区间估计与假设检验的联系与区别讲义资料

合集下载

区间估计和假设检验

区间估计和假设检验
参数估计
在回归分析中,区间估计可以用来估计未知参数的取值范围,从 而更好地理解参数对结果的影响。
假设检验的应用场景
检验假设是否成立
在科学研究或实际应用中,我们经常需要通过假设检验来检验某个 假设是否成立,以做出决策或得出结论。
诊断准确性评估
在医学诊断中,假设检验常用于评估诊断方法的准确性,例如比较 新方法与金标准之间的差异。
非参数检验的优点是不受总体分布限制,适用于更广泛的情况。常见的非参数检验包括秩和检验、符 号检验等。
假设检验的步骤
选择合适的统计方法
根据假设和数据类型选择合适 的统计方法进行检验。
确定临界值
根据统计量的分布情况,确定 临界值。
提出假设
根据研究问题和数据情况,提 出一个或多个假设。
计算统计量
根据选择的统计方法计算相应 的统计量。
区间估计和假设检验
目录
• 区间估计 • 假设检验 • 区间估计与假设检验的联系 • 应用场景 • 案例分析
01
区间估计
定义
区间估计
基于样本数据,对未知参数或总体分布特征 给出可能的取值范围。
参数估计
基于样本数据,对总体参数进行估计,如均 值、方差等。
非参数估计
基于样本数据,对总体分布特征进行估计, 如分位数、中位数等。
结果具有互补性
03
区间估计和假设检验的结果可以相互补充,帮助我们更全面地
了解总体的情况。
区别
1 2 3
目的不同
区间估计的目的是估计一个参数的取值范围,而 假设检验的目的是检验一个关于总体参数的假设 是否成立。
侧重点不同
区间估计更侧重于估计总体参数的可能取值范围 ,而假设检验更侧重于对总体参数的假设进行接 受或拒绝的决策。

第7部分统计假设检验和区间估计

第7部分统计假设检验和区间估计

两个正态总体的统计检验
例 某地区高考负责人从某年来自A市中学考生和来自 B市中学考生中抽样获得如下资料:
A市中学考生:
B市中学考生:
n1 17, X 545, S1 50 n2 15, Y 495, S2 55
T X 0 S/ n |H0成立 ~
(T检验)
f(x)
t( n 1 )
α/2
α/2
t1 /2 (n 1) X
3) 对给定α,拒绝条件为 |T|> t
1

2
(n 1)
否定域
接受域
否定域
类似可得: σ2未知,期望的单侧统计检验 统计检验 H0:μ≤μ0; H1:μ>μ0的拒绝条件为
所以,拒绝条件为 2 2 ( n 1)
2
λ1
否定域 接受域
λ2
X
否定域
或 2 2 ( n 1)
1 2
例:在正常的生产条件下, 某产品的测试指标
总体X~N(μ0,σ02),其中σ0=0.23.后来改变生产工艺,出了新产 品,假设新产品的测试指标总体仍为X,且X~N(μ,σ2). 从新产 品中随机地抽取 10 件 , 测得样本值为 x1,x2,…,x10,计算得到 样本标准差S=0.33. 试在检验水平α=0.05的情况下检验: 方 差σ2有没有显著变化? 解 建立假设
(3) 显著性水平与否定域 小概率原理中,关于“小概率”的值通常根据实际问题的 要求而定,如取α =0.1,0.05,0.01等, α 为检验的显著性水平(检验水平).
P(|Z|>z1-α/2)=α α/2
- z1-α/2
φ(x)
α/2
z1-α/2 X

区间估计和假设检验精品PPT资料

区间估计和假设检验精品PPT资料

proc print data=tval2;var lchi uchi;
run;
本章目录 21
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果如下:
LCHI
UCHI
70687.19 406071.51
即方差的置信区间为:[70687.19, 406071.51]
本章目录 22
区间估计和假设检验
本章目录 2
区间估计和假设检验
1 正态总体的均值、方差的区间估计
区间估计是通过构造两个统计量 , ,能以
100(1)%的置信度使总体的参数落入 [ , ]
区间中,即 P{}1。其中 称为显著性
水平或检验水平,通常取0.05或 0.01;
, 分别称为置信下限和置信上限
本章目录 3
区间估计和假设检验
;
proc means data=var22 t prt clm;
var y;
freq fx;
CLM表示要输出
run;
95%置信区间
本章目录 12
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果:
分析变量 : Y
T- 统计量 Prob>|T| 95.0% 置信下界 95.0% 置信上界 --------------------------------------------------------------------
注:采用PROC CHART过程对独立组样本画直方图
直方图有两种形态:垂直条形图和水平条形图,下面对例3画水
平条形图,SAS程序为:
data bodyfat;
input sex $ fatpct @;

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系统计学原理一、简介假设检验与区间估计是统计学中两个重要的概念,它们都是基于样本数据对总体参数进行推断的方法。

假设检验主要用于判断总体参数是否符合某种特定假设,而区间估计则用于对总体参数进行范围性的估计。

本文将从统计学原理角度出发,详细介绍假设检验与区间估计之间的关系。

二、假设检验1. 假设检验的基本思想在进行假设检验时,我们首先要提出一个关于总体参数的假设(称为原假设),然后根据样本数据来判断这个假设是否成立。

具体来说,我们会根据样本数据计算出一个统计量(如t值、F值等),然后通过比较这个统计量与某个临界值(也称为拒绝域)来决定是否拒绝原假设。

2. 假设检验中的错误类型在进行假设检验时,有可能会犯两种错误:一种是将一个正确的原假设错误地拒绝了(称为第一类错误),另一种是将一个错误的原假设错误地接受了(称为第二类错误)。

通常情况下,我们会将第一类错误的概率控制在一个较小的水平(如0.05或0.01),这个水平被称为显著性水平。

3. 假设检验的步骤进行假设检验时,通常需要按照以下步骤进行:(1)提出原假设和备择假设;(2)选择适当的检验统计量,并计算出样本数据所对应的值;(3)确定显著性水平,并找到相应的拒绝域;(4)比较样本统计量与拒绝域,得出结论。

三、区间估计1. 区间估计的基本思想在进行区间估计时,我们会根据样本数据来构建一个区间,这个区间包含了总体参数真值的可能范围。

具体来说,我们会根据样本数据计算出一个点估计量(如样本均值、比例等),然后根据中心极限定理和大数定律等原理来构建置信区间。

2. 区间估计中的置信度在进行区间估计时,我们通常会给出一个置信度,表示该区间包含总体参数真值的概率。

例如,如果我们给出了一个95%置信度,则意味着在大量重复实验中,有95%的置信区间都会包含总体参数真值。

3. 区间估计的步骤进行区间估计时,通常需要按照以下步骤进行:(1)选择适当的点估计量,并计算出样本数据所对应的值;(2)确定置信度,并找到相应的置信区间;(3)解释置信区间的含义,得出结论。

置信区间与假设检验之间的关系

置信区间与假设检验之间的关系
1.左侧检验:求出单边置信下限
0 z

n
或 0 t
S n
若样本统计量x的值小于单边置信下限,则拒绝H0
2.右侧检验:求出单边置信上限
0 z

n
或 0 t
S n
若样本统计量x的值大于单边置信上限,则拒绝H0
用置信区间进行检验 (例题分析)
【例】一种袋装食品每 包的标准重量应为 1000 克。现从生产的 一批产品中随机抽取 16 袋,测得其平均重 量为991克。已知这种 产品重量服从标准差 为 50 克的正态分布。 试确定这批产品的包 装重量是否合格? (α= 0.05)
双侧检验!
解:提出假设: H0: = 1000 H1: 1000 已知:n = 16,σ=50, x 991 =0.05双侧检验 /2=0.025 临界值: Z0.025=±1.96
拒绝 H0
0.025
用置信区间进行检验(例题分析)
置信区间为
, 0 z 2 0 z 2 n n 50 50 ,1000 1.96 1000 1.96 16 16 975.5, 1024 .5
决策:
x 991 在置信区间内,

拒绝 H0
0.025
不拒绝H0 结论: 可以认为这批产品的包 装重量合格
-1.96
0
1.96
Z
间对应于假设检验中的接受区域,置信区间以外 的区域就是假设检验中的拒绝域。
㈡区间估计与假设检验的主要区别
1.区间估计通常求得的是以样本估计值为中心的双侧置信区 间,而假设检验以假设总体参数值为基准,不仅有双侧检 验也有单侧检验;
2.区间估计立足于大概率,通常以较大的把握程度(置信水 平)1-α去保证总体参数的置信区间。而假设检验立足于 小概率,通常是给定很小的显著性水平α去检验对总体参 数的先验假设是否成立。

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。

它们虽然都属于推断统计,但也有明显的不同之处。

区间估计的主要目的是估计总体参数的值,也可以称作参数估计。

根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。

估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。

假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。

假设检验涉及两个立场:备择假设和原假设。

假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。

从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。

总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。

两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。

区间估计与假设检验的联系与区别

区间估计与假设检验的联系与区别
区间估计与假设检验的联系都以抽样分布为理论依据建立在概率论基础之上的推断都具有一定的可信程度和风二者可相互转换区间估计问题可以转换成假设问题假设问题也可以转换成区间估计问题
区间估计与假设检验 的联系与区别
11406
a
1
区间估计
参数估计:指的是用样本中的数据估计总体分布 的某个或某几个参数
参数估计的方法:点估计和区间估计。
点估计:用估计量的某个取值直接作为总体参数 的估计值。点估计的缺陷是没法给出估计的可靠 性,也没法说出点估计值与总体参数真实值接近 的程度。
区间估计:在点估计的基础上给出总体参数估计 的一个估计区间,该区间通常是由样本统计量加 减估计误差得到的。在区间估计中,由样本估计 量构造出的总体参数在一定置信水平下的估计区 间称为置信区间。
主要区别: a、参数估计是以样本资料估计总体参数的真 值,假设检验是以样本资料检验对总体参数 的先前假设是否成立; b、区间估计求得的是求以样本估计值为中心 的双侧置信区间,假设检验既有双侧检验, 也有单侧检验; c、区间估计立足于大概率,假设检验立足于 小概率。
a
6
拒绝域。 4.比较并作出统计推断。
a
4
区间估计与假设检验的联系
主要联系: a、都是根据样本信息推断总体参数; b、都以抽样分布为理论依据,建立在概率 论基础之上的推断,都具有一定的可信程 度和风险; c、二者可相互转换,区间估计问题可以转 换成假设问题,假设问的区别
a
2
区间估计
总体均值的区间估计 (1)大样本的估计方法:总体方差已知,用z
分布。 (2)小样本(样本数小于30)的估计方法:总
体方差未知 , t分布。 总体比率的区间估计 z分布 总体方差的区间估计 χ^2分布

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系 统计学原理

假设检验与区间估计的关系假设检验和区间估计是统计学中两个重要的概念和方法。

它们在数据分析和推断中经常被使用,并且有密切的关联。

假设检验假设检验是统计学中一种通过样本数据对总体参数进行推断的方法。

它的基本思想是,我们根据样本数据得到的统计量,与我们对总体参数的假设进行比较,从而判断这个假设是否合理。

在假设检验中,我们通常会提出一个原假设(null hypothesis)和一个备择假设(alternative hypothesis)。

原假设是我们要进行推断的对象,备择假设则是原假设不成立时所代表的情况。

然后,我们根据样本数据计算得到一个统计量,并且利用该统计量对原假设进行检验。

这个统计量通常会服从某种已知或近似已知的概率分布。

最后,根据统计量在概率分布中所处位置的概率来决定是否拒绝原假设。

如果这个概率非常小(小于显著性水平),则我们有充分的证据拒绝原假设;反之,如果这个概率较大,则我们没有充分的证据拒绝原假设。

总结一下,假设检验的步骤如下:1.提出原假设和备择假设;2.根据样本数据计算得到一个统计量;3.假设这个统计量服从某种概率分布;4.利用概率分布来计算统计量在概率分布中所处位置的概率;5.根据这个概率来决定是否拒绝原假设。

区间估计区间估计是统计学中一种通过样本数据对总体参数进行估计的方法。

它的基本思想是,我们根据样本数据得到的统计量,以及该统计量的抽样分布特性,构建一个区间,这个区间可以包含真实总体参数的真值。

在区间估计中,我们通常会选择一个置信水平(confidence level),表示我们对该区间包含真实总体参数的程度的置信程度。

常用的置信水平有95%和99%。

然后,我们根据样本数据计算得到一个统计量,并且利用该统计量和抽样分布特性来构建一个置信区间。

这个置信区间具有以下特点:如果我们重复使用相同方法对不同样本进行估计,那么约有95%(或99%)的置信区间会包含真实总体参数的真值。

最后,我们根据置信区间来进行参数估计。

医学统计学第5讲 区间估计和假设检验

医学统计学第5讲  区间估计和假设检验

H0假设比较简单、明确,且在该假 设前提下其分布有规律可寻。而H1假设 包含的情况比较复杂。因此,检验是针 对H0分布进行的。 统计学上,将“拒绝H0 ,接受H1”称为有 统计学意义;“不拒绝H0”称为无统计学 意义。
情形1
两均数比较
H0:两总体均数相等,即1=2
H1: 1 > 2( 1 ≠ 2 )
计算检验统计量即计算样本与所假设总体 的偏离。 计算概率P值即与统计量t值对应的概率。 一个样本按某一检验方法只能得出一个P 值,但供研究者用来界定此P值的α水准却 有多个。
步骤4:作出推断结论
P ,拒绝H0,接受H1,差异有统计学意义
P> , 不拒绝H0,差异无统计学意义
统计结论≠专业结论 P值越小≠差别越大
假设检验的正确应用
• 假设检验是建立在样本随机客观的基础 上的。 • P值的含义: P值表明以多大的误差拒绝H0 ,接受H1。 • Significant的含义。 • 检验水准在假设检验结论中的意义。 按误差不超过 % 的条件拒绝 H ;接受H1
0
假设检验与参数估计的关系 区别:目标不同,对问题的直接回 答也不同
1) 未知,且n较小
( X t / 2, S X , X t / 2, S X )
例:对某人群随机抽取20人,用某批号的结核菌素 做皮试,平均直径为10.9mm,标准差为3.86mm,问 这批结核菌素在该人群中使用,皮试直径的95%可 信区间? n=20, =20-1=19, =0.05
假设检验的基本思想
• 提出一个假设 • 如果假设成立,得到现有样本的可能性
– 可能性很小(小概率事件),在一次试验中 本不该得到,居然得到了,说明我们的假设 有问题,拒绝之。 – 可能性较大(不是小概率事件),即有可能 得到手头的结果,故根据现有的样本无法拒 绝事先的假设(没理由)

假设检验和区间估计

假设检验和区间估计

第7章 假设检验和区间估计7.1 内容框图7.2 基本要求(1) 理解假设检验的基本思想及两类错误的含义.(2) 掌握有关正态总体参数的假设检验的基本步骤和方法. (3) 理解单侧检验与双侧检验的异同.(4) 理解并掌握正态总体参数区间估计的的基本方法. (5) 了解总体分布的检验和独立性检验的基本方法.7.3 内容概要1)假设检验下面把各种情形列一个表:∈U 接受域0W ,接受0H∈U 拒绝域1W ,拒绝0H0H 为真,1H 不真 正确 犯第一类错误0H 不真,1H 为真犯第二类错误正确α值为显著水平。

然后,根据显著水平 α来确定临界值,用临界值来划分接受域 0W 假设检验 区间估计参数检验 分布的检验正态总体参数的检验独立性检验和拒绝域 1W 。

这样的检验,称为显著性检验。

假设检验的一般步骤是: (1)提出原假设 0H ;(2)选取合适的检验统计量 U ,从样本求出 U 的值;(3)对于给定的显著水平α,查 U 的分布表,求出临界值,用它划分接受域 0W 和拒绝域 1W ,使得当 0H 为真时,有 α=∈}{1W U P ;(4)若 U 的值落在拒绝域 1W 中,就拒绝 0H ,若 U 的值落在接受域 0W 中,就接受 0H 。

假设检验的理论依据是所谓的小概率事件原理,即一个概率很小的事件在一次试验中几乎是不可能发生的.要检验一个根据实际问题提出的原假设0H 是否成立,如果已知在0H 成立时,某个事件发生的可能性很小,而试验的结果却是这个事件发生了,那么根据小概率事件原理,我们就可以认为所提出的这个假设0H 是不成立的,即拒绝0H ;反之,则接受0H .这里的原假设0H 可以根据实际问题提出,事件是否发生可根据试验观测值判断,因此假设检验的关键问题就是要确定在0H 成立时,发生可能性很小的某个事件.我们知道,正态分布有个3σ原则,即ξ若服从正态分布,那么ξ的取值会大多集中在其均值附近,落入两侧的可能性很小.事实上,当ξ服从t 分布,2x 分布,F 分布时,其取值落入两侧的可能性也都相对很小.因此,我们要确定0H 成立时一个发生可能性很小的事件,只需根据样本构造出服从正态分布,t 分布,2x 分布或F 分布的随机变量(统计量)就可以了. 根据上述分析,正态总体参数的假设检验可概括为如下步骤。

区间估计和假设检验的基础知识

区间估计和假设检验的基础知识

区间估计和假设检验的基础知识区间估计和假设检验是统计学中非常基础的一块知识,其应用范围非常广泛,涉及到生物、医学、经济、社会科学和财务等众多领域,其最大的作用就是在统计学实践中,给出一定的数据描述方法和数据分析方式,从而更好地了解数据的内在规律,并为数据的决策做出基础性的科学参考。

一、区间估计(一)定义:区间估计是通过样本数据来推断总体的一个未知参数的取值范围的一种统计方法。

比如说,在抓小麻雀活动中,如果观察员在一个固定的面积中看到了2只麻雀,那么他或者她可以通过这个样本数值,推断出小麻雀活动的总体密度范围。

而这个总体的密度范围就是区间估计。

其中,区间估计可以分为点估计和区间估计两类。

点估计只给出未知参数的一个点估计值,而区间估计则可以给出未知参数取值范围和置信水平。

(二)置信区间:置信区间是区间估计的重要组成部分,指的是通过样本原数据而得到的一个总体参数的范围,而这个总体参数就有一定的把握程度,称为“置信水平”。

比如说,如果我们从一个大家庭中随机选取了一些人群的数据,那么根据样本数据,我们可以推断出这个大家庭的总体参数的范围,比如说他们的收入水平。

置信水平一般是用1-alpha表示,其中1-alpha就是给定区间范围的置信度。

(三)步骤:区间估计的步骤可以分为以下几步:1. 确定要估计的总体参数(比如说该大家庭的收入水平);2. 收集样本数据并计算样本统计量(比如说样本平均数和标准误);3. 根据置信水平和样本数据计算出相应的置信区间(比如说该大家庭的收入水平位于哪个区间内)。

(四)应用:区间估计在实践中有着广泛的应用。

比如说在市场研究中,我们想知道某种产品的受欢迎程度,可以通过区间估计,推断出该产品的受欢迎程度的范围,还可以通过比较不同竞争对手的受欢迎程度,从而判断该产品在市场上的潜在竞争力和市场占有率。

二、假设检验(一)定义:假设检验也是一种基础的统计推断方法,主要是通过观察数据样本,在不知道总体参数方差的条件下,对总体参数进行推断和判断。

区间估计及假设检验算法实现方法详解

区间估计及假设检验算法实现方法详解

区间估计及假设检验算法实现方法详解随着数学、统计学等学科的发展,计算机技术在数学、统计学中扮演着越来越重要的角色。

在实际应用中,人们往往需要对各种数据进行分析处理以满足不同的需求,如何快速准确地进行数据分析,是一个非常重要的问题。

其中,区间估计和假设检验是数据分析中常用的两种方法。

本文将详细介绍这两种方法的实现方式。

一、区间估计区间估计是以样本统计量为基础,通过分析样本的信息来推断总体参数的取值范围,同时限定一定程度的误差。

通常,我们通过样本估计总体的平均数、标准差等参数,并对其进行区间估计。

常见的区间估计有置信区间、预测区间等。

1. 置信区间置信区间是指在给定的置信水平下,估计总体参数的取值范围。

在实际中,一个置信水平通常取95%或99%,即我们希望在95%或99%的数据中,总体参数的真实值可以被估计出来。

例如我们要估计一个总体的均值,使用样本均值计算出来一个估计值,并使用标准误和置信系数得到置信区间,那么这个置信区间的含义就是,我们认为有95%的置信度,总体均值在这个置信区间之内。

2. 预测区间预测区间是指在给定的置信水平下,预测一个新的数据值的取值范围。

通常,我们需要根据给定的样本数据来估计总体参数,并通过置信水平和误差限制得到一个预测区间。

例如,我们要预测未来一家公司的利润,使用以前几年公司利润值的样本数据,得到一组样本均值、标准误和置信系数等参数,根据置信系数和置信区间计算得到预测区间,那么这个预测区间的含义就是,在一定置信水平下,公司未来的利润值会在这个预测区间之内。

在实际进行区间估计的过程中,通常会使用计算机进行计算。

例如,在R语言中,我们可以使用以下代码实现置信区间的计算:```# 假设有一个样本数据data# 想要计算一个均值的置信区间result <- t.test(data, conf.level = 0.95)# 得到result$conf.int即为置信区间```我们可以看到,R语言中的t.test函数就可以方便地实现置信区间的计算,而不需要手动进行计算。

假设检验和区间估计

假设检验和区间估计

第7章假设检验和区间估计7.1 内容框图7.2 基本要求(1)理解假设检验的基本思想及两类错误的含义.(2)掌握有关正态总体参数的假设检验的基本步骤和方法.(3)理解单侧检验与双侧检验的异同.(4)理解并掌握正态总体参数区间估计的的基本方法.(5)了解总体分布的检验和独立性检验的基本方法.7.3 内容概要1)假设检验α值为显著水平。

然后,根据显著水平α来确定临界值,用临界值来划分接受域W和拒绝域 1W 。

这样的检验,称为显著性检验。

假设检验的一般步骤是: (1)提出原假设 0H ;(2)选取合适的检验统计量 U ,从样本求出 U 的值;(3)对于给定的显著水平α,查 U 的分布表,求出临界值,用它划分接受域 0W 和拒绝域 1W ,使得当 0H 为真时,有 α=∈}{1W U P ;(4)若 U 的值落在拒绝域 1W 中,就拒绝 0H ,若 U 的值落在接受域 0W 中,就接受 0H 。

假设检验的理论依据是所谓的小概率事件原理,即一个概率很小的事件在一次试验中几乎是不可能发生的.要检验一个根据实际问题提出的原假设0H 是否成立,如果已知在0H 成立时,某个事件发生的可能性很小,而试验的结果却是这个事件发生了,那么根据小概率事件原理,我们就可以认为所提出的这个假设0H 是不成立的,即拒绝0H ;反之,则接受0H .这里的原假设0H 可以根据实际问题提出,事件是否发生可根据试验观测值判断,因此假设检验的关键问题就是要确定在0H 成立时,发生可能性很小的某个事件.我们知道,正态分布有个3σ原则,即ξ若服从正态分布,那么ξ的取值会大多集中在其均值附近,落入两侧的可能性很小.事实上,当ξ服从t 分布,2x 分布,F 分布时,其取值落入两侧的可能性也都相对很小.因此,我们要确定0H 成立时一个发生可能性很小的事件,只需根据样本构造出服从正态分布,t 分布,2x 分布或F 分布的随机变量(统计量)就可以了. 根据上述分析,正态总体参数的假设检验可概括为如下步骤。

数理统计第五章假设检验 5.3假设检验和区间估计

数理统计第五章假设检验 5.3假设检验和区间估计

10
5.3 假设检验与区间估计
由单参数假设检验问题的水平为的双边检验, 可以得到该参数的置信系数为1-的置信区间. 反之亦然.
5.3.2 如何由置信区间得到假设检验 用某种方法建立了的置信水平为1 的区间估计
ˆ , ˆ ], 对给定的 ,可以求出检验问题 [ 1 2 0
H 0: 0;H1 : 0
(m 1) S (n 1) S 其中S mn2
2 2 1
2 2
8

|Y X | 0 P tm n 2 ( / 2) H 0 1 1 1 Sw m n
1 1 1 1 P Y X S t ( / 2) Y X S t ( / 2) 1 w m n2 0 w m n 2 m n m n
3
由于上述不等式是在条件H 0成立,即 0时获得的, 因此将0用 代替是等价的
S S X tn 1 ( / 2) X tn 1 ( / 2) n n
S S 则 X tn 1 ( / 2),X tn 1 ( / 2) n n 为的置信系数为1 的置信区间.
情形下均值的单边检验问题 H 0 : 0 ; H1 : 0
水平为的检验的接受域为
因此

( X 1 , X 2 , n ( X 0 ) , Xn) : tn 1 ( ) S
n ( X 0 ) P tn1 ( ) H 0 1 S
由于上述不等式是在条件H 0成立,即 0时获得的, 因此将0用 代替是等价的
1 1 1 1 Y X Swtm n2 ( / 2) Y X Swtmn2 ( / 2) m n m n 1 1 1 1 则 Y X Swtm n2 ( / 2) ,Y X S wtm n2 ( / 2) m n m n 为的置信系数为1 的置信区间. 9

区间估计与假设检验的分类总结

区间估计与假设检验的分类总结

区间估计与假设检验的分类总结区间估计和假设检验是统计推断的两个主要方法。

它们都是根据样本数据对总体参数进行推断,但是它们的目的和原理不同。

下面我将对区间估计和假设检验进行分类总结。

一、区间估计分类总结:区间估计是根据样本数据对总体参数进行估计,并给出估计结果的一个范围。

根据不同的参数和样本情况,区间估计可以分为以下几种类型:1.均值的区间估计:a.单个总体均值的区间估计:当总体标准差已知时,使用正态分布进行估计;当总体标准差未知时,使用t分布进行估计。

b.两个总体均值之差的区间估计:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行估计。

c.大样本均值的区间估计:对于大样本,总体均值的估计可以使用正态分布进行估计。

2.方差的区间估计:a.单个总体方差的区间估计:对于正态总体,使用卡方分布进行估计。

b.两个总体方差之比的区间估计:根据两个总体样本方差的比值,使用F分布进行估计。

c.大样本方差的区间估计:对于大样本,总体方差的估计可以使用卡方分布进行估计。

3.比例的区间估计:b.两个总体比例之差的区间估计:根据两个总体样本比例的差异,使用正态分布进行估计。

二、假设检验分类总结:假设检验是根据样本数据对总体参数的一些假设进行检验,并得出是否拒绝假设的结论。

根据不同的参数和样本情况,假设检验可以分为以下几种类型:1.均值的假设检验:a.单个总体均值的假设检验:当总体标准差已知时,使用正态分布进行检验;当总体标准差未知时,使用t分布进行检验。

b.两个总体均值之差的假设检验:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行检验。

c.大样本均值的假设检验:对于大样本,总体均值的检验可以使用正态分布进行检验。

2.方差的假设检验:a.单个总体方差的假设检验:对于正态总体,使用卡方分布进行检验。

b.两个总体方差之比的假设检验:根据两个总体样本方差的比值,使用F分布进行检验。

c.大样本方差的假设检验:对于大样本,总体方差的检验可以使用卡方分布进行检验。

第3章 区间估计与假设检验(1)

第3章  区间估计与假设检验(1)

2 12 2 (n 1)

2 2 2 (n 1)
μ
未 左边 知 检验
2
2 2 0 Xi X
2 2 0 2 0
右边 2 检验
.0 ~ 2 ( n 1)
i 1

2 12 (n 1)
p < ,拒绝原假设H0; p > ,不能拒绝原假设H0。
第三章 3.1 区间估计与假设检验的基本概念
3. 正态总体均值和方差的假设检验
对正态总体的参数进行假设检验是假设检验的重要 内容, 如对单总体均值、方差的检验、两总体均值之差的 检验和两总体方差比的检验等。
第三章 3.1 区间估计与假设检验的基本概念
2 2 (n 1)
表6 两正态总体的均值差与方差比的检验
名 称 条件 类别
双边 检验
H0
H1
检验统计量
拒绝域
Z 检 验
两样本 独立, 左边 12=22 检验 =2未 右边 知
检验 双边 检验
μ1-μ2=0 μ1-μ20 μ1-μ20
μ1-μ2≠0 μ1-μ2<0 μ1-μ2>0
F F (n1 1, n2 1)
2 2 2 12 / 2 1 1 / 2 1
第三章 3.1 区间估计与假设检验的基本概念
4. 总体比例与比例差的检验
表7 总体比例与比例差的检验
检验 名称 检验 类别
双边 检验 比例 检验 左边 检验 右边 检验 两总 体比 例差 检验 双边 检验 H0 H1 检验统计量
μd>0
2 1 2 2
~ t ( n 1)
2 F S12 S2

区间估计与假设检验

区间估计与假设检验

区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。

本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。

一、区间估计区间估计是用样本数据来推断总体参数的取值范围。

它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。

这个范围被称为置信区间。

置信区间常用于描述一个参数的不确定性。

例如,我们要估计某种药物的平均效果。

通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。

然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。

例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。

二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。

假设检验通常分为两类:单样本假设检验和双样本假设检验。

1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。

它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。

(2)选择合适的显著性水平(α),表示我们接受原假设的程度。

(3)计算样本数据的检验统计量,例如t值或z值。

(4)根据显著性水平和检验统计量,判断是否拒绝原假设。

2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。

常见的双样本假设检验包括独立样本t检验和配对样本t检验。

独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。

三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。

区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。

它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。

因此,区间估计对于参数的精确度提供了一个相对准确的度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

区间估计
ห้องสมุดไป่ตู้总体均值的区间估计
(1)大样本的估计方法:总体方差已知,用z 分布。
(2)小样本(样本数小于30)的估计方法:总 体方差未知 , t分布。
总体比率的区间估计 z分布 总体方差的区间估计 χ^2分布
假设检验
假设检验的的方法思路 1.陈述原假设与备择假设 2.确定统计量,利用样本数据算出具体数值 3.确定适当的显著性水平,计算临近值,指定
区间估计与假设检验 的联系与区别
11406
区间估计
参数估计:指的是用样本中的数据估计总体分布 的某个或某几个参数
参数估计的方法:点估计和区间估计。
点估计:用估计量的某个取值直接作为总体参数的 估计值。点估计的缺陷是没法给出估计的可靠性, 也没法说出点估计值与总体参数真实值接近的程 度。
区间估计:在点估计的基础上给出总体参数估计 的一个估计区间,该区间通常是由样本统计量加 减估计误差得到的。在区间估计中,由样本估计 量构造出的总体参数在一定置信水平下的估计区 间称为置信区间。
拒绝域。 4.比较并作出统计推断。
区间估计与假设检验的区别
主要区别: a、参数估计是以样本资料估计总体参数的真 值,假设检验是以样本资料检验对总体参数的 先前假设是否成立; b、区间估计求得的是求以样本估计值为中心 的双侧置信区间,假设检验既有双侧检验,也 有单侧检验; c、区间估计立足于大概率,假设检验立足于 小概率。
相关文档
最新文档