七年级上学期数学12月月考试卷第20套真题
-七年级上12月月考数学试题含答案.doc
七年级十二月份月考数学卷(满分120分,考试时间90分钟)班级姓名总分一、选择题(共10小题,每小题3分,满分30分)1、下列方程为一元一次方程的是( )A.y+3= 0 B.x+2y=3 C.x2=2x D.2、方程6x﹣8=8x﹣4的解是( )A.2 B.﹣2 C.6 D.﹣63、方程的解是()A. 1;B. 无数个;C. 0;D. 无解;4、某同学骑车从学校到家,每分钟行150米,某天回家时,速度提高到每分钟200米,结果提前5分钟到家,设原来从学校到家骑x分钟,则列方程为()A. 150x =200(x+5);B. 150x =200(x-5);C. 150(x+5) =200x;D. 150(x-5)=200x;5、下列说法正确的是()A. 棱柱的侧面可以是正方形,也可以是三角形。
B. 一个几何体的表面不可能只有曲面组成。
C. 棱柱的各条棱都相等。
D. 圆锥是由平面和曲面组成的几何体。
6、在墙壁上固定一根横放的木条不会摇动,则至少需要钉子的枚数是 ( )A.1枚 B.2枚 C.3枚 D.任意枚7、已知∠AOB=50°,∠COB=30°,则∠AOC等于()A. 80°;B.20°;C. 80°或20°;D. 无法确定;8、下列结论中,不正确的是()A.两点确定一条直线 B. 两点之间,直线最短C.等角的余角相等 D. 等角的补角相等9、下列作图语句正确的是()A. 延长线段AB到C,使AB=BC;B. 延长射线AB;C. 过点A作AB//CD//EF;D. 作AOB的平分线OC。
10、X+2X+3X+4X+5X+…………+97X+98X+99X+100X=5050,X的解是()A.0B.1C.-1D.10二、填空题(本大题6小题,每小题4分,共24分)11、如下图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的倍。
2020新人教七年级数学上册12月联考试题及答案 新教材 新大纲 练习 测试 模拟 复习 考试 期中 期末 中考.doc
2020新人教七年级数学上册12月联考试题及答案(本试卷满分120分,考试时间120分钟)一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的)1.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -2.若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3.两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定 4.据科学家估计,地球的年龄大约是4600 000 000年,这个数用科学记数法表示为( )A.4. 6×108 ;B. 46×108 ;C. 4.6×109 ;D. 0.46×1010. 5.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和 6.下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 7.已知yxxn m n m 2652与-是同类项,则( ) A 、1,2==y x B 、0,3==y x C 、1,23==y x D 、1,3==y x 8.若23(2)0m n -++=,则2m n +的值为( ) A .4-B .0C . 1-D .49.下列两个方程的解相同的是( )A .方程635=+x 与方程42=xB .方程13+=x x 与方程142-=x xC .方程021=+x 与方程021=+x D .方程5)25(36=--x x 与3156=-x x 10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时。
2019-2020年七年级数学上学期12月月考试卷(含解析) 苏科版(I)
2019-2020年七年级数学上学期12月月考试卷(含解析)苏科版(I) 一、精心选一选(本题共8小题,每小题3分,共24分)1.﹣的倒数是()A.﹣B. C.﹣2 D.22.下列算式中,运算结果为负数的是()A.﹣|﹣3| B.﹣(﹣2)3C.﹣(﹣5)D.(﹣3)23.江苏省的面积约为102600km2,这个数据用科学记数法表示为()A.1.026×106B.1.026×105C.1.026×104D.12.26×1044.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1 D.3a2b﹣3ba2=05.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.幸B.福C.扬D.州6.若关于x方程3x﹣a+2=0的解是x=1,则a的值为()A.1 B.﹣1 C.﹣5 D.57.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%C.54+x=20%×162 D.108﹣x=20%(54+x)8.古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则下列符合这一规律的等式是()A.20=4+16 B.25=9+16 C.36=15+21 D.40=12+28二、认真填一填(本题共10小题,每小题3分,共30分)9.比较大小:(填“<”、“=”、“>”)10.若3x m+5y3与x2y n的差仍为单项式,则m+n= .11.如图,两个图形分别是某个几何体的主视图和俯视图,则该几何体可能是.12.A,B是数轴上的两个点,AB=3,点A表示的数﹣3,点B表示的数.13.一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是.14.已知m、n互为相反数,p、q互为倒数,且a为最大的负整数,则代数式的值为.15.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.16.若关于a,b的多项式(a2+2ab﹣b2)﹣(a2+mab+2b2)中不含ab项,则m= .17.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为元.18.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n= .三、细心解一解(本题共10小题,共96分)19.计算:(1)(﹣+)×(﹣72)(2)﹣14﹣(1﹣)÷3×|﹣6|.20.已知(x﹣3)2+|y+2|=0,求:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.21.解方程:(1)11x﹣2(x﹣5)=4(2)﹣=﹣1.22.当m为何值时,关于x的方程3x+m=2x+7的解比关于x的方程4(x﹣2)=3(x+m)的解大9?23.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体可能的左视图.24.回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.25.“*”是新规定的这样一种运算法则:a*b=a2+2ab.比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x的值;(3)若(﹣2)*(1*x)=x+9,求x的值.26.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)27.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1= ;第二个图案的长度L2= ;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度L n(m)之间的关系;(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.28.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)xx学年江苏省扬州市仪征三中七年级(上)月考数学试卷(12月份)参考答案与试题解析一、精心选一选(本题共8小题,每小题3分,共24分)1.﹣的倒数是()A.﹣B. C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣2)×(﹣)=1,∴﹣的倒数是﹣2.故选:C.2.下列算式中,运算结果为负数的是()A.﹣|﹣3| B.﹣(﹣2)3C.﹣(﹣5)D.(﹣3)2【考点】正数和负数.【分析】将各选项结果算出,即可得出结论.【解答】解:A、﹣|﹣3|=﹣3;B、﹣(﹣2)3=8;C、﹣(﹣5)=5;D、(﹣3)2=9.故选A.3.江苏省的面积约为102600km2,这个数据用科学记数法表示为()A.1.026×106B.1.026×105C.1.026×104D.12.26×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于102600有6位,所以可以确定n=6﹣1=5.【解答】解:102 600=1.026×105.故选B.4.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1 D.3a2b﹣3ba2=0【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.幸B.福C.扬D.州【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“福”是相对面,“建”与“州”是相对面,“幸”与“扬”是相对面.故选D.6.若关于x方程3x﹣a+2=0的解是x=1,则a的值为()A.1 B.﹣1 C.﹣5 D.5【考点】一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:3﹣a+2=0,解得:a=5,故选D.7.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%.故选B.8.古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则下列符合这一规律的等式是()A.20=4+16 B.25=9+16 C.36=15+21 D.40=12+28【考点】规律型:数字的变化类.【分析】题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.【解答】解:根据题目中的已知条件结合图象可以得到任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,再观察出“三角形数”和“正方形数”的变化规律,可以再写出一个符合这一规律的等式:36=15+21,故选C.二、认真填一填(本题共10小题,每小题3分,共30分)9.比较大小:>(填“<”、“=”、“>”)【考点】有理数大小比较.【分析】先将绝对值去掉,再比较大小即可.【解答】解:∵=﹣=﹣, =﹣,∴>.10.若3x m+5y3与x2y n的差仍为单项式,则m+n= 0 .【考点】合并同类项.【分析】根据题意可得3x m+5y3与x2y n是同类项,根据同类项的定义可分别求出m,n的值,继而可求得m+n的值.【解答】解:∵3x m+5y3与x2y n的差仍为单项式,∴3x m+5y3与x2y n是同类项,∴,解得:,则m+n=﹣3+3=0.故答案为:0.11.如图,两个图形分别是某个几何体的主视图和俯视图,则该几何体可能是圆柱.【考点】由三视图判断几何体.【分析】如图,根据三视图,俯视图为一个圆,正视图是一个矩形,符合该条件的是圆柱体.【解答】解:正视图是矩形,俯视图是圆,符合这样条件的几何体应该是圆柱.故答案为:圆柱.12.A,B是数轴上的两个点,AB=3,点A表示的数﹣3,点B表示的数﹣6或0 .【考点】数轴.【分析】首先根据题意,在数轴上表示出点A,根据|AB|=3,就可得到B表示的数.【解答】解:由题意得,|AB|=3,即A,B之间的距离是3个单位长度,在数轴上到A的距离是3个单位长度的点有两个,分别表示的数是﹣6或0;故答案为:﹣6或0.13.一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2 .【考点】整式的加减.【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【解答】解:设这个整式为M,则M=x2﹣1﹣(﹣3+x﹣2x2),=x2﹣1+3﹣x+2x2,=(1+2)x2﹣x+(﹣1+3),=3x2﹣x+2.故答案为:3x2﹣x+2.14.已知m、n互为相反数,p、q互为倒数,且a为最大的负整数,则代数式的值为 2 .【考点】代数式求值;有理数;相反数;倒数.【分析】根据相反数的定义和倒数的定义得到m+n=0,pq=1,a=﹣1,然后利用整体思想计算.【解答】解:根据题意得m+n=0,pq=1,a=﹣1,所以原式=0+1﹣(﹣1)=2.故答案为2.15.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为20 .【考点】代数式求值.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.16.若关于a,b的多项式(a2+2ab﹣b2)﹣(a2+mab+2b2)中不含ab项,则m= 2 .【考点】整式的加减.【分析】原式去括号合并得到最简结果,根据结果不含ab项,求出m的值即可.【解答】解:原式=a2+2ab﹣b2﹣a2﹣mab﹣2b2=(2﹣m)ab﹣3b2,由结果不含ab项,得到2﹣m=0,解得:m=2.故答案为2.17.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为180 元.【考点】一元一次方程的应用.【分析】设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.【解答】解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.故答案是:180.18.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n= 10 .【考点】平移的性质.【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【解答】解:∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.故答案为:10.三、细心解一解(本题共10小题,共96分)19.计算:(1)(﹣+)×(﹣72)(2)﹣14﹣(1﹣)÷3×|﹣6|.【考点】有理数的混合运算.【分析】(1)根据乘法的分配律进行计算即可;(2)根据幂的乘方、有理数的乘除和减法进行计算即可.【解答】解:(1)==﹣40+27﹣28=﹣41;(2)=﹣1﹣=﹣1﹣1=﹣2.20.已知(x﹣3)2+|y+2|=0,求:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【解答】解:∵(x﹣3)2+|y+2|=0,∴x=3,y=﹣2,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2=﹣30+4=﹣26.21.解方程:(1)11x﹣2(x﹣5)=4(2)﹣=﹣1.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:11x﹣2x+10=4,移项合并得:9x=﹣6,解得:x=﹣;(2)去分母得:9x+3﹣5x+3=﹣6,移项合并得:4x=﹣12,解得:x=﹣3.22.当m为何值时,关于x的方程3x+m=2x+7的解比关于x的方程4(x﹣2)=3(x+m)的解大9?【考点】一元一次方程的解.【分析】分别解两个方程求得方程的解,然后根据关于x的方程3x+m=2x+7的解比关于x 的方程4(x﹣2)=3(x+m)的解大9,即可列方程求得m的值.【解答】解:解方程3x+m=2x+7,得x=7﹣m,解方程4(x﹣2)=3(x+m),得x=3m+8,根据题意,得7﹣m﹣(3m+8)=9,解得m=﹣.23.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体可能的左视图.【考点】作图-三视图.【分析】(1)左视图有两列,小正方形的个数分别是3,1;俯视图有两排,上面一排有4个小正方形,下面一排有2个小正方形;(2)根据题意可得此正方体应该添加在前排第2个小正方体上,进而可得左视图.【解答】解:(1)如图所示:;(2)添加后可得如图所示的几何体:,左视图分别是:.24.回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.【考点】展开图折叠成几何体;欧拉公式.【分析】(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)设这个多面体的面数为x,根据顶点数+面数﹣棱数=2,列出方程即可求解.【解答】解:(1)图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x,则x+x+8﹣50=2解得x=22.25.“*”是新规定的这样一种运算法则:a*b=a2+2ab.比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x的值;(3)若(﹣2)*(1*x)=x+9,求x的值.【考点】解一元一次方程;有理数的混合运算.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)已知等式利用题中的新定义计算,即可求出x的值;(3)已知等式利用题中的新定义计算,即可求出x的值.【解答】解:(1)根据题中的新定义得:原式=4﹣4=0;(2)根据题中的新定义化简得:4+4x=2,解得:x=﹣;(3)根据题中的新定义化简得:(﹣2)*(1+2x)=4﹣4(1+2x)=x+9,去括号得:4﹣4﹣8x=x+9,解得:x=﹣1.26.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【考点】一元一次方程的应用.【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【解答】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+(20﹣5×2)×8=280(元),∵288>280,∴选择乙商场购买更合算.27.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1= 0.9 ;第二个图案的长度L2= 1.5 ;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度L n(m)之间的关系;(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.【考点】规律型:图形的变化类.【分析】(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n个图案有花纹的地面砖有n 块;第一个图案边长3×0.3=L,第二个图案边长5×0.3=L,(2)由(1)得出则第n个图案边长为L=(2n+1)×0.3;(3)根据(2)中的代数式,把L为30.3m代入求出n的值即可.【解答】解:(1)第一图案的长度L1=0.3×3=0.9,第二个图案的长度L2=0.3×5=1.5;故答案为:0.9,1.5;(2)观察可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,…故第n个图案中有花纹的地面砖有n块;第一个图案边长L=3×0.3,第二个图案边长L=5×0.3,则第n个图案边长为L=(2n+1)×0.3;(3)把L=30.3代入L=(2n+1)×0.3中得:30.3=(2n+1)×0.3,解得:n=50,答:需要50个有花纹的图案.28.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:﹣26+t ;用含t的代数式表示点P和点C的距离:PC= 36﹣t(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有 2 处相遇,相遇时t= 24或30 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)【考点】一元一次方程的应用;数轴.【分析】(1)根据题意容易得出结果;(2)①需要分类讨论:Q返回前相遇和Q返回后相遇.②根据两点间的距离,要对t分类讨论,t不同范围,可得不同PQ.【解答】解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.-----如有帮助请下载使用,万分感谢。
12月七年级上月考数学试卷含答案解析
七年级(上)月考数学试卷(12月份)一.选择题:1.﹣5的相反数是()A.B.C.﹣5 D.52.下列为同类项的一组是()A.x3与23B.﹣xy2与yx2C.7与﹣D.ab与7a3.如图是由6个大小相同的正方体组成的几何体,它的左视图是()A. B. C.D.4.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是35.用代数式表示:“x的5倍与y的和的一半”可以表示为()A.B.C.x+y D.5x+y6.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定7.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种 B.4种 C.3种 D.2种8.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102二.填空题:9.比较大小:(填“<”、“=”、“>”)10.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为.11.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为千米.12.若x﹣3y=﹣2,那么3+2x﹣6y的值是.13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于.14.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为.15.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=.16.如图,是用若干个小立方块搭成的几何体的主视图和俯视图,则搭成这个几何体最少需要m个小立方块,最多需要n个小立方块,则2m﹣n=.17.一列代数式:2x;﹣4x;6x;﹣8x;…按照规律填写第n项是.18.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为.三、解答题(10题,共96分)19.(8分)计算:(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12004﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)].20.(8分)小敏在计算两个代数式M与N的和时.误看成求M与N的差.结果为3a2﹣ab.若M=5a2﹣4ab+b2,那么这道题的正确答案是什么?21.(8分)解下列方程:(1)2x﹣2=3x+5(2).22.(8分)有这样一道题目:“当a=0.35,b=﹣0.28时,求多项式7a3﹣3(2a3b ﹣a2b﹣a3)+(6a3b﹣3a2b)﹣(10a3﹣3)的值”.小敏指出,题中给出的条件a=0.35,b=﹣0.28是多余的,她的说法有道理吗?为什么?23.(9分)由大小相同的小立方块搭成的几何体,请在方格中画出该几何体的三视图.24.(9分)有理数x、y在数轴上对应点如图所示:(1)在数轴上表示﹣x、|y|;(2)试把x、y、0、﹣x、|y|这五个数从小到大“<”号连接起来;(3)化简|x+y|﹣|y﹣x|+|y|.25.(9分)某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?26.(12分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆、乙仓库调往B县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当总运费是900元时,从甲仓库调往A县农用车多少辆?27.(12分)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是;(3)求图4中所有圆圈中各数值之和.(写出计算过程)28.(13分)已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C 两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.2016-2017学年江苏省南京七年级(上)月考数学试卷(12月份)参考答案与试题解析一.选择题:1.﹣5的相反数是()A.B.C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列为同类项的一组是()A.x3与23B.﹣xy2与yx2C.7与﹣D.ab与7a【考点】同类项.【分析】根据同类项的定义回答即可.【解答】解:A、x3与23,不是同类项,故A错误;B、相同字母的指数不相同,不是同类项,故B错误;C、几个常数项也是同类项,故C正确;D、所含字母不同,不是同类项,故D错误.故选:C.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.3.如图是由6个大小相同的正方体组成的几何体,它的左视图是()A. B. C.D.【考点】简单组合体的三视图.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从物体左面看,是左边2个正方形,右边1个正方形.故选A.【点评】本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是3【考点】单项式.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.故选A.【点评】本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.用代数式表示:“x的5倍与y的和的一半”可以表示为()A.B.C.x+y D.5x+y【考点】列代数式.【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求倍数,然后求和,再求它的一半.【解答】解:和为:5x+y.和的一半为:(5x+y).故选B.【点评】列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”“一半”等,从而明确其中的运算关系,正确地列出代数式.6.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定【考点】二元一次方程组的解;二元一次方程的解.【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种 B.4种 C.3种 D.2种【考点】二元一次方程的应用.【分析】设住3人间的需要x间,住2人间的需要y间,根据总人数是17人,列出不定方程,解答即可.【解答】解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,所以有3种不同的安排.故选:C.【点评】此题主要考查了二元一次方程的应用,解答此题的关键是,根据题意,设出未知数,列出不定方程,再根据不定方程的未知数的特点解答即可.8.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102【考点】规律型:数字的变化类.【分析】先根据题中所给的规律,把式子中的1×2,2×3,…99×100,分别展开,整理后即可求解.注意:1×2=×(1×2×3).【解答】解:根据题意可知3×(1×2+2×3+3×4+…+99×100)=3×[×(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(99×100×101﹣98×99×100)]=1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4+…+99×100×101﹣98×99×100=99×100×101.故选:C.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.二.填空题:9.比较大小:>(填“<”、“=”、“>”)【考点】有理数大小比较.【分析】先将绝对值去掉,再比较大小即可.【解答】解:∵=﹣=﹣,=﹣,∴>.【点评】同号有理数比较大小的方法:都是负有理数,绝对值大的反而小.10.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为(+)x=1.【考点】由实际问题抽象出一元一次方程.【分析】假设工作量为1,初二学生单独工作,需要6小时完成,可知其效率为;初三学生单独工作,需要4小时完成,可知其效率为,则初二和初三学生一起工作的效率为(),然后根据工作量=工作效率×工作时间列方程即可.【解答】解:根据题意得:初二学生的效率为,初三学生的效率为,则初二和初三学生一起工作的效率为(),∴列方程为:()x=1.故答案为:( +)x=1.【点评】本题考查了由实际问题抽象出一元一次方程的问题,同时考查了学生理解题意的能力,解题关键是知道工作量=工作效率×工作时间,从而可列方程求出答案.11.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为 1.496×108千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:149 600 000=1.496×108,故答案为:1.496×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x﹣3y=﹣2,那么3+2x﹣6y的值是﹣1.【考点】代数式求值.【分析】等式x﹣3y=﹣2两边同时乘以2得到2x﹣6y=﹣4,然后代入计算即可.【解答】解:∵x﹣3y=﹣2,∴2x﹣6y=﹣4.∴原式=3+(﹣4)=﹣1.故答案为:﹣1.【点评】本题主要考查的是求代数式的值,利用等式的性质求得2x﹣6y=﹣4是解题的关键.13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于﹣1.【考点】方程的解.【分析】使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于m的一元一次方程,从而可求出m的值.【解答】解:根据题意得:4+3m﹣1=0解得:m=﹣1,故答案为:﹣1.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于m 字母系数的方程进行求解,注意细心.14.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为8.【考点】整式的加减—化简求值.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:当x=3时,原式=2※3﹣4※3=9﹣(4﹣3)=9﹣1=8,故答案为:8【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=﹣4.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“1”相对,面“b”与面“3”相对,“2”与面“﹣2”相对.因为相对面上两个数都互为相反数,所以a=﹣1,b=﹣3,故a+b=﹣4.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.16.如图,是用若干个小立方块搭成的几何体的主视图和俯视图,则搭成这个几何体最少需要m个小立方块,最多需要n个小立方块,则2m﹣n=4.【考点】由三视图判断几何体.【分析】根据几何体的主视图和俯视图,在俯视图上标记每个位置正方体可能的个数,计算和即可.【解答】解:由题意得:如图1,搭成这个几何体最多需要:n=2+2+2+1+1=8,如图2,搭成这个几何体最少需要:m=2+1+1+1+1=6,∴2m﹣n=2×6﹣8=4,故答案为:4.【点评】本题考查了由三视图判断几何体的个数,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.17.一列代数式:2x;﹣4x;6x;﹣8x;…按照规律填写第n项是(﹣1)n+12nx.【考点】单项式.【分析】根据单项式的系数是正负间隔出现,系数的绝对值等于该项数的2倍,由此规律即可解答.【解答】解:∵一列代数式:2x;﹣4x;6x;﹣8x;…∴第n项是(﹣1)n+12nx.故答案为:(﹣1)n+12nx.【点评】本题考查的是单项式,此题属规律性题目,根据题意找出规律是解答此题的关键.18.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为2小时或2.5小时.【考点】一元一次方程的应用.【分析】设t时后两车相距50千米,分为两种情况,两人在相遇前相距50km和两人在相遇后相距50千米,分别建立方程求出其解即可.【解答】解:设t时后两车相距50千米,由题意,得450﹣120t﹣80t=50或10t+80t﹣450=50,解得:t=2或2.5.故答案为:2小时或2.5小时.【点评】本题考查了列一元一次方程解实际问题的运用,分类讨论思想的运用,由行程问题的数量关系建立方程是关键.三、解答题(10题,共96分)19.计算:(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12004﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)].【考点】有理数的混合运算.【分析】(1)原式先计算绝对值及乘法运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣6+1=5﹣6=﹣1;(2)原式=﹣1+10﹣2=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.小敏在计算两个代数式M与N的和时.误看成求M与N的差.结果为3a2﹣ab.若M=5a2﹣4ab+b2,那么这道题的正确答案是什么?【考点】整式的加减;合并同类项;去括号与添括号.【分析】因为M﹣N=3a2﹣ab.且M=5a2﹣4ab+b2,所以先可以求出N,再进一步求出M+N.【解答】解:∵M﹣N=3a2﹣ab.且M=5a2﹣4ab+b2,∴N=M﹣(3a2﹣ab),∴M+N=2M﹣(3a2﹣ab),=7a2﹣7ab+2b2.【点评】解决此类问题的关键是弄清题意,利用整式的加减运算,逐步求解.注意去括号时,如果括号前是正号,括号里的各项不变号;括号前是负号,括号里的每一项都要变号.合并同类项时,只把系数相加减,字母与字母的指数不变.21.解下列方程:(1)2x﹣2=3x+5(2).【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,化系数为1即可;(2)先去分母,再去括号,移项,然后合并同类项,化系数为1即可.【解答】解:(1)移项得,2x﹣3x=5+2,合并同类项得,﹣x=7,化系数为1得,x=﹣7;(2)去分母得,2(2x+1)﹣(5x﹣1)=6,去括号得,4x+2﹣5x+1=6,移项得,4x﹣5x=6﹣2﹣1,合并同类项得,﹣x=3,化系数为1得,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.22.有这样一道题目:“当a=0.35,b=﹣0.28时,求多项式7a3﹣3(2a3b﹣a2b﹣a3)+(6a3b﹣3a2b)﹣(10a3﹣3)的值”.小敏指出,题中给出的条件a=0.35,b=﹣0.28是多余的,她的说法有道理吗?为什么?【考点】整式的加减—化简求值.【分析】先化简多项式,再看结果是否为一个常数即可.注意先去括号,再合并同类项.【解答】解:有道理.7a3﹣3(2a3b﹣a2b﹣a3)+(6a3b﹣3a2b)﹣(10a3﹣3)=7a3﹣6a3b+3a2b+3a3+6a3b﹣3a2b﹣10a3+3=(7+3﹣10)a3+(﹣6+6)a3b+(3﹣3)a2b+3=3;因为此式的值与a、b的取值无关,所以小敏说的有道理.【点评】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,是各地中考的常考点.23.由大小相同的小立方块搭成的几何体,请在方格中画出该几何体的三视图.【考点】作图-三视图.【分析】根据主视图、俯视图以及左视图观察的角度分别得出图形即可.【解答】解:根据题意画图如下:【点评】此题考查了作图﹣三视图,从不同方向观察问题和几何体,锻炼了学生的空间想象力和抽象思维能力.24.有理数x、y在数轴上对应点如图所示:(1)在数轴上表示﹣x、|y|;(2)试把x、y、0、﹣x、|y|这五个数从小到大“<”号连接起来;(3)化简|x+y|﹣|y﹣x|+|y|.【考点】数轴;绝对值;有理数大小比较.【分析】(1)根据绝对值的定义在数轴上表示出即可;(2)根据数轴上的数右边的总比左边的大,按照从左到右的顺序排列;(3)先求出(x+y),(y﹣x)的正负情况,然后根据绝对值的性质去掉绝对值号,再合并同类项即可得解.【解答】解:(1)如图,;(2)根据图象,﹣x<y<0<|y|<x;(3)根据图象,x>0,y<0,且|x|>|y|,∴x+y>0,y﹣x<0,∴|x+y|﹣|y﹣x|﹢|y|,=x+y+y﹣x﹣y,=y.【点评】本题考查了数轴与绝对值的性质,有理数大小的比较,熟记数轴上的数,右边的总比左边的大是解题的关键.25.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?【考点】一元一次方程的应用.【分析】(1)设每件服装的标价是x元,若每件服装如果按标价的六折出售将亏10元,此时成本价为60%x+10元;若按标价的七五折出售将赚50元,此时成本价为:75%x﹣50元,由于对于同一件衣服成本价是一样的,以此为等量关系,列出方程求解;(2)由(1)可得出每件衣服的成本价为:60%x+10元,将(1)求出的x的值代入其中求出成本价;(3)设最多可以打y折,则令400×=成本价,求出y的值即可.【解答】解:(1)设每件服装的标价是x元,由题意得:60%x+10=75%x﹣50解得:x=400所以,每件衣服的标价为400元.(2)每件服装的成本是:60%×400+10=250(元).(3)为保证不亏本,设最多能打y折,由题意得:400×=250解得:y=6.25所以,为了保证不亏本,最多可以打6.25折.答:每件服装的标价为400元,每件衣服的成本价是250元,为保证不亏本,最多能打6.25折.【点评】本题考查的一元一次方程的应用,等价关系是:两种不同情况下的成本价相等,为保证不亏本,使得标价×所打折数=成本价.26.(12分)(2016秋•南京月考)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车(12﹣x)辆,乙仓库调往A县农用车(10﹣x)辆、乙仓库调往B县农用车(x﹣4)辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当总运费是900元时,从甲仓库调往A县农用车多少辆?【考点】一元一次方程的应用;列代数式.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)根据等量关系:总运费=900元,列出方程求解即可.【解答】解:(1)若从甲仓库调往A县农用车x辆,则甲仓库调往B县农用车(12﹣x)辆,A县需10辆车,故乙仓库调往A县农用车(10﹣x)辆、乙仓库调往B县农用车(x﹣4)辆,(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)依题意有﹣20x+1060=900,解得x=8.答:从甲仓库调往A县农用车多辆.故答案为:(12﹣x),(10﹣x),(x﹣4).【点评】此题考查了一元一次方程的应用,本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.27.(12分)(2016秋•南京月考)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是79;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是67;(3)求图4中所有圆圈中各数值之和.(写出计算过程)【考点】规律型:图形的变化类.【分析】(1)13层时最底层最左边这个圆圈中的数是第12层的最后一个数加1;(2)首先计算圆圈的个数,用﹣23+数的个数减去1就是最底层最右边圆圈内的数;(3)利用(2)把所有数的绝对值相加即可.【解答】解:(1)当有13层时,图3中到第12层共有:1+2+3+…+11+12=78个圆圈,最底层最左边这个圆圈中的数是:78+1=79;(2)图4中所有圆圈中共有1+2+3+…+13==91个数,最底层最右边圆圈内的数是﹣23+91﹣1=67;(3)图4中共有91个数,其中23个负数,1个0,67个正数,所以图4中所有圆圈中各数的和为:|﹣23|+|﹣22|+…+|﹣1|+0+1+2+…+67=(1+2+3+...+23)+(1+2+3+ (67)=276+2278=2554.故答案为:(1)79;(2)67.【点评】此题主要考查了图形的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法.28.(13分)(2013秋•南长区期末)已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C 两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【考点】一元一次方程的应用;数轴.【分析】(1)可设x秒后甲与乙相遇,根据甲与乙的路程差为34,可列出方程求解即可;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,分甲应为于AB或BC 之间两种情况讨论即可求解;(3)分①原点O是甲蚂蚁P与乙蚂蚁Q两点的中点;②乙蚂蚁Q是甲蚂蚁P 与原点O两点的中点;③甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,三种情况讨论即可求解.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙在数轴上的﹣10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40,解得y=5.①甲从A向右运动2秒时返回,设y秒后与乙相遇.此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣24+4×2﹣4y;乙表示的数为:10﹣6×2﹣6y,依据题意得:﹣24+4×2﹣4y=10﹣6×2﹣6y,解得:y=7,相遇点表示的数为:﹣24+4×2﹣4y=﹣44(或:10﹣6×2﹣6y=﹣44),②甲从A向右运动5秒时返回,设y秒后与乙相遇.甲表示的数为:﹣24+4×5﹣4y;乙表示的数为:10﹣6×5﹣6y,依据题意得:﹣24+4×5﹣4y=10﹣6×5﹣6y,解得:y=﹣8(不合题意舍去),即甲从A向右运动2秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣44.(3)①设x秒后原点O是甲蚂蚁P与乙蚂蚁Q两点的中点,则24﹣12x=10﹣6x,解得x=;②设x秒后乙蚂蚁Q是甲蚂蚁P与原点O两点的中点,则24﹣12x=2(6x﹣10),解得x=;③设x秒后甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,。
七年级上册数学12月月考试卷(有答案)
2019年七年级上册数学12月月考试卷(有答案) 以下是查字典数学网为您推荐的2019年七年级上册数学12月月考试卷(有答案),希望本篇文章对您学习有所帮助。
2019年七年级上册数学12月月考试卷(有答案)数学科试卷注:l、本卷共4页,满分:100分,考试时间:90分钟;2、解答写在答题卷上,监考教师只收答题卷。
一、选择题(10小题,每小题3分,共30分、每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的圆括号内、)1、假如收入300元记作+300元,那么支出180元记作()、A、+180元B。
﹣80元 C、 +80元 D。
﹣180元2。
某市2月份某天的最高气温是15℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是()。
A、-12℃B。
18℃ C、-18℃ D、12℃3、用一个平面去截一个几何体,截面是三角形,这个几何体不估计是( )A、三棱柱B、正方体C、圆锥D、圆柱4、如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC的长等于( )A、2cmB、4cm C。
8cm D、13cm5。
假如代数式与是同类项,那么m的值是( )A、0B。
1 C。
D、36、如图,在数轴上点A表示的数估计是()A、﹣2B、-2、5C、—3、5 D、﹣2。
97、如图,将正方体的平面展开图重新折成正方体后,岛字对面的字是( )A、钓B、属 C。
中D、国8、有资料表明,被称为地球之肺的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为( )A。
B、C、 D、9、2时30分,时针与分针所夹的锐角是( )A、 B。
C、 D、10、观察下列算式: , 依照上述算式中的规律,您认为的末位数字是( )。
A、2 B、4 C、6 D。
8二、填空题(5小题,每小题3分,共15分。
)11、单项式的系数为________________。
12、比较大小: (用、或=填写)13、如图,不同的角的个数共有___________个、14、把一根木条固定在墙上,至少要钉2颗钉子,这是依照。
武汉市XX中学2020学年人教版七年级上12月月考数学试题含答案
武汉市XX 中学2020学年上学期12月月考七年级数学试题一、 选择题(10×3′=30)请将下列各题唯一正确的答案进行填涂 1、-2的倒数是( )A 、2B 、-1/2C 、1/2D 、-22、科学家发现,距离银河系约2500000光年之遥远的仙水星正在向银河系靠近,其中2500000用科学记数法表示为( )A 、0.25×107B 、2.5×106C 、2.5×107D 、25×1063、立方是它本身的数是( )A 、1B 、0C 、-1D 、1,-1,0 4、下列计算正确的是( )A 、5a+2a=7a 2B 、5a-2a=3C 、5a-2a=3aD 、-ab+2ab 2=ab 25、从三个不同的方向看一个几何体,得到地平面图形如下图所示,则这个几何体是( )从正面看 从左面看 从上面看 A 、圆柱 B 、圆锥 C 、棱锥 D 、球 6、若2是关于x 的方程121-=+a x 的解,则a 的值为( ) A 、0 B 、2 C 、-2 D 、-6 7、利用等式性质变形正确的是( ) A 、若ab=ac ,则b=c B 、若a=b ,则1122+=+c bc a C 、若aca b =两边都除以a ,可得b=c D 、若S=ab ,则b=as8、某校初中一年级举行数学竞赛,参加的人数是未参加的人数的3倍,如果该年级学生数减少6人,未参加的学生数增加6个,那么参加与未参加竞赛的人数之比为2:1,求未参加的人数,设未参加的人数为x 人,以下方程正确的是( ) A 、(x+6)+2(x+6)=(x+3x)-6 B 、(x-6)+2(x-6)=(x+3x)+6C 、(x+6)+3(x+6)=(x+2x)-6D 、(x+6)+3(x+3x)=(x+3x)+69、如图线段AB=9,C 、D 、E 分别为线段AB (端点A 、B 除外)上顺次三个不同的点,图中所有的线段和等于46,则下列结论一定成立的是( )A 、CD=3B 、DE=2C 、CE=5 EB=510、点M 、N 、P 和原点O 在数轴上的位置如图所示,点M 、N 、P 对应的数为a 、b 、c (对应顺序暂未确定),如果 ab <0,a+b >0,ac >bc ,那么表示数b 的点为( ) A 、点M B 、点N C 、点P D 、点O 二、填空题(6×3′=18)请将下列各题中的正确答案填写在相应的空格处11、如果收入100元记作+100元,那么支出70元记作 12、钟面上下午2点10分,时针与分针的夹角是 度。
2019-2020学年湖北省武汉市华中师大一附中七年级(上)月考数学试卷(12月份)
故,方程 = 的解为 或
(1)解方程: = ;
(2)已知 = ,求 的值;
(3)在(2)的条件下,若 , 都是整数,则 的最大值是________(直接写结果,不需要过程).
年 月 日,军运会闭幕,军运村对武汉市民正式销售,此楼盘开盘均价 元 ,为了加快资金回笼,房地产开发商决定将价格下调 对外销售,并在此基础上再给子以下三种优惠方案供客户选择:
A. 个B. 个C. 个D. 个
二、填空题(本大题共6小题,每小题3分,共18分)
已知: = 是关于 的一元一次方程,则 的值为________.
从左到右,第 个图形由 个圆点组成;第 个图由 个圆点组成;第 个图由 个圆点组成;……;按照此规律,第 个图形中圆点个数为________.
已知关于 的方程 与 的解集相同,则 的值是________.
(2)某客户准备购买其中一套 的房子,如果该客户有能力一次性付清所有房费,请问他该选择哪种付款方案更优惠?
已知数轴上,一动点 从原点 出发,沿数轴以每秒 个单位长度的速度来回移动,其移动的方式是:先向右移动 个单位长度,再向左移动 个单位长度,又向右移动 个单位长度,再向左移动 个单位长度,又向右移动 个单位长度….
2019-2020学年湖北省武汉市华中师大一附中七年级(上)月考数学试卷(12月份)
一、选择题(本大题共10小题,每题3分,共30分)
1. 年 月 日,某位华师一附中高一年级的同学测得厚德广场处的气温为 ,当时他所在教室的气温是 ,比 低 的温度是 .
A. B. C. D.
2.下列整式中: , , , , , , , ,单项式有 个,则 的值为()
A. B. C. D.
湖北省武汉市部分学校2023-2024学年七年级上学期12月月考数学试卷(含解析)
武汉市部分学校2023-2024学年12月七年级数学试题一、选择题(共10小题,每小题3分,共30分)1. 在0,﹣2,1,﹣3这四个数中,最小的数是( )A. ﹣3B. 1C. ﹣2D. 02. 下列各组中的两个单项式为同类项的是()A. 和B. 和C. 和D. 和3. 根据等式的性质,下列变形正确的是()A. 如果,那么B. 如果,那么C. 如果,那么D. 如果,那么4. 将数45300000用科学记数法表示为()A. B. C. D.5. 下列说法正确的是( )A. 的常数项是1B. 0不是单项式C. 的次数是3D. 的系数是,次数是36. 已知关于的方程的解是,则的值为( )A. B. C. D.7. 下列结论:①若,则;②若,则;③若,则;④若,则,正确的有( )A. 1个B. 2个C. 3个D. 4个8. 把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x名学生,则可列方程为()A. 3x+20=4x-25B. 3x-20=4x+25C. =D. =9. 数轴上,有理数a、b、-a、c的位置如图,则化简的结果为()A. B. C. D.10. 已知关于的一元一次方程的解为,则关于的一元一次方程的解为()A. B. C. D.二、填空题(共6小题,每小题3分,共18分)11. ﹣的倒数是_____.12. 计算:_____.13. 代数式3x2﹣4x+6的值为9,则x2﹣+6的值为_______________14. 某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.15. 点A、B在数轴上对应的数分别为,满足,点P在数轴上对应的数为,当=_________时,.16. 有一列数,按一定规律排列成:、、、、、、….其中某三个相邻数和是,则这三个数中,中间的一个数为______.三、解答题(共8小题,共72分)17. 计算(1)(2).18. 解方程:(1);(2).19. 先化简,再求值:若,求的值.20. 某校组织七年级()班学生分成甲、乙两队参加社会劳动实践,其中甲队人数是乙队人数的倍,后因劳动需要,从甲队抽调人支援乙队,这时甲队人数是乙队人数的一半,则甲、乙两队原来各有多少人?21.(8分)已知:a与﹣2b互为相反数,﹣a与﹣3c互为负倒数,d是任何正偶数次幂都等于本身的数,设m=4a﹣8b﹣3ac+d2,求:3m2﹣[7m﹣(4m﹣3)﹣2m2]的值.22. 某中学库存若干套桌椅,准备修理后支援贫困山区学校。
武汉XX中学2020—2021学年七年级上12月联考数学试卷含答案
武汉XX 中学2020—2021学年七年级上12月联考数学试卷含答案(试卷满分:120分)一、选择题(每小题3分,共30分) 1.2-的倒数是( )A.2B.-2C.±2D.122.下列是关于x 的一元一次方程的是( ) A.x (x -1)= x B. x +1x=2 C.x =1 D.x +2 3.钓鱼岛是中国固有的领土,位于中国东海,其邻近海域,不仅蕴藏有大量石油资源,在其他方面也有庞大的经济价值.钓鱼岛周围海域面积约为17万平方公里,数17万用科学计数法表示为( ) A.41710⨯ B.51.710⨯ C.61.710⨯ D.71.710⨯4.下列运算结果正确的是( )A.5a -3a =2B.22223x y xy x y -+=C.243x x x -=D.2226612a b a b a b --=-5.若12512'∠=︒,225.12∠=︒,325.2∠=︒,则下列结论正确的是( ) A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠1=∠2=∠36.如图,是由8个相同的小立方体搭成的几何体,已知它的左视图如下,请选出它正确的俯视图( )左视图:A.B.C.D.7.一个锐角的补角是它的余角的3倍,则那个锐角的大小为( ) A.30° B.45° C.60° D.75°8.如图,若CB =4,DB =7,且D 是AC 的中点,则AC 的长为( ) A.3 B.6 C.9 D.119.下列说法正确的有( )句.①两条射线组成的图形叫做角;②同角的补角相等;③若AC =BC ,则C 为线段AB 的中点;④线段AB 确实是点A 与点B 之间的距离;⑤平面上有三点A 、B 、C ,过其中两点的直线有三条或一条. A.0 B.1 C.2 D.310.如图,直线AB 、CD 交于点O ,∠AOE =90°,∠DOF =90°,OB 平分∠DOG ,则下列结论:①图中,∠DOE 的余角有四个;②∠AOF 的补角有2个;③OD 为∠EOG 的角平分线;④∠COG =∠AOD -∠EOF 中正确的是( )A.①②④B.①③④C.①④D.②③④GBDEFAC O二、填空题(每小题3分,共18分)11.(1)38.3°=38°________;(2)48°39+67°21=_______;(3)90°-70°39=_________.12.如图,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画6条不同射线,可得锐角____________个.A OB COA BC DC A BD E O13.二中广雅初三年级每天下午放学时刻为17:20分,则那个时刻时针与分针的夹角度数是_____________________度.14.已知:点A 、B 、C 在同一直线上,若AB =12cm ,BC =4cm ,且满足D 、E 分别是AB 、BC 的中点,则线段DE 的长为_____________cm .15.某商品进价为50元,若按标价的8折出售仍可获利20%,则按标价出售可获利__________元. 16.从O 点引三条射线OA 、OB 、OC ,若∠AOB =120°,且∠AOC =∠BOC ,则∠BOC =__________.三、解答题(72分) 17.(7分)解方程:21123x x -+-=18.(7分)先化简,再求值.222(3)a b ab -223(12)3ab a b -+--,其中2a =-,12b =.19.(8分)列一元一次方程解应用题为了迎接校运动会,排好入场式,初一某班安排几名同学手持鲜花,他们买了一束鲜花,但是分配时出了问题:假如一人分6枝,则多了3枝;假如一人分8枝,则有一名同学只能分到3枝.请问本班安排了几名同学手持鲜花,这束鲜花共有多少枝?20.(8分)如图,已知AB :BC :CD =2:3:4,E 、F 分别为AB 、CD 中点,且EF =15.求线段AD 的长.FBD21.(10分)如图,OC 是∠AOB 内的一条射线,OD 、OE 分别平分∠AOB 、∠AOC . (1)若∠DOE =45°,求∠BOC 的度数; (2)若∠DOE =m °,求∠BOC 的度数.ABEDC22.(10分)已知关于a 的方程12a +2=2(a -5)的解是关于x 的方程2(x -3)-b =-1的2倍.(1)求a 、b 的值;(2)若线段AB =a ,在直线AB 上取一点P ,恰好使APb BP=,点E 为PB 的中点,求AE 的长.23.(10分)大学毕业生小李自主创业,在家乡A 县承包一片荒山种植水果,今年水果大丰收.需将丰收的水果运往B 市销售. 现有两种运输工具,汽车运输和火车运输,在运输过程中的损耗均为每小时150元,其它要紧参考数据如下表:(1)若A 县与B 市的路程为x 千米,则用火车运输的总费用1W =________________,用汽车运输的总费用为2W =_________________________;(总运费=运输费+损耗费+装卸费) (2)假如汽车运输总费用比火车运输总费用多1600,求A 县与B 市之间的路程为多少? (3)假如小李想将这批水果运往C 市销售,选择哪种运输工具比较合算?请说明你的理由.24.(12分)如图,已知直线l 有两条能够左右移动的线段:AB =m ,CD =n ,且m ,n 满足4m -+2(8)n -=0.(1)求线段AB ,CD 的长;lAB C D(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN =4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N 分别为AB 、CD 中点,BC =24,在线段AB 向右运动的某一个时刻段t 内,始终有MN +AD 为定值.求出那个定值,并直截了当写出t 在那一个时刻段内.M NlABCD参考答案1D 2C 3B 4D 5C 6A 7B 8B 9C 10C 二、填空题11.18′ ,116°,19°21′ 12.28 13.40° 14.4或8 15.2516.60°或120° 三、解答题17.14=x18.2120651222=--ab b a 19.解:设本班安排了x 名同学手持鲜花,依题意有 6x+3=8(x-1)+3, 解得x=4, 6x+3=27.故这束鲜花共有27枝.20.21.22、23、答案略24、(1)AB=4 ,CD=8(2)若6秒后,M’在点N’左边时由MN+NN’=MM’+M’N’2+4+BC+6X1=6X4+4BC=16若6秒后,M’在点N’右边时MM’=MN+NN’+M’N’6X4=2+BC+4+6X1+4BC=8 (3)运动t 秒后 t AD t MN 436,430-=-= 当5.70 t ≤时 t AD MN 866-=+6,95.7=+≤≤AD MN t 当6689-=+≥t AD MN t 时,当∴ 为定值当AD MN t +≤≤,95.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上学期数学12月月考试卷
一、单选题
1. 下列各度数的角,不能通过拼摆一副三角尺直接画出的是()
A . 15°
B . 75°
C . 105°
D . 130°
2. 若单项式2x3y2m与﹣3xny2的差仍是单项式,则m+n的值是()
A . 2
B . 3
C . 4
D . 5
3. 如图是一个正方体的平面展开图,把展开图折成正方体后,和“美”字一面相对面的字是
A . 丽
B . 辉
C . 县
D . 市
4. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()
A . 垂线段最短
B . 经过一点有无数条直线
C . 两点之间,线段最短
D . 经过两点,有且仅有一条直线
5. ﹣的相反数是()
A . ﹣
B .
C . ﹣2
D . 2
6. 下列计算正确的是
A .
B . ﹣2=﹣2a+b
C . 5a﹣4a=1
D .
7. 下列说法中正确的是()
A . 若|a|=﹣a,则a 一定是负数
B . 单项式x3y2z 的系数为1,次数是6
C .
若AP=BP,则点P 是线段AB 的中点D . 若∠AOC= ∠AOB,则射线OC 是∠AOB 的平分线
8. 截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学记数法表示为()
A . 1.12×105
B . 1.12×106
C . 1.12×107
D . 1.12×108
9. 如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()
A . 135°
B . 155°
C . 125°
D . 145°
10. 如图,在同一直线上顺次有三点A,B,C,点M是线段AC的中点,点N是线段BC的中点,若想求出MN的长度,那么只需知道条件()
A . AM=5
B . AB=12
C . BC=4
D . CN=2
二、填空题
11. 写出一个只含有字母x的二次三项式________.
12. 在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC 的度数为________.
13. 已知∠α=25°34′20″,则∠α的余角度数是________.
14. 某校下午第一节2:30 下课,这时钟面上时针与分针的夹角是________度.
15. 某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B 的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x ﹣y,那么原来的A﹣B的值应该是________.
16. 如图,A、O、B 在同一条直线上,如果OA 的方向是北偏西25°那么OB 的方向是南偏东________.
17. 用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体________个。
18. 如图,直线l∥m,点A在直线l上,点C在直线m上,且有AB⊥BC,∠1=40°,则∠2=________度.
19. 有一个正六面体骰子放在桌面上,将骰子沿如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2018次后,骰子朝下一面的数字是________.
三、解答题
20. 如图,请在横线上画一个角,这个角与图中的角互为补角.
21. 计算
(1)﹣22×(﹣3)2﹣[5×(﹣3)+(﹣1)3]
(2)﹣1 ÷(﹣4 + )×(﹣3 )+|﹣|
22. 先化简,再求值:3(x2﹣2xy)﹣2[ xy﹣1+ (﹣xy+x2)],其中x=﹣4,y= .
23. 一个立体图形的三视图如下图,判断这个立体图形是什么?并求这个立体图形的体积.(计算结果保留π)
24. 如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.
25. 如图,直线AB∥CD,直线EF 与AB 相交于点P,与CD 相交于点Q,且PM⊥EF,若∠1=68°,求∠2 的度数.
26. 如图BC∥DE,∠B=∠D,AB 和CD 平行吗?填空并写出理由.
解:AB∥CD,理由如下:
∵BC∥DE(________)
∴∠D=∠________(________)
∵∠D=∠B(________)
∴∠B=(________)(________)
∴AB∥CD(________)
27. 将一三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图1,若∠BOD=35°,则∠AOC=________°;若∠AOC=135°,则∠BOD=________°;
(2)如图2,若∠AOC=140°,则∠BOD=________°;
(3)猜想∠AOC与∠BOD的大小关系,并结合图1说明理由;
(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由。