北师大版九年级数学上册《用配方法求解一元二次方程》第2课时示范公开课教学设计
《用配方法求解一元二次方程》第2课时示范课教学设计【数学九年级上册北师大】
《用配方法求解一元二次方程》教学设计
第2课时
一、教学目标
1.会用配方法解二次项系数不为1的较复杂的一元二次方程.
2.能够熟练、灵活应用配方法解一元二次方程.
3.进一步经历用配方法解一元二次方程的过程,体会转化的数学的思想.
4.培养学生的数学意识,感受数学学习的价值.
二、教学重难点
重点:用配方法解二次项系数不为1的较复杂的一元二次方程.
难点:熟练、灵活的应用配方法解一元二次方程.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
思维导图的形式呈现本节课的主要内容:教科书第40页。
北师大版数学九年级上册2.2用配方法解一元二次方程说课稿
课后作业的目的是让学生巩固所学知识,提升应用能力。我会布置一些与本节课内容相关的题目,如运用配方法解决实际问题、总结配方法的步骤等。同时,我还会鼓励学生进行自主学习,查阅相关资料,加深对配方法的理解。作业的布置将根据学生的实际情况进行调整,确保每个学生都能在作业中得到锻炼和提高。
五、板书设计与教学反思
(二)教学目标
1.知识与技能目标:学生能够理解配方法的概念,掌握配方法的步骤,能够运用配方法解一元二次方程。
2.过程与方法目标:通过自主探究、合作交流的方式,学生能够发现配方法解一元二次方程的规律,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够体验到数学的乐趣,增强对数学学习的兴趣,培养积极的学习态度。
(四)总结反馈
在总结反馈阶段,我会引导学生自我评价,并提供有效的反馈和建议。首先,我会让学生回顾本节课所学的知识点,让他们自己总结配方法的概念和步骤。然后,我会邀请学生分享自己在解决问题过程中的心得和体会,让其他同学进行评价和借鉴。最后,我会根据学生的表现,给予他们个性化的反馈和建议,帮助他们进一步提高。
(一)板书设计
我的板书设计将注重布局的合理性、内容的精炼性和风格的简洁性。布局上,我会将板书分为几个部分,包括配方法的概念、步骤和示例等。内容上,我会突出配方法的关键步骤和注意事项,以及如何运用配方法解一元二次方程。风格上,我会采用清晰的字体和简洁的图形,以突出重点,便于学生理解和记忆。板书在教学过程中的作用是引导学生思考、概括和总结,确保学生能够把握知识结构,提高学习效果。
(二)新知讲授
在新知讲授阶段,我会逐步呈现配方法的知识点,引导学生深入理解。首先,我会介绍配方法的基本步骤,包括将方程写成标准形式、找到方程的根与系数的关系、添加适当的常数使得方程变为完全平方等。接着,我会通过具体的例子,演示配方法的操作过程,让学生跟随步骤一起操作,从而加深他们对配方法的理解。同时,我会引导学生思考配方法背后的数学原理,让他们明白配方法的本质。
初中数学九年级上册北师大版:用配方法求解一元二次方程(教案)
第二章一元二次方程2.2用配方法求解一元二次方程教学目标【知识与技能】理解配方法的意义,会用配方法解二次项系数为1的一元二次方程.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.【教学重点】运用配方法解二次项系数为1的一元二次方程.【教学难点】了解并掌握用配方求解一元二次方程.教学过程一、情境导入,初步认识1.根据完全平方公式填空:(1)2269x x ();(2)22816x x ();(3)22210x x ()();(4)2223x x ()();2.解下列方程:(1)2325x ();(2)212290x ().3.你会解方程26160x x 吗?你会将它变成2x m n ()(n 为非负数)的形式吗?试试看,如果是方程2213x x 呢?【教学说明】利用完全平方知识填空,为后面学习打下基础.二、思考探究,获取新知思考:怎样解方程26160x x ?26160x x 移项:2616x x 两边都加上9,即262 ,使左边配成222x bx b 的形式:269x x ,右边为:169 ;写成平方形式:2325x ()降次:35x 解一次方程:3535x x ,,1228x x ,【教学说明】通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能逆向转化为可以直接开平方的形式,所以总结出解一元二次方程的基本思路是将20x px q 形式转化为20x m n n ()()的形式.【归纳结论】通过配成完全平方式的方法得到一元二次方程的根,这种方法称为配方法.三、运用新知,深化理解1.解方程(注:学生练习,教师巡视,适当辅导).(1)210240x x ;(2) 2135x x ;(3)23640x x .解:(1)移项,得21024x x 配方,得210252425x x ,由此可得 251x ,51x ,∴1264x x ,(2)整理,得22580x x .移项,得2258x x 二次项系数化为1得2542x x 配方,得x 2+52x+(54)2=4+(54)2由此可得(x+54)2=8916x+54=894∴x 1=4,x 2=4(3)移项,得3x 2-6x=-4二次项系数化为1,得x 2-2x=4-3配方,得x 2-2x+12=4-3+12(x-1)2=1-3因为实数的平方不会是负数,所以x 取任何实数时,(x-1)2都是非负数,上式不成立,即原方程无实数根.2.用配方法将下列各式化为2a x h k ()的形式.(1)2361x x ;(2)221233y y ;(3)0.4x-0.8x-1.【教学说明】化二次三项式ax 2+bx+c(a ≠0)为a(x+h)2+k 形式分以下几个步骤:(1)提取二次项系数使括号内的二次项系数为1;(2)配方:在括号内加上一次项系数一半的平方,同时减去一次项系数一半的平方;(3)化简、整理.本题既让学生巩固配方法,又为后面学习二次函数打下基础.四、师生互动,课堂小结1.本节课学习的数学知识是用配方法解一元二次方程;2.本节课学习的数学方法是:①转化思想;②根据实际问题建立数学模型;3.用配方法求解一元二次方程的一般步骤是什么?(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x+h)2=k 的形式;(4)用直接开平方法解变形后的方程.【教学说明】使学生在直观的基础上学习归纳,促进学生形成科学的、系统的数学知识体系.课后作业1.布置作业:教材“习题2.4”中第1题.2.完成练习册中相应练习.教学反思在教学过程中,由简单到复杂,由特殊到一般的原则,采用了观察对比,合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究并发现结论,教师做学生学习的引导者、合作者、促进者,要适时鼓励学生,实现师生互动.同时,我认识到教师不仅仅要教给学生知识,更要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习.。
北师大版初三上册第二章用配方法求解一元二次方程(教案)
北师大版初三上册第二章2教学目标:1、了解配方法的概念,把握运用配方法解一元二次方程的步骤.2、通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.教学重难点:重点:讲清配方法的解题步骤.难点:把常数项移到方程右边后, 两边加上的常数是一次项系数一半的平方.教具、学具预备:小黑板教学过程一、复习回忆活动内容:回忆配方法解二次项系数为1的一元二次方程的差不多步骤。
活动目的:回忆配方法的差不多步骤,为本节课研究二次项系数不为1的二次方程的解法打下基础。
实际成效:教学中为了便于学生回忆,能够通过举例的形式,关心学生回忆并整理步骤,例如,x 2-6-40=0移项,得 x -6x= 40方程两边都加上32(一次项系数一半的平方),得x -6x+32=40+32即 (x -3)=49开平方,得x -3 =±7即x -3=7或x -3=-7因此学生一样都能整理出配方法解方程的差不多步骤:2222.4,1021-==x x通过对那个方程差不多步骤地熟悉学生们顺畅的理清思路,把握了每一步的理论依据,增强了解题的信心,达到预期的目的。
配方法的两节课连贯性强,作为一种新的方法,学生在新授期间应多接触,熟练把握差不多的步骤,把握每一步的原理,如此会增强学生对那个知识点的驾驭能力。
一样的一元二次方程配方解法的步骤(移项,配方,开平方,求解)及注意事项。
移项的目的是将二次项和一次项调整到等号的左边,常数项调整到右边;配方是将方程的两边添加一个常数项(一次项系数一半的平方)原理是依照公式a +2ab +b =(a +b )进行的;开平方的原理是平方根的定义,需要注意一个正数有两个平方根,它们是互为相反数;求解的过程是解两个一元一次方程,要注意符号的变化。
二、情境引入活动内容:(1).将下列各式填上适当的项,配成完全平方式口头回答.1.x +2x+________=(x+______)2.x -4x+________=(x -______)3.x +________+36=(x+______)4.x +10x+________=(x+______)5. x -x+________=(x -______)(2).请同学们比较下列两个一元二次方程的联系与区别1.x +6x+8=02.3x +18x+24=0探讨方程2的应如何去解呢?活动目的:通过对第一部分的五个口答练习题的训练,熟悉完全平方式的三项与平方形式的联系,第二部分的两个习题之间的区别是方程2的二次项系数为3,不符合上节课解题的差不多形式,联系是当方程两边同时除以3以后,这两个方程式同解方程。
2.2用配方法求解一元二次方程教学设计2023-2024学年-北师大版数学九年级上册
教学流程
(一)课前准备(预计用解“用配方法求解一元二次方程”的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习“用配方法求解一元二次方程”内容做好准备。
教师备课:
深入研究教材,明确“用配方法求解一元二次方程”教学目标和“用配方法求解一元二次方程”重难点。
答案:x1=2,x2=-2。
3.例题3:求解一元二次方程3x^2+6x+1=0
解答:首先,计算判别式Δ=b^2-4ac=6^2-4*3*1=36-12=24>0,所以方程有两个不相等的实数根。
然后,展开并简化方程:3x^2+6x+1=0可以写成9x^2+12x+4-2=0,即9x^2+12x+2=0。
-(3)判断Δ的值,确定方程的根的性质。
-(4)如果Δ>0,用公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a求解方程的两个实数根。
-(5)如果Δ=0,方程退化为一元一次方程,用公式x=-b/2a求解方程的根。
-(6)如果Δ<0,先求出方程的共轭复数根,再用公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a求解方程的两个复数根。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与“用配方法求解一元二次方程”内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合“用配方法求解一元二次方程”内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
-配方法的应用范围广泛,可以用于解决实际问题中的方程求解问题。
北师大版九年级数学上册《用配方法求解一元二次方程》说课稿
北师大版九年级数学上册《用配方法求解一元二次方程》说课稿一. 教材分析1. 教材基本信息•课本名称:北师大版九年级数学上册•课程:数学•章节:第X章-X.X-X节•知识点:用配方法求解一元二次方程2. 教材内容概述本节课是北师大版九年级数学上册的第X章-X.X-X节,主要内容是介绍如何利用配方法求解一元二次方程。
通过本节课的学习,学生将会掌握配方法的基本原理和具体应用,并能够独立解决一元二次方程的求解问题。
二. 教学目标1. 知识目标•了解一元二次方程的基本概念;•掌握用配方法求解一元二次方程的步骤;•熟练运用配方法解决一元二次方程的实际问题。
2. 能力目标•培养学生的问题分析与解决能力;•培养学生的逻辑思维和数学推理能力;•培养学生的实际问题应用能力。
3. 情感目标•培养学生的兴趣和自信心;•培养学生的团队合作精神;•培养学生的数学思维能力。
三. 教学重难点1. 教学重点•理解配方法的基本原理;•掌握用配方法求解一元二次方程的步骤。
2. 教学难点•运用配方法解决一元二次方程的实际问题。
四. 教学过程1. 导入与激发兴趣通过引入实际问题,如抛物线的应用,引发学生的思考和兴趣,激发学习热情。
2. 知识点讲解与示范首先,向学生介绍一元二次方程的定义、解的含义及一元二次方程的标准形式。
然后,详细讲解配方法的基本原理和步骤,并通过具体例子进行示范。
3. 学生练习与巩固让学生根据所学知识,完成一些基础练习题,检验学生对配方法的理解程度。
随后,组织学生进行小组讨论,解决一些更为复杂的实际问题。
4. 拓展与应用在巩固学生对配方法的掌握之后,引导学生运用所学知识解决一些实际生活中的问题,如抛物线的图像问题等。
5. 归纳与总结通过本节课的学习和练习,归纳总结配方法的基本原理和步骤,并强调其实际应用。
6. 课堂小结与作业布置对本节课所学内容进行小结,并布置相应的作业,如完成课堂练习、预习下一课内容等。
五. 教学资源1. 教学工具•黑板、白板及相应标记工具•教材及教辅资料2. 多媒体技术•PPT演示文稿3. 其他辅助材料•学生练习题集•相关实际问题材料六. 教学评估1. 课堂观察通过观察学生的积极性、参与度、合作能力等来评估学生的学习情况。
《 用配方法求解一元二次方程》示范公开课教学设计【北师大版九年级数学上册】(第2课时)
第二章一元二次方程2.2 用配方法求解一元二次方程第2课时教学设计一、教学目标1.理解配方法,会用配方法解二次项系数不为1的一元二次方程.2.经历探索利用配方法解二次项系数不为1的一元二次方程的过程,使学生体会到转化的数学思想,培养学生运用转化的数学思想解决问题的能力.3.启发学生学会观察、分析,寻找解题的途径,提高他们分析问题、解决问题的能力.二、教学重点及难点重点:理解并掌握配方法,能够运用配方法解二次项系数不为1的一元二次方程.难点:运用配方法解二次项系数不为1的一元二次方程.三、教学用具多媒体课件,计算器.四、相关资源《配方法》动画,《配方法解一元二次方程》微课.五、教学过程【复习引入】1.什么是配方法?师生活动:教师出示问题,找学生代表回答.答:通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法称为配方法.2.填上适当的数,使下列等式成立:(1)x2+5x+________=(x+_______)2;(2)x2-6x+________=(x-_______)2;(3)x2-13x+________=(x-_______)2;(4)x2+bax+________=(x+_______)2.师生活动:教师出示问题,学生代表回答,教师根据学生情况实时引导.教师引导:本题实际上要将其配成完全平方式,方法是加上一次项系数一半的平方.答案:(1)254,52;(2)9,3;(3)136,16;(4)224ba,2ba.上节课我们学习了用配方法解二次项系数为1的一元二次方程,如果二次项的系数不为1,那么我们怎样解这样的一元二次方程呢?这就是我们这节课要研究的问题:怎样解二次项系数不为1的一元二次方程?设计意图:通过复习上一节课所学的内容,引入本节课所学的内容.【探究新知】例解下列方程:(1)x2-6x-40=0;(2)3x2+8x-3=0.师生活动:教师先让学生独立完成第(1)题,第(2)题教师引导学生将方程两边同除以3化为二次项系数为1的一元二次方程,然后按照上节课所学方法解方程即可,最后教师归纳.解:(1)移项,得x2-6x=40.方程两边都加上32(一次项系数一半的平方),得x2-6x+32=40+32,即(x-3)2=49.两边开平方,得x-3=±7,即x-3=7,或x-3=-7.所以x1=10,x2=-4.(2)移项,得3x2+8x=3.两边同除以3,得281 3x x+=.配方,得2228441333x x⎛⎫⎛⎫++=+⎪ ⎪⎝⎭⎝⎭,即242539x⎛⎫+=⎪⎝⎭.两边开平方,得4533x+=±,即4533x+=,或4533x+=-.所以11 3x=,x2=-3.归纳:用配方法解一元二次方程的一般步骤:(1)化——化二次项系数为1;(2)配——配方,使原方程变成(x+m)2-n=0的形式;(3)移——移项,使方程变为(x+m)2=n的形式;(4)开——如果n≥0,就可以左右两边开平方得到x+m=±n;(5)解——方程的解为x=-m±n.设计意图:通过例题的讲解,使学生明白用配方法解二次项系数不是1的一元二次方程的一般步骤.【典例精析】做一做一个小球从地面以15 m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:h=15t-5t2,小球何时能达到10 m高?师生活动:教师出示问题,学生思考、讨论,教师引导:解决这个问题实际上就是解方程15t-5t2=10,即5t2-15t=-10.解:由题意可得方程15t-5t2=10.该方程可化为5t2-15t=-10.方程两边同除以5,得t2-3t=-2.配方,得222333222t t⎛⎫⎛⎫-+-=-+-⎪ ⎪⎝⎭⎝⎭,即23124t⎛⎫-=⎪⎝⎭.两边开平方,得3122t-=±,即3122t-=,或3122t-=-.所以t1=2,t2=1,这两个解均符合题意.所以在1 s时,小球达到10 m;至最高点后下落,在2 s时,其高度又为10 m.设计意图:通过实际问题的解决,让学生巩固所学知识.【课堂练习】1.下列配方有错误的是().A.化为B.化为C.化为D.化为2.将二次三项式3x2+8x-3配方,结果为().A.2855333x⎛⎫++⎪⎝⎭B.24333x⎛⎫+-⎪⎝⎭C.24253333⎛⎫+-⎪⎝⎭D.(3x+4)2-192410x x--=2(2)5x-=2680x x++=2(3)1x+= 22760x x--=2797416x⎛⎫-=⎪⎝⎭23420x x--=2210339x⎛⎫-=⎪⎝⎭3.用配方法解方程242203x x --=应把它先变形为( ). A .21839x ⎛⎫-= ⎪⎝⎭ B .2203x ⎛⎫-= ⎪⎝⎭ C .21839x ⎛⎫+= ⎪⎝⎭ D .211039x ⎛⎫-= ⎪⎝⎭ 4.关于x 的一元二次方程的解为( ).A .,B .C .D .无解5.如果mx 2+2(3-2m )x +3m -2=0(m ≠0)的左边是一个关于x 的完全平方式,则m =_______.6.解下列方程:(1)9y 2-18y -4=0;(2)2x 2-x -1=0师生活动:教师找几名学生板演,讲解出现的问题.教师点拨:先把常数项移到方程的右边,然后再将二次项的系数化为1.7.如图,某人在C 处的船上,距离海岸线AB 为2千米.此人划船的速度为4千米/时,在岸上步行的速度为5千米/时,若此人要用1.5小时到达距A 点6千米的B 处,问此人登陆点D 应在距B 点多远?师生活动:教师出示练习,找几名学生板演,讲解出现的问题.解:设此人登陆点D 应在距B 点x 千米处.根据题意列方程,得(1.5-5x )×4=24(6)x +-. 两边平方,得(6-45x )2=4+(6-x )2. 整理,得291240255x x -+=,即(35x -2)2=0. 解得x =103. 答:此人登陆点D 应在距B 点103千米处. 设计意图:让学生进一步加深对所学知识的理解.参考答案21(1)420m m x x ++++=11x =21x =-121x x ==121x x ==-1.D .2.C .3.D .4.C .5.1或9.6.解:(1)方程两边同除以9,得24209y y --=. 移项,得2429y y -=. 配方,得213(1)9y -=.所以1y -=.所以11y =,21y =; (2)方程两边同除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,即219416x ⎛⎫-= ⎪⎝⎭. 所以1344x -=,或1344x -=-. 所以x 1=1,212x =-. 设计意图:通过本环节的学习,让学生巩固所学知识.六、课堂小结用配方法解一元二次方程的一般步骤是什么?答:一般步骤如下:(1)化——化二次项系数为1;(2)配——配方,使原方程变成(x +m )2-n =0的形式;(3)移——移项,使方程变为(x +m )2=n 的形式;(4)开——如果n ≥0,就可以左右两边开平方得到x +m =±n ;(5)解——方程的解为x =-m ±n .另外,如果是解决实际问题,还有注意判断求得的结果是否合理.师生活动:教师出示问题,引导学生归纳、总结本节课所学内容.设计意图:通过总结使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计2.2 用配方法求解一元二次方程(2)1.用配方法解一元二次方程的一般步骤:(1)化——化二次项系数为1;(2)配——配方,使原方程变成(x+m)2n=0的形式;(3)移——移项,使方程变为(x+m)2=n的形式;(4)开——如果n≥0,就可以左右两边开平方得到x+m=±n;(5)解——方程的解为x=-m±n.。
最新北师大版九年级数学上册《用配方法求解一元二次方程》教学设计(精品教案)
二、解:x2十12x一15=0,
1、引入:像上面第(3)题,我们解方程会有困难,是否将方程转化为第(1)题的方程的形式呢?
2、解方程的基本思路(配方法)
如:x2+12x-15=0转化为
(x+6)2=51
两边开平 方,得
x+6=±
∴x1= ―6x2=― ―6(不合实际)
3、配方:填上适当的数,使下列等式成立:
(2)配方法.
(1)x2+12x+=(x+6)2
(2)x2―4x+=(x―)2
(3)x2+8x+=(x+)2
从上可知:常数项配上一次项系数的一半的平方。
4、讲解例题:
例1:解方程:x2+8x―9=0
分析:先把它变成(x+m)2=n(n≥0)的形式再用直接开平方法求解。
解:移项,得:x2+8x=9
配方,得:x2+8x+42=9+42(两边同时加上一次项系数一半的平方)
即:(x+4)2=25
开平方,得:x+4=±5
即:x+4=5,或x +4=―5
所以:x1=1,x2=―9
5、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
三、课堂练习
课本P37随堂练习
四、课时小结
五、课后作业
(一)课本P3Biblioteka 习题2.3(二)1.预习内容P38
第二章一元二次方程
2.2用配方法求解一元二次方程(一)
课题
2.2用配方法求解一元二次方程(一)
课型
北师大版九年级数学上册:2.2 用配方法解一元二次方程 教案设计
第二章一元二次方程2.用配方法求解一元二次方程(二)一、学生知识状况分析学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。
学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。
二、教学任务分析在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。
这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是:①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:探究析疑;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小测;第六环节:课堂小结;第七环节:布置作业。
第一环节:复习回顾活动内容:1、将下列各式填上适当的项,配成完全平方式(口头回答).(1).x2+2x+________=(x+______)2(2).x2-4x+________=(x-______)2(3).x2+5x+________ =(x+______)2活动目的:回顾配方法解二次项系数为1的一元二次方程的基本步骤。
为本节课研究二次项系数不为1的二次方程的解法打下基础。
实际效果:学生对口答题的积极抢答,调动了各自的思维,进入了积极学习的状态;教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,x2-6x-40=0移项,得 x2-6x= 40方程两边都加上32(一次项系数一半的平方),得x2-6x+32=40+32即(x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x1=10,x2=-4学生一般都能整理出配方法解方程的基本步骤:移项,配方,开平方,求解及注意事项。
优质课教学设计《用配方法解一元二次方程(第2课时)》公开课教案
本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
用配方法解一元二次方程【知识与技能】掌握用配方法解一元二次方程.【过程与方法】理解通过变形运用开平方法解一元二次方程的方法,进一步体验降次的数学思想方法. 【情感态度】在学生合作交流过程中,进一步增强合作交流意识,培养探究精神,增强数学学习的乐趣.【教学重点】用配方法解一元二次方程.【教学难点】用配方法解一元二次方程的方法和技巧.一、情境导入,初步认识问题要使一块长方形的场地的长比宽多6m,并且面积为16m2,场地的长与宽各是多少?思考如果设这个长方形场地的宽为xm,则长为,由题意可列出的方程为,你能将此方程化为(x+n)2=p的形式,并求出它的解吗?【教学说明】经历从实际问题中抽象出一元二次方程模型的过程,进一步增强学生的数学建模能力,并通过思考,用类比、转化思想方法探索出解这类方程的一种方法,导入新课.教学过程中,应给予学生充分思考,交流活动时间,达到探索新知的目的.二、思考探究,获取新知【教学说明】让学生阅读第6~7页探究内容,再完成下面的“想一想”.想一想1.下列各题中的括号内应填入怎样的数合适?谈谈你的看法.(1)x2+10x+( )=(x+ )2;(2)x2-3x+( )=(x- )2;(3)x2-23x+( )=(x- )2;(4)x2+12x+( )=(x+ )2.2.利用上述想法,试试解下列方程:(1)x2+10x+3=0; (2)x2-3x+1=0;(3)x2-23x=4; (4)x2+12x-7=0.1.依次填入:(1)25;5;(2)94,32;(3)19;13;(4)116,14.2.解:(1)原方程可化为:x2+10x=-3,配方,得x2+10x+25=-3+25,即(x+5)2=22,∴x+5=±22 ,即x1=-5+22,x2=-5-22;试一试 1.请说说用配方法解二次项系数为1的一元二次方程的方法是怎样的?与同伴交流.2.如果某个一元二次方程的二次项系数不是1时,还能用配方法解这个一元二次方程吗?谈谈你的看法,并尝试解方程12x2+x-3=0.【教学说明】让学生独立思考后,相互交流看法.理解并掌握用配方法解一元二次方程的思维方法.然后选取学生代表发言,最后师生共同总结,完善认知.三、典例精析,掌握新知例(教材第7页例1)解下列方程(1)x2-8x+1=0;(2)2x2+1=3x;(3)3x2-6x+4=0.分析:对于(2)、(3)中的方程,可先将未知数的项放在等号左边,常数项移至等号的右边后,再根据等式性质将二次项系数化为1,从而转化为形如x2+mx=n的方程,利用配方法可求出方程的解.【教学说明】让学生自主探究,独立完成,同时选三名同学上黑板演算,教师巡视,针对学生可能出现的问题,教师应适时予以点拨:(1)二次项系数不是1时,怎么办?(2)配方过程中,在等式两边加上的常数与一次项系数的关系如何?(3)配方过程中,若等号右边为负数,这个方程有没有实数根?(4)配方过程中还需注意哪些问题等等.最后师生共同评析,加深用配方法解一元二次方程的理解.【归纳结论】一般地,如果一个一元二次方程通过配方转化成(x+n)2=p(Ⅱ)的形式,那么就有:(1)当p>0时,方程(Ⅱ)有两个不等的实数根x1p , x2p(2)当p=0时,方程(Ⅱ)有两个相等的实数根x1=x2=-n;(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,所以方程(Ⅱ)无实数根.【试一试】师生共同完成教材第9页练习.【教学说明】第1题老师可让学生口答,第2题教师可选几名学生板演,师生共同完成后,老师仍要向学生强调方程无实数根的情况.四、运用新知,深化理解1.将二次三项式x2-4x+2配方后,得()A.(x-2)2+2B.(x-2)2-2C.(x+2)2+2D.(x+2)2-22.已知x2-8x+15=0,左边化成含x的完全平方式,其中正确的有()A.x2-8x+(-4)2=31B.x2-8x+(-4)2=1C.x2+8x+42=1D.x2-4x+4=-113.若代数式2221x xx---的值为0,则x的值为 .4.方程x2-2x-3=0的解为 .5.要使一块长方形场地的长比宽多3m,其面积为28m2,试求这个长方形场地的长与宽各是多少?【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.【答案】1.B2.B3.x=24.x1=-1,x2=35.长与宽分别为7m和4m.五、师生互动,课堂小结1.通过本节课的学习,你能用配方法解一元二次方程吗?有哪些需要注意的地方?2.用配方法解一元二次方程涉及哪些数学思想方法?【教学说明】让学生通过对上述问题的回顾与思考,反思学习体会,完善知识体系.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本节课,重在学生的自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认识冲突,激发兴趣,建立自信心.2.在练习内容上,有所改进,加强了核心知识的理解与巩固,提高自己解决问题的能力,感受数学创造的乐趣,提高教学效果.3.用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
北师大版九年级数学上册《用配方法求解一元二次方程》教案及教学反思
北师大版九年级数学上册《用配方法求解一元二次方程》教案及教学反思一、教案设计1. 教学目标通过本节课的学习,学生应该能够:•掌握使用配方法求解一元二次方程的方法和步骤;•熟练运用配方法解决多种类型的一元二次方程;•学会将生活和实际问题转化成一元二次方程,并通过配方法得到解。
2. 教学重点和难点•教学重点:配方法的具体步骤和细节;•教学难点:数学符号的运用。
3. 教学课时本节课预计用时1课时。
4. 教学内容和步骤本节课主要分为三部分:(1)导入环节老师可以通过生动有趣的例子,来引导学生认识到一元二次方程在生活和实际问题中的应用,例如:一张长方形的面积是24,宽是5,那么这个长方形的长度是多少?通过三位数的乘法公式展示这道题是如何通过式子求解的,并将式子抽象成一个与x有关的一元二次方程: x^2 - 15x + 24 = 0。
(2)教学主体依次讲解配方法的四个步骤:1. 将原方程变形为x^2 + px + q = 0通过移项和因式分解,得到x^2 + px + q = 0的形式。
2. 求出p和q利用已知的系数和公式,分别求出p和q的值。
3. 求出判别式根据公式Δ = b^2 - 4ac,求出判别式Δ的值。
4. 求出方程的解如果Δ > 0,则方程有两个不相等的实数根;如果Δ = 0,则方程有两个相等的实数根;如果Δ < 0,则方程没有实数根。
最后将结果代入原方程中,验证得到的解是否正确。
(3)课堂练习让学生带着老师讲解的配方法,解答课堂练习题。
二、教学反思1. 教学过程的优点本节课的优点主要如下:•教学方法生动有趣,通过生活和实际问题,引导学生认识到了一元二次方程的应用;•教学中通过多个具体的例子,帮助学生理解配方法的具体步骤和细节;•课堂练习与授课方式相结合,培养学生解决实际问题的能力。
2. 教学过程的不足本节课的不足主要如下:•教学时间有限,没有时间展开更加深入的练习;•教师在讲台上讲解的时间较长,需要更加关注学生的参与感和主动性。
九年级数学上册《用配方法求解一元二次方程》教案、教学设计
-鼓励学生在解题过程中,尝试不同的解题方法,培养创新思维和灵活运用知识的能力。
3.拓展作业:针对学有余力的学生,布置一些具有挑战性的题目,如涉及一元二次方程的根与系数关系的研究,或是一些开放性问题,激发学生的探究欲望和深入学习兴趣。
-鼓励学生提出不同的解题思路和方法,培养学生的创新思维和数学思维能力。
四、教学内容与过程
(一)导入新课
在导入新课时,我将利用学生已有的数学知识,通过以下方式激发学生的学习兴趣:
1.提问方式:复习一元二次方程的常见求解方法,如因式分解、公式法等,让学生回顾这些方法的原理和应用。
2.创设情境:以生活中的实际问题பைடு நூலகம்例,如“小明在计算一块矩形菜地的面积时,发现菜地的长度比宽度多2米,且面积是20平方米,请问他应该如何计算菜地的长度和宽度?”引导学生思考如何用已学的数学知识解决该问题。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习一元二次方程的积极性。
2.培养学生勇于探索、克服困难的意志品质,增强学生解决问题的自信心。
3.引导学生体会数学在解决实际问题中的应用价值,提高学生的数学素养。
4.培养学生的团队合作意识,让学生在合作中学会互相尊重、互相帮助。
本章节将通过生动的实例、丰富的教学活动,引导学生掌握配方法求解一元二次方程的知识与技能,培养学生在解决问题过程中的思维方法和情感态度,使学生在轻松愉快的氛围中学习数学,提高数学素养。
3.例题讲解:选取具有代表性的例题,逐步讲解如何运用配方法求解一元二次方程,让学生跟随解题过程,加深理解。
北师大版九年级数学上册《用公式法求解一元二次方程》第2课时示范公开课教学设计
第二章一元二次方程3 用公式法求解一元二次方程第2课时一、教学目标1.通过对学校荒地改造方案的设计,体会用一元二次方程解决实际问题的重要性.2.学会建立一元二次方程模型解决有关面积的问题.3.在解决问题的过程中进一步熟练用公式法解一元二次方程.4.能从题意中分析具体问题情境,发展学生逻辑推理核心素养能力.二、教学重难点重点:分析各图形面积之间的关系,找出等量关系,建立方程模型.难点:能根据具体问题的实际意义检验结果的合理性,对方程的解进行恰当的取舍.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计想一想,你会怎么设计这片荒地?看一看:下面几位同学的设计方法是否合理?小明的设计方案:如右图所示.其中花园四周小路的宽都相等.通过解方程, 得到小路的宽为2m或12m.解:设小路的宽为x m, 根据题意得:即x2- 14x + 24 = 0.解方程得x1 = 2 , x2 = 12.将x =12 不符合题意舍去.所以小路的宽为2m.结论:小明的这样设计是可行的,但是结果不能取小路的宽为12m.小亮的设计方案:如右图所示.其中花园每个角上的扇形都相同.问题:你能帮小亮计算一下这个扇形的半径是多少吗?解:设扇形半径为 x m, 根据题意得:216122x ⨯π=, 即 πx 2= 96.解方程得 x 1 =96 5.5≈π,x 2 =96-π(舍去). 所以扇形半径约为5.5m. 结论:小亮的设计方案是可行的. 小颖的设计方案:如右图所示.其中花园是两条互相垂直的小路,且它的宽都相等.问题:你能帮小颖计算一下图中x 吗? 解:设小路的宽为 x m, 根据题意得:()()161216122x x ⨯--= 即 x 2 - 28x + 96 = 0. 解方程得x 1 = 4 , x 2 = 24, x =24 不符合题意舍去. 所以小路的宽为4m.结论:小颖的设计方案是可行的. 【延伸】思考:你还有其他的设计方案吗? 预设:其他的设计方案:其他的设计方案不止这4种,可以充分调动学生的参与性,只要合理即可.并让学生试着自己验证这些方案的合理性?【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例如图,在一块长为92m ,宽为60m 的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为885m2的 6 个矩形小块,水渠应挖多宽?分析:动画演示:设水渠宽为x m,将所有耕地的面积拼在一起,变成一个新的矩形,长为(92 – 2x )m, 宽(60 -x)m.解:设水渠的宽应挖x m .(92-2x)(60 -x)= 6×885教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.在一幅长90 cm、宽40 cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金边的宽应该是多少?2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25 m),另三边用木栏围成,木栏长40 m.(1)鸡场的面积能达到180 m2吗?能达到200 m2吗?(2)鸡场的面积能达到250 m2吗?3.如图,圆柱的高为 15 cm ,全面积(也称表面积) 为 200 π cm 2,那么圆柱底面半径为多少?答案:1.解:设金色纸边的宽度是 x cm .()()409090240272%x x ⨯=++ 解得x 1=-70(舍去),x 2=5 所以,金色纸边的宽度是 5cm . 2.解: (1)设鸡场的宽为x m .由题意,得40 - 2x > 0,40 - 2x ≤ 25, 解得:7.5 ≤ x < 20.当鸡场的面积为180 m 2时,列方程得:x (40-2x )=180, 解得()121010,1010x x =+=-舍去, 即鸡场宽为 (1010+) m 时,鸡场面积达到 180 m 2.当鸡场的面积为200 m 2时,列方程得: x (40-2x )=200,解得 x 1=x 2=10.即鸡场宽为 10 m 时,鸡场面积达到 200 m 2. (2)当鸡场的面积为250 m 2时,列方程得:x (40-2x )=250,方程无解. 即鸡场面积达不到 250 m 2. 3.解: 设圆柱底面半径为 r cm .2πr 2+15×2πr = 200π 解得 r 1=-20(舍去),r 2=5. 所以,圆柱底面半径为 5 cm .思维导图的形式呈现本节课的主要内容:教科书第45页题2.6 第4题。
北师大版九年级上册数学2章《用配方法求解一元二次方程》教案
2.2用配方法求解一元二次方程第1课时用配方法解二次项系数为1的一元二次方程【学习目标】1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.【学习重点】会用配方法解二次项系数为1的一元二次方程.【学习难点】用配方法解二次项系数为1的一元二次方程的一般步骤.一、情景导入生成问题1.如果一个数的平方等于4,则这个数是±2.2.已知x2=9,则x=±3.3.填上适当的数,使下列等式成立.(1)x2+12x+36=(x+6)2;x2-6x+9=(x-3)2.二、自学互研生成能力知识模块一探索用配方法解二次项系数为1的一元二次方程的方法先阅读教材P36“议一议”的内容.然后完成下列问题:1.一元二次方程x2=5的解是x1=5,x2=-5.2.一元二次方程2x2+3=5的解是x1=1,x2=-1.3.一元二次方程x2+2x+1=5,左边配方后得(x+1)2=5,此方程两边开平方,得x+1=±5,方程的两个根为x1=-1+5,x2=-1-5.用配方法解二次项系数为1的一元二次方程的一般步骤是:(以解方程x2-2x-3=0为例) 1.移项:将常数项移到右边,得:x2-2x=3;2.配方:两边同时加上一次项系数的一半的平方,得:x2-2x+12=3+12,再将左边化为完全平方形式,得:(x-1)2=4;3.开平方:当方程右边为正数时,两边开平方,得:x-1=±2(注意:当方程右边为负数时,则原方程无解);4.化为一元一次方程:将原方程化为两个一元一次方程,得:x-1=2或x-1=-2;5.解一元一次方程,写出原方程的解:x1=__3__,x2=-1.归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.知识模块二应用配方法求解二次项系数为1的一元二次方程解答下列各题:1.填上适当的数,使等式成立.(1)x2+4x+4=(x+2)2;(2)x2-10x+25=(x-5)2.2.用配方法解方程:x2+2x-1=0.解:①移项,得x2+2x=1;②配方,得x2+2x+1=1+1,即(x+1)2=2;③开平方,得x+1=±2,即x+1=2或x+1=-2;④所以x1=-1+2;x2=-1-2.典例讲解:解方程:x2+8x-9=0.解:可以把常数项移到方程的右边,得:x2+8x=9.两边都加42(一次项系数8的一半的平方),得:即x2+8x+42=9+42,即(x+4)2=25.两边开平方,得:x+4=±5,即x+4=5,或x+4=-5.所以x1=1,x2=-9.对应练习:1.解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1; (4)x2+2x+2=8x+4.2.用配方法解方程x2-2x-1=0时,配方后得的方程为(D)A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=23.方程(x-2)2=9的解是(A)A.x1=5,x2=-1 B.x1=-5,x2=1C.x1=11,x2=-7 D.x1=-11,x2=7三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索用配方法解二次项系数为1的一元二次方程的方法知识模块二应用配方法求解二次项系数为1的一元二次方程四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_________________________________________2.存在困惑:_____________________________________第2课时用配方法解二次项系数不为1的一元二次方程【学习目标】1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣. 【学习重点】 用配方法解一般一元二次方程. 【学习难点】 用配方法解一元二次方程的一般步骤. 一、情景导入 生成问题1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( B ) A .加上32 B .加上94 C .减去32 D .减去942.解方程(x -3)2=8,得方程的根是( D )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±2 23.方程x 2-3x -4=0的两个根是x 1=4,x 2=-1.二、自学互研 生成能力知识模块一 探索用配方法解一般一元二次方程的方法先阅读教材P 38例2,然后完成下面的填空:用配方法解二次项系数不为1的一元二次方程的一般步骤是:(以解方程2x 2-6x +1=0为例)①系数化1:把二次项系数化为1,得x 2-3x +12=0;②移项:将常数项移到右边,得x 2-3x=-12;③配方:两边同时加上一次项系数的一半的平方,得:x 2-3x +⎝ ⎛⎭⎪⎫322=-12+94.再将左边化为完全平方形式,得:⎝ ⎛⎭⎪⎫x -322=74;;④开平方:当方程右边为正数时,两边开平方,得:x -32=±72(注意:当方程右边为负数时,则原方程无解);⑤解一次方程:得x =32±72,∴x 1=32+72,x 2=32-72.用配方法求解一般一元二次方程的步骤是什么?师生共同归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.知识模块二 应用配方法解一般一元二次方程解答下列各题:1.用配方法解方程3x 2-9x -32=0,先把方程化为x 2+bx +c =0的形式,则下列变形正确的是( D )A .x 2-9x -32=0B .x 2-3x -32=0C .x 2-9x -12=0D .x 2-3x -12=02.方程2x 2-4x -6=0的两个根是x 1=3,x 2=-1.典例讲解:1.解方程3x 2-6x +4=0.解:移项,得3x 2-6x =-4;二次项系数化为1,得x 2-2x =-43;配方,得x 2-2x +12=-43+12;(x -1)2=-13.因为实数的平方不会是负数,所以x 取任何实数时,(x -1)2都是非负数,上式不成立,即原方程无实数根.2.做一做:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?解:根据题意得15t -5t 2=10;方程两边都除以-5,得t 2-3t =-2;配方,得t 2-3t +⎝ ⎛⎭⎪⎫322=-2+⎝ ⎛⎭⎪⎫322;⎝ ⎛⎭⎪⎫t -322=14;t -32=±12;t =2,t 2=1;答:当t =2s 或t =1s 时,小球达到10米的高度. 对应练习:1.解下列方程:(1)3x 2-9x +2=0; (2)2x 2+6=7x ; (3)4x 2-8x -3=0.2.方程3x 2-1=2x 的两个根是x 1=-13,x 2=1.3.方程2x 2-4x +8=0的解是无实数解.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索用配方法解一般一元二次方程的方法知识模块二 应用配方法解一般一元二次方程四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________2.存在困惑:____________________________________________。
北师大版九年级数学上册第二章一元二次方程《用配方法求解一元二次方程》教案1
2.2 用配方法求解一元二次方程教案第1课时用配方法求解简单的一元二次方程活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:备注第2课时用配方法求解较复杂的一元二次方程课题第2课时用配方法求解较复杂的一元二次方程课型新授课教学目标1.会用配方法解二次项系数不为1的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.教学重点 用配方法求解一元二次方程. 教学难点 理解配方法. 教学方法 讲练结合法 教学后记教 学 内 容 及 过 程学生活动一、复习:1、什么叫配方法?2、怎样配方?方程两边同加上一次项系数一半的平方。
3、解方程:(1)x 2+4x+3=0 (2)x 2―4x+2=0 二、新授: 1、例题讲析:例3:解方程:3x 2+8x ―3=0分析:将二次项系数化为1后,用配方法解此方程。
解:两边都除以3,得: x 2+83x ―1=0移项,得:x 2+83x = 1配方,得:x 2+83 x+(43 )2= 1+(43 )2(方程两边都加上一次项系数一半的平方)(x+43 )2=(53 )2即:x+43 =±53所以x 1=13,x 2=―32、用配方法解一元二次方程的步骤: (1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根。
3、做一做:一小球以15m/s 的初速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系: h=15 t ―5t 2 小球何时能达到10m 高? 三、巩固:练习:P39随堂练习四、小结:用配方法解一元二次方程的步骤。
学生回答 演板由学生共同小结这节课我们利用配方法解决了二次项系数不为1或者(1)化二次项系数为1;(2)移项;(3)配方:(4)求根。
五、作业:课本P40习题2.4 1、2 板书设计:一次项系数不为偶数等较复杂的一元二次方程,由此我们归纳出配方法的基本步骤一、解方程二、做一做,读一读三、课时小结四、课后作业。
最新北师大版九年级数学上册2.2_用配方法求解一元二次方程教案(教学设计)
2.2 用配方法求解一元二次方程第1课时用配方法求解二次项系数为1的一元二次方程1.能根据平方根的意义解形如(x+m)2=n(n≥0)的方程.2.理解配方法,会用配方法求解二次项系数为1的一元二次方程.(重点)3.会用转化的数学思想解决有关问题.(难点)阅读教材P36~37,完成下列问题:(一)知识探究1.解一元二次方程的思路是将方程转化为(x+m)2=n的形式,它的一边是一个________,另一边是一个________,当n________时,两边同时开平方,转化为一元一次方程,便可得到方程的根是x1=________,x2=________.2.通过配成____________的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.3.用配方法求解二次项系数为1的一元二次方程的步骤:(1)移——移项,使方程左边为二次项和一次项,右边为________;(2)配——________,方程两边都加上________________的平方,使原方程变为(x+m)2=n的形式;(3)开——如果方程的右边是非负数,即n≥0,就可左右两边开平方得________;(4)解——方程的解为x=________.(二)自学反馈1.填上适当的数,使下列等式成立:(1)x2+12x+________=(x+6)2;(2)x2-4x+________=(x-________)2;(3)x2+8x+________=(x+________)2.2.(1)若x2=4,则x=________.(2)若(x+1)2=4,则x=________.(3)若x2+2x+1=4,则x=________.(4)若x2+2x=3,则x=________.3.解方程:x2-36x+70=0.活动1 小组讨论例1解下列方程:(1)x2=5; (2)2x2+3=5;(3)x2+2x+1=5; (4)(x+6)2+72=102.解:(1)方程两边同时开平方,得x1=5,x2=- 5.(2)移项,得2x2=2,即x2=1.方程两边同时开平方,得x1=1,x2=-1.(3)配方,得(x+1)2=5.方程两边同时开平方,得x+1=± 5.∴x1=-1+5,x2=-1- 5.(4)移项,得(x +6)2=102-72,即(x +6)2=51.方程两边同时开平方,得x +6=±51.∴x 1=-6+51,x 2=-6-51.例2 解方程:x 2+8x -9=0.解:可以把常数项移到方程的右边,得x 2+8x =9.两边都加上42(一次项系数8的一半的平方),得x 2+8x +42=9+42,即(x +4)2=25.两边开平方,得x +4=±5,即x +4=5,或x +4=-5.所以x 1=1,x 2=-9.活动2 跟踪训练1.用配方法解方程x 2-2x -1=0时,配方后得到的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=22.填空:(1)x 2+10x +________=(x +________)2;(2)x 2-12x +________=(x -________)2;(3)x 2+5x +________=(x +________)2;(4)x 2-23x +________=(x -________)2. 3.用直接开平方法解下列方程:(1)4x 2=81; (2)36x 2-1=0;(3)(x +5)2=25; (4)x 2+2x +1=4.4.用配方法解下列关于x 的方程:(1)x 2+2x -35=0; (2)x 2-8x +7=0;(3)x 2+4x +1=0; (4)x 2+6x +5=0.活动3 课堂小结1.用直接开平方法解形如(x +m)2=n(n ≥0)的方程可以达到降次转化的目的.2.用配方法解二次项系数为1的一元二次方程的步骤.3.用配方法解二次项系数为1的一元二次方程的注意事项.【预习导学】(一)知识探究1.完全平方式 常数 ≥0 -m +n -m -n 2.完全平方式 3.(1)常数项 (2)配方 一次项系数一半 (3)x +m =±n (4)-m ±n(二)自学反馈1.(1)36 (2)4 2 (3)16 42.(1)2,-2 (2)1,-3 (3)1,-3 (4)1,-33.可以把常数项移到方程的右边,得x 2-36x =-70.两边都加上(-18)2(一次项系数-36的一半的平方),得x 2-36x +(-18)2=-70+(-18)2,即(x -18)2=254.两边开平方,得x -18=±254,即x -18=254,或x -18=-254.所以x 1=18+254,x 2=18-254.【合作探究】活动2 跟踪训练1.D 2.(1)25 5 (2)36 6 (3)254 52 (4)19 133.(1)x 1=92,x 2=-92.(2)x 1=16,x 2=-16.(3)x 1=0,x 2=-10.(4)x 1=1,x 2=-3. 4.(1)x 1=5,x 2=-7.(2)x 1=1,x 2=7.(3)x 1=-2+3,x 2=-2- 3.(4)x 1=-1,x 2=-5.第2课时 用配方法求解二次项系数不为1的一元二次方程1.会用配方法求解二次项系数不为1的一元二次方程.(重点)2.会用转化的数学思想解决有关问题.(难点)阅读教材P38~39,完成下列问题:(一)知识探究1.用配方法求解二次项系数不为1的一元二次方程的步骤:(1)化——化二次项系数为________;(2)配——________,使原方程变为(x +m)2-n =0的形式;(3)移——移项,使方程变为(x +m)2=n 的形式;(4)开——如果n ≥0,就可左右两边开平方得________;(5)解——方程的解为x =________.(二)自学反馈1.某学生解方程3x 2-x -2=0的步骤如下:解:3x 2-x -2=0→x 2-13x -23=0,①→x 2-13x =23,②→(x -23)2=23+49,③→x -34=±103,④→x 1=2+103,x 2=2-103,上述解题过程中,最先发生错误的是( ) A .第①步 B .第②步C .第③步D .第④步2.解方程:2x 2+5x +3=0.活动1 小组讨论例 解方程:3x 2+8x -3=0.解:两边同除以3,得x 2+83x -1=0. 配方,得x 2+83x +(43)2-(43)2-1=0,即 (x +43)2-259=0. 移项,得(x +43)2=259. 两边开平方,得x +43=±53,即 x +43=53,或x +43=-53. 所以x 1=13,x 2=-3. 活动2 跟踪训练1.用配方法解下列方程时,配方有错误的是( )A .x 2-4x -1=0可化为(x -2)2=5B .x 2+6x +8=0可化为(x +3)2=1C .2x 2-7x -6=0可化为(x -74)2=9716D .9x 2+4x +2=0可化为(3x +2)2=22.将方程2x 2-4x -6=0化为a(x +m)2=k 的形式为____________.3.用配方法解方程:2x 2-4x -1=0.①方程两边同时除以2,得________;②移项,得________;③配方,得________;④方程两边开方,得________;⑤x 1=________,x 2=________.4.解下列方程:(1)3x 2+6x -5=0;(2)9y 2-18y -4=0.活动3 课堂小结1.用配方法解二次项系数不为1的一元二次方程的步骤.2.用配方法解二次项系数不为1的一元二次方程的注意事项.【预习导学】(一)知识探究1.(1)1 (2)配方 (4)x +m =±n (5)-m ±n(二)自学反馈1.B 2.两边同除以2,得x 2+52x +32=0.配方,得x 2+52x +(54)2-(54)2+32=0,即(x +54)2-116=0.移项,得(x +54)2=116.两边开平方,得x +54=±14,即x +54=14或x +54=-14.所以x 1=-1,x 2=-32. 【合作探究】活动2 跟踪训练1.D 2.2(x -1)2=8 3.①x 2-2x -12=0 ②x 2-2x =12 ③(x -1)2=32 ④x -1=62或x -1=-62 ⑤1+621-62 4.(1)x 1=263-1,x 2=-263-1.(2)y 1=1+133,y 2=1-133.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章一元二次方程
2 用配方法求解一元二次方程
第2课时
一、教学目标
1.会用配方法解二次项系数不为1的较复杂的一元二次方程.
2.能够熟练、灵活应用配方法解一元二次方程.
3.进一步经历用配方法解一元二次方程的过程,体会转化的数学的思想.
4.培养学生的数学意识,感受数学学习的价值.
二、教学重难点
重点:用配方法解二次项系数不为1的较复杂的一元二次方程.
难点:熟练、灵活的应用配方法解一元二次方程.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
思维导图的形式呈现本节课的主要内容:教科书第40页。