+1/(k+1) ≥√(a1*a2*...*ak*ak+1)因此,不等式成立。
2. 广义均值不等式(Cauchy不等式):对于非负实数 a1, a2, ..., an 和 b1, b2, ..., bn,有以下不等式成立:(a1^p+a2^p+...+an^p)^(1/p) * (b1^q+b2^q+...+bn^q)^(1/q) ≥ a1*b1+a2*b2+...+an*bn其中,p和q是正实数,满足1/p+1/q=1证明:当n=2时,不等式成立。
因为(a1^p+a2^p)^(1/p)*(b1^q+b2^q)^(1/q)≥a1*b1+a2*b2假设当 n=k 时,不等式成立,即 (a1^p+a2^p+...+ak^p)^(1/p) * (b1^q+b2^q+...+bk^q)^(1/q) ≥ a1*b1+a2*b2+...+ak*bk。
三元均值不等式的证明方法
![三元均值不等式的证明方法](https://img.taocdn.com/s3/m/4feddbd34bfe04a1b0717fd5360cba1aa8118cb0.png)
三元均值不等式的证明方法方法一:基于平方差的证明法我们考虑三个非负实数a、b和c,取它们的平方差,即(a-b)²,(b-c)²和(c-a)²。
我们可以将每一项展开为:(a-b)² = a²-2ab+b²(b-c)² = b²-2bc+c²(c-a)² = c²-2ca+a²对于这三个平方差,我们可以将它们分别相加,得到:(a-b)² + (b-c)² + (c-a)² = a²-2ab+b² + b²-2bc+c² + c²-2ca+a²= 2(a²+b²+c²) - 2(ab+bc+ca)通过观察,我们可以发现,右侧等式中的每一项都是非负的。
所以我们有:(a-b)²+(b-c)²+(c-a)²≥0将其展开得到:2(a²+b²+c²) - 2(ab+bc+ca) ≥ 0移项得到:(a²+b²+c²) ≥ (ab+bc+ca)即:(a²+b²+c²)/3 ≥ (ab+bc+ca)/3由于左侧是三个数的算术平均值,右侧是它们的等权重平均值,所以这个不等式成立。
方法二:基于函数的证明法我们考虑一个关于三个非负实数a、b和c的函数f(x)=x²。
这个函数在整个实数轴上是单调递增的。
由于a、b和c都是非负实数,所以我们有a²≥b²≥c²。
根据单调性,我们有f(a)≥f(b)≥f(c)。
考虑函数的平均值不等式:[f(a)+f(b)+f(c)]/3≥[(a+b+c)/3]²根据函数的定义,我们有:[a²+b²+c²]/3≥[(a+b+c)/3]²即:(a²+b²+c²)/3≥(a+b+c)²/9展开得到:9(a²+b²+c²)≥(a+b+c)²展开右侧得到:9(a²+b²+c²) ≥ a²+b²+c² + 2(ab+bc+ca)化简得到:8(a²+b²+c²) ≥ 2(ab+bc+ca)再化简得到:4(a²+b²+c²) ≥ ab+bc+ca即:(a²+b²+c²)/3 ≥ (ab+bc+ca)/3从而证明了三元均值不等式的成立。
三个正数的均值不等式的证明
![三个正数的均值不等式的证明](https://img.taocdn.com/s3/m/b0460dd6846a561252d380eb6294dd88d0d23df0.png)
三个正数的均值不等式的证明(实用版)目录1.引言2.三个正数的均值不等式的定义和表述3.证明过程a.使用柯西不等式进行证明b.使用权和均值不等式进行证明4.结论5.总结正文1.引言在数学中,均值不等式是一种常见的不等式,它应用于各种实际问题中,如求解最值问题、概率论等。
在本文中,我们将讨论如何证明三个正数的均值不等式。
在开始证明之前,我们需要先了解均值不等式的定义和表述。
2.三个正数的均值不等式的定义和表述三个正数的均值不等式是指:对于任意三个正数 a、b、c,有(a+b+c)/3 >= (abc)^(1/3)。
换句话说,三个正数的算术平均值大于等于它们的几何平均值。
3.证明过程为了证明这个不等式,我们可以使用两种方法:柯西不等式和权和均值不等式。
a.使用柯西不等式进行证明根据柯西不等式,对于任意实数 a1、a2、a3 和 b1、b2、b3,有 (a1b1 + a2b2 + a3b3)^2 <= (a1^2 + a2^2 + a3^2)(b1^2 + b2^2 + b3^2)。
取a1 = a2 = a3 = 1,b1 = b2 = b3 = 1,我们可以得到 (1+1+1)(1+1+1) <= (1^2 + 1^2 + 1^2)(1^2 + 1^2 + 1^2),即 9 <= 9,这个不等式显然成立。
然后我们考虑将不等式中的 a、b、c 替换为 1/a、1/b、1/c,得到 (1/a + 1/b + 1/c)^2 <= (1/a^2 + 1/b^2 + 1/c^2)(1 + 1 + 1),即 (a+b+c)/3 >= (abc)^(1/3)。
因此,我们证明了三个正数的均值不等式。
b.使用权和均值不等式进行证明根据权和均值不等式,对于任意正数 a、b、c 和正实数 x、y、z,有 (ax+by+cz)/(x+y+z) >= (a^x + b^y + c^z)^(1/(x+y+z))。
三元均值不等式公式四个
![三元均值不等式公式四个](https://img.taocdn.com/s3/m/613410197275a417866fb84ae45c3b3567ecdd66.png)
三元均值不等式公式四个
三元均值不等式是指对于三个非负实数a、b、c,有以下四种均值不等式:
1.算术平均数大于等于几何平均数:
(a+b+c)/3≥(abc)^(1/3)
解释:算术平均数是三个数的和除以3,几何平均数是三个数的乘积的1/3次方根。
这个不等式表明,算术平均数大于等于几何平均数。
2.几何平均数大于等于调和平均数:
(abc)^(1/3)≥3/(1/a+1/b+1/c)
解释:调和平均数是三个数的倒数的平均数,这个不等式表明,几何平均数大于等于调和平均数。
3.平方平均数大于等于算数平均数:
[(a^2+b^2+c^2)/3]^(1/2)≥(a+b+c)/3
解释:平方平均数是三个数的平方和的平均数的1/2次方根,这个不等式表明,平方平均数大于等于算数平均数。
4.立方平均数大于等于平方平均数:
[(a^3+b^3+c^3)/3]^(1/3)≥[(a^2+b^2+c^2)/3]^(1/2)
解释:立方平均数是三个数的立方和的平均数的1/3次方根,这个不等式表明,立方平均数大于等于平方平均数。
这些不等式在数学证明和应用中都有广泛的应用,比如在概率论、统计学和自然科学中都有应用。
均值不等式公式完全总结归纳
![均值不等式公式完全总结归纳](https://img.taocdn.com/s3/m/aa50b2855ebfc77da26925c52cc58bd630869350.png)
均值不等式公式完全总结归纳1.算术平均数不等式:对于任意非负实数 a1, a2, ..., an,有以下不等式成立:(1/n) * (a1 + a2 + ... + an) >= [(a1^n + a2^n + ... + an^n) / n]^(1/n)等号成立的条件是 a1 = a2 = ... = an。
2.几何平均数不等式:对于任意正实数 a1, a2, ..., an,有以下不等式成立:(1/n) * (a1 + a2 + ... + an) >= (a1 * a2 * ... * an)^(1/n)等号成立的条件是 a1 = a2 = ... = an。
3.加权算术平均数不等式:对于任意非负实数 a1, a2, ..., an 和正实数 w1, w2, ..., wn (满足 w1 + w2 + ... + wn = 1),有以下不等式成立:w1 * a1 + w2 * a2 + ... + wn * an >= (a1^w1 * a2^w2 * ... * an^wn)等号成立的条件是 a1 = a2 = ... = an。
4.加权几何平均数不等式:对于任意正实数 a1, a2, ..., an 和正实数 w1, w2, ..., wn(满足 w1 + w2 + ... + wn = 1),有以下不等式成立:w1 * a1 + w2 * a2 + ... + wn * an >= (a1^w1 * a2^w2 * ... * an^wn)等号成立的条件是 a1 = a2 = ... = an。
5.平方平均数不等式:对于任意非负实数 a1, a2, ..., an,有以下不等式成立:(n * (a1^2 + a2^2 + ... + an^2))^(1/2) >= (a1 + a2 + ... + an) / n等号成立的条件是 a1 = a2 = ... = an。
均值不等式基本公式
![均值不等式基本公式](https://img.taocdn.com/s3/m/3fdeaeeedc3383c4bb4cf7ec4afe04a1b071b0ac.png)
均值不等式基本公式均值不等式是数学中的一个重要概念,它是用来描述一组数的平均值之间的关系的。
通过均值不等式,我们可以推导出一些重要的数学结论,解决一些实际问题。
让我们回顾一下均值不等式的基本公式。
对于任意一组实数 $a_1, a_2, ..., a_n$,它们的平均值(也称为算术平均数)为:$$\frac{a_1 + a_2 + ... + a_n}{n}$$而它们的平方平均值(也称为均方根)为:$$\sqrt{\frac{a_1^2 + a_2^2 + ... + a_n^2}{n}}$$根据均值不等式的基本公式,我们可以得出以下结论:1. 对于任意一组正实数 $a_1, a_2, ..., a_n$,它们的平均值大于等于它们的平方平均值。
换句话说,算术平均数大于等于均方根。
这个结论可以用来证明一些常见的数学不等式,如Cauchy-Schwarz 不等式和AM-GM不等式等。
它也有一些实际应用,比如在统计学中,我们可以使用均值不等式来证明样本均值的稳定性。
2. 对于一组非负实数 $a_1, a_2, ..., a_n$,它们的平均值小于等于它们的几何平均值。
几何平均值是将一组数的乘积开n次方得到的值。
它在一些实际问题中很有用,比如计算复利的年增长率。
均值不等式告诉我们,算术平均值是几何平均值的下界。
除了以上两个基本结论外,均值不等式还有一些扩展形式,比如切比雪夫不等式、柯西不等式等。
它们在数学和应用数学中都有着重要的作用。
接下来,让我们通过一些例子来说明均值不等式的应用。
例子1:假设有一批商品,每个商品的价格都不同。
我们想知道这批商品的平均价格和其中最贵的商品价格之间的关系。
根据均值不等式,我们知道平均价格一定小于等于最贵商品的价格。
例子2:假设有两个数a和b,它们的和是固定的。
我们想知道这两个数的平方和最小值是多少。
根据均值不等式,我们知道平方和最小值发生在a和b相等的情况下,此时它们的平均值等于它们。
三次均值不等式证明
![三次均值不等式证明](https://img.taocdn.com/s3/m/5d432b941b37f111f18583d049649b6648d7090d.png)
三次均值不等式证明三次均值不等式证明是一种数学证明方法,它用来证明一个特定的关系或函数的最小值。
该证明以三次均值作为其中心思想,将这一表达式的最小值的证明分解为三个部分。
首先,我们介绍三次均值不等式的定义:对于任意的整数n>=2,任意的整数a1,a2,…,an,以及任意的正数c1,c2,…,cn,当存在一个c使得c1 + c2 + … + cn = c时,有:c(a1 + a2 + … + an) >= (c1a1 + c2a2 + … + cnan)简单来说,就是如果c1+c2+…+cn=c,则有:c*(a1+a2+…+an) >= (c1*a1+c2*a2+…+cn*an)。
也就是说,c1*a1+c2*a2+…+cn*an 的最小值是c*(a1+a2+…+an)。
其次,我们来看看如何用三次均值不等式证明函数f(x)的最小值。
假设f(x)是一个定义在区间[a,b]上的函数,要求证明在[a,b]内,f(x)的最小值是M。
首先,我们令f(x)=c1*a1+c2*a2+...+cn*an,其中c1,c2,...,cn是常数,a1,a2,...,an是函数f(x)在区间[a,b]上的不同值。
根据三次均值不等式,我们有:M <= c1*a1+c2*a2+...+cn*an (1)然后,我们考虑将函数f(x)在区间[a,b]上的不同值用一些中间值代替,比如t0,t1,t2,…,tn-1,tn,令:f(x) = t0 + t1 + t2 + … + tn-1 + tn令c1=c2=…=cn=1,则有:M <= t0 + t1 + t2 + … + tn-1 + tn (2)最后,我们用三次均值不等式对(2)进行处理,令:t0 = (t1 + t2 + … + tn-1 + tn)/n由此,我们有:M <= (t1 + t2 + … + tn-1 + tn)/n + t1 + t2+ … + tn-1 + tn根据三次均值不等式,我们有:M <= [(t1 + t2 + … + tn-1 + tn)/n] * n即:M <= t1 + t2 + … + tn-1 + tn此时,我们已经证明了函数f(x)在区间[a,b]上的最小值是M。
均值不等式的公式
![均值不等式的公式](https://img.taocdn.com/s3/m/e08c868b0129bd64783e0912a216147917117ed9.png)
均值不等式的公式
四个均值不等式:
a+b≥2ab;
√(ab)≤(a+b)/2;
a+b+c≥(a+b+c)/3;
a+b+c≥3×三次根号abc
公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几
何平均数不超过算术平均数,算术平均数不超过平方平均数。
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n
这四种平均数满足Hn≤Gn≤An≤Qn的式子即为均值不等式。
这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为
一个有n + k个变量的方程组的极值问题,其变量不受任何约束。
这种方
法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。
此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。
一些平均值的不等式
![一些平均值的不等式](https://img.taocdn.com/s3/m/c45d3162b207e87101f69e3143323968011cf4f5.png)
平均值的不等式是一种数学定理,它告诉我们在某些情况下,一组数的平均值与其中某些数的平均值之间存在不等式关系。
具体来说,如果有一组数a1,a2,...,an,它们的平均值是(a1 + a2 + ... + an) / n,那么对于任意的非负数b1,b2,...,bn,我们有:(a1 + a2 + ... + an) / n ≤ (a1 + b1 + a2 + b2 + ... + an + bn) / (n + ∑bi)这就是平均值的不等式。
平均值的不等式有许多应用,例如在统计学中,它可以用来证明中位数的性质;在机器学习中,它可以用来证明最小二乘回归的有效性;在信息论中,它可以用来证明信息熵的性质。
平均值的不等式也可以用来证明某些平均值的性质。
例如,我们可以用平均值的不等式来证明几何平均数与算术平均数之间的关系,即:对于任意的正数a1,a2,...,an,有:(a1 * a2 * ... * an)^(1/n) ≤ (a1 + a2 + ... + an) / n这就是几何平均数与算术平均数之间的不等式。
平均值的不等式还有许多其他的应用,例如在信号处理中,它可以用来证明最小平方误差的有效性;在经济学中,它可以用来证明投资组合的收益率的下界。
平均值的不等式还有许多其他的例子。
例如,还有一种常见的平均值不等式叫做AM-GM 不等式,它告诉我们,对于任意的正数a1,a2,...,an,有:(a1 + a2 + ... + an) / n ≥ (a1 * a2 * ... * an)^(1/n)这就是AM-GM 不等式。
还有一种常见的平均值不等式叫做Hölder 不等式,它告诉我们,对于任意的正数a1,a2,...,an,以及任意的实数p1,p2,...,pn,有:(a1^p1 + a2^p2 + ... + an^pn)^(1/p) ≤ (a1 + a2 + ... + an) / n其中p = p1 + p2 + ... + pn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均值不等式导学案2
☆学习目标: 1.理解并掌握重要的基本不等式;
2.理解从两个正数的基本不等式到三个正数基本不等式的推广;
3.初步掌握不等式证明和应用
一、课前准备(请在上课之前自主完成)
1.定理1 如果,a b R ∈, 那么22
2a b ab +≥.
当且仅当a b =时, 等号成立.
2. 定理2(基本不等式) 如果+∈R b a ,, 那么 .
当且仅当 时, 等号成立.
利用基本不等式求最值的三个条件 推论10. 两个正数的算术平均数 , 几何平均数 , 平方平均数 ,调和平均数 ,
从小到大的排列是:
☆课前热身:
(1) 某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利 润y (单位:10万元)与营运年数x 的函数关系为),(11)6(2*
∈+--=N x x y 则每辆客车 营运多少年,其运 营的年平均利润最大( )
A .3
B .4
C .5
D .6
(2) 在算式“4130⨯∆+⨯O =”中的△,〇中,分别填入两个正整数,使它们的倒数和最步, 则这两个数构成的数对(△,〇)应为 . (3) 设+∈R x 且12
22
=+y x ,求21y x +的最大值.
二、新课导学 请你类比两个数的基本不等式得出三个数的基本不等式:
如果+
∈R b a ,, 那么2a b +≥.当且仅当a b =时, 等号成立. 如果,,a b c R +∈,那么 .当且仅当 时, 等号成立.
☻建构新知:
问题:已知,,a b c R +∈, 求证:3333.a b c abc ++≥当且仅当a b c ==时, 等号成立. 证明: ∵3333a b c abc ++-=
定理3 如果,,a b c R +∈, 那么3
a b c ++≥当且仅当a b c ==时, 等号成立. 语言表述:3个数的 平均数不小于它们的 平均数 推论 对于n 个正数12,,,n a a a L , 它们的
即 当且仅当a b c ==时, 等号成立. 语言表述:n 个数的 平均数不小于它们的 平均数
☆案例学习:
例1已知,,x y z R +
∈, 求证:
(1)3()27x y z xyz ++≥; (2)()()9x y z y z x y z x x y z ++++≥; (3)222()()9x y z x y z xyz ++++≥.
例2用一块边长为a 的正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖 的盒子.要使制成的盒子的容积最大,应当剪去多大的小正方形
例3 求函数)0(,322>+
=x x x y 的最大值,指出下列解法的错误,并给出正确解法. 解一:3322243212311232=⋅⋅≥++=+=x
x x x x x x x y . ∴3min 43=y . 解二:x x x x x y 623223222
=⋅≥+=当x x 322=即2123=x 时, 633min 3242123221262==⋅=y . 正解:
例4、已知0<x<, 当x 取何值时,x ²(9-2x)的值最大最大值是多少
三、当堂检测
1、已知a 、b 、c 都是正数,求证:(a+b+c)(ab+bc+ca)≥9abc
2、已知a 、b 、c 都是正数,且abc=1.求证:a³+b ³+c ³≥3
3、已知x>0,当x 取什么值时212x x +的值最小最小值是多少 四、课堂小结 2个数的均值不等式 等号成立的条件 3个数的均值不等式 等号成立的条件 n 个数的均值不等式 等号成立的条件 五课后作业 基本不等式2 姓名 日期 年 月 日
1.若1,0,0=+>>b a b a ,则)11)(11(22--b
a 的最小值是( ) A.6 B.7 C.8 D.9
2.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )
A .3-1
B .
3+1 C . 23+2 D . 23-2 3.若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( )
∈M ,0∈M ; B.2∉M ,0∉M ; ∈M ,0∉M ; D.2∉M ,0∈M
4. 若14<<-x ,则2
2222-+-x x x 的最小值为( ) A.2 B.37 C.1-
.5 函数)(,422+∈+=R x x
x y 的最小值为( ) A.6 B.7 C.8 D.9
.6已知1273,023++=-+y x y x 则的最小值是 ( )
A. 393
B. 221+
C. 6
D. 7
7. 求下列函数的最值
1、0>x 时, 求x x y 362+=
的最小值.
2、设]27,91[∈x ,求)3(log 27
log 33
x x y ⋅=的最大值.
3、若10<<x , 求)1(24x x y -=的最大值.
4、若0>>b a ,求)(1b a b a -+
的最小值为.
8某单位建造一间地面面积为12m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面
的长 度x 不得超过a 米,房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶 和地面的造价费用合计为5800元,如果墙高为3m ,且不计房屋背面的费用.
(1)把房屋总造价y 表示成x 的函数,并写出该函数的定义域;
(2)当侧面的长度为多少时,总造价最底最低总造价是多少
9制作一个容积为316m π的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时,用料最 省(不计加工时的损耗及接缝用料)。