波函数的统计解释

合集下载

§1.6 波函数的统计解释 量子力学课件

§1.6  波函数的统计解释 量子力学课件
|Ψ (r)|2 的意义是代表电子出现在 r 点附近几率的大小, 确切的说,
|Ψ (r)|2 Δx Δy Δz 表示在 r 点处,体积元Δx Δy Δz 中找到粒子的几率。波函数在空间某点的强度(振幅 绝对 值的平方)和在这点找到粒子的几率成比例,
据此,描写粒子的波可以认为是几率波,反映微观客体运 动的一 种统计规律性,波函数Ψ (r)有时也称为几率幅。 这就是首先由 Born 提出的波函数的几率解释,它是量子 力学的基本原理。
称为几率密度。
在体积 V 内,t 时刻找到粒子的几率为: W(t) = ∫V dW = ∫Vω( r, t ) dτ= C∫V |Ψ (r,t)|2 dτ
(2) 平方可积
由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即:
C∫∞ |Ψ (r , t)|2 dτ= 1, 从而得常数 C 之值为:
电子究竟是什么东西呢?是粒子?还是波? “ 电子既不是粒子也 不是波 ”,既不是经典的粒子也不是经典的波, 但是我们也可 以说,“ 电子既是粒子也是波,它是粒子和波动二重性矛盾的统 一。” 这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
经典概念中 粒子意味着
经典概念中 波意味着
1.有一定质量、电荷等“颗粒性”的属性; 2.有确定的运动轨道,每一时刻有一定
单位换算:
1ev~12.000K(温度表能量) ~2.410 14HZ(频率表能量)
~8.00c0m1(波长)
附录 量子力学的建立及相关科学家传略础之一,是研究微观粒 子运动规律的科学,使人们对物质世界的认识从宏观层次跨进 了微观层次。自1900年普朗克提出量子假设以来,量子力学便 以前所未有的速度发展起来,紧接着是1905年爱因斯坦提出光 量子假说,直接推动了量子力学的产生与发展。而玻尔运用量 子理论和核式结构模型解决了氢原子光谱之谜。之后德布罗意 的物质波理论使经典物理学的卫道士们大吃一惊。海森堡的矩 阵力学、“不确定原理”和薛定谔的波动力学成了量子力学独 当一面的基础。而数学高手狄拉克在此基础上进一步实现了量 子力学的统一,建立了著名的“狄拉克方程”。泡利的“不相 容原理”又给量子力学抹上了灿烂的一笔。

15-7波函数 玻恩统计解释

15-7波函数   玻恩统计解释

为了区别于经典波动,将上式写成:
( x, t ) 0e
i 2 (t x )
i (Et px)
0e
ψ0 e
第十五章
量子物理
1
物理学
第五版
15-7波函数 波函数物理意义
பைடு நூலகம்
玻恩统计解释
物质波与光波的对比
(波动观点) (微粒观点)
光波振幅平方大 光强大 光子在该处出现 的概率大
物理学
第五版
15-7波函数
玻恩统计解释
一、波函数(描写物质波的函数) 自由粒子的波函数 由波动理论,沿x轴传播的平面波波动方程:
y( x, t ) A cos 2 (t x )
y( x , t ) Ae
i 2 (t x )
只取实部
i 2 ( Et px ) h
2 2 势场中的一维运动粒子 E p i 2 2m x t
第十五章 量子物理
6
粒子在该处出现的 (微粒观点) 概率大 在空间某点波函数的平方和粒子在该点出现的 概率成正比. —玻恩统计解释.
第十五章 量子物理
2
物质波的 强度大
波函数振幅的平方大 (波动观点) | |2= *
物理学
第五版
15-7波函数
玻恩统计解释
物质波与经典波的本质区别
物质波是复函数,本身无具体的物理意义,
玻恩统计解释
一维自由粒子薛定谔方程 自由粒子波函数:
( x , t ) 0e
i ( Et px )
2 p2 2 2 x
非相对论粒子:
i E t
p2 E 2m

波函数的统计解释

波函数的统计解释
有关实验:
子弹 水波 光波
}{ 双缝衍射
子弹:P=P1+P2 波:I≠I1+I2
电子
电子:
1。与宏观粒子运动不同。 2。电子位置不确定。 3。几率正比于强度,即
(rr , t) 2
结论:
波函数的统计解释:波函数在空间某一点的强度(振幅绝对 值的平方)和在该点找到粒子的几率成正比。
数学表达: (r,t) | (r,t) |2
遮住缝1
遮住缝2
双缝都打开
遮住缝1
遮住缝2
双缝都打开
2.2 测不准原理
一. 宏观粒子运动状态确定,各种力学量同时具有确定值。但微观粒子的运动 从根本上讲不具有这种特点。
海森伯 1927年
共轭量
x px
t E
J
二.量子力学中的测量过程
1.海森伯观察实验
2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上它们就不可能同时 具有确定的值
(r , t)
c(
p,
t
)
p
(r )dpx
dpy
dpz
e
p (r )
1
(2) 2 3
i pr
§2.3 态迭加原理
测不准原理和态迭加原理是量子力学的两个基本原理,反映了微观粒子运动的根 本特性,是和量子力学对微观粒子描述的整个数学框架相一致的。
经典物理中,波的迭加只不过是将波幅迭加(波幅代表实际物体的运动 等),并在合成波中出现不同频率的波长的子波成分。微观粒子的波动性的迭加 性其实质是什么呢?

量子力学课件-波函数的统计解释

量子力学课件-波函数的统计解释

微观粒子的波-粒二象性如何理解? 微观粒子的波-粒二象性如何理解? 1.所谓的“粒子性” 是指粒子有一 1.所谓的“粒子性”, 是指粒子有一 所谓的 定质量、电荷等“颗粒性”的属性; 定质量、电荷等“颗粒性”的属性;
2.所谓的“波动性 是指粒子能发 2.所谓的“波动性”, 是指粒子能发 所谓的 生干涉、衍射现象;更深刻地说, 生干涉、衍射现象;更深刻地说, 波动性是微观粒子运动的统计规律 波动性是微观粒子运动的统计规律 的表现形式
nπ (x − a) A sin ψ 1( x) = 2a 0 nπ (x + a) A sin ψ 2 ( x) = 2a 0
请 问 : I 、 波 函 数 ψ 1 ( x ) 和 ψ 2 ( x )是 否 等 价 ? II 、 对 ψ 1 ( x ) 取 n = ± 2 两 种 情 况 , 得 到 的 两 个 波函数是否等价?
ψ 1 = e i2x /h , ψ 4 = −e i2x/h ,
ψ 2 = e −i2 x /h , ψ 5 = 3e − i ( 2 x + π h ) / h ,
ψ 3 = e i3x /h , ψ 6 = ( 4 + 2 i )e i 2 / h .
(2)
已知下列两个波函数: | x |≤ a | x |> a | x |≤ a | x |> a n = 1, 2, 3, L n = 1, 2, 3, L
1, 1.∫∞ C|Ψ(r,t)|2 dτ= 1, 归一化条件或平方可积条件. 此式称为波函数的归一化条件或平方可积条件 此式称为波函数的归一化条件或平方可积条件. |Ψ(r, dτ,( 归一化常数, C=1/∫∞ |Ψ(r,t)|2 dτ,(C)1/2归一化常数, Ψ(r,t)叫归一化波函数。 (C)1/2 Ψ(r,t)叫归一化波函数。 2.ω( r, t ) = C |Ψ (r,t)|2 为几率密度。

波函数及薛定谔方程

波函数及薛定谔方程
N ⋅ dV | Ψ ( x , y , z , t ) |2 的物理意义:
t 时刻,出现在空间(x,y,z)点附近单位体积内的 粒子数与总粒子数之比
t 时刻,粒子出现在空间(x,y,z)点附近单位体积 内的概率
t 时刻,粒子在空间的概率密度分布
注意:
物质波的波函数不表示任何实在物理 量的波动,不描述介质中运动状态(相 位)传播的过程,
NN
标准条件
Ψ是单值、有限、连续的 。
二、薛定谔方程: 是波函数 Ψ所遵从的方程 — 量子力学的基本方程 , 是量子力学的基本假设之一,其正确性由实验检验。
1. 建立 (简单→复杂, 特殊→一般)
一维自由粒子的振幅方程
Ψ (x,t)
=Ψ e−
i ℏ
(
E
t

px

x
)
0
=
Ψ
0e
+
i ℏ
p
x
⋅x
−i Et
2 x
2m
代入
d2ψ ( x) dx2
=

px ℏ2
2
ψ
(
x
)*

d 2ψ ( x ) dx2
+
2 mE ℏ2
ψ
(x)
=
0
即 一维自由粒子的振幅方程
p
2 x
=
2mE
一维定态薛定谔方程
粒子在力场中运动,且势能不随时间变化
E
=
Ek
+
Ep
=
p
2 x
2m
+U
px2 = 2m(E −U )
代入
d2ψ ( x) dx2
∴ 建立关于振幅函数 ψ(x)的方程 —— 振幅方程

波函数及其统计解释

波函数及其统计解释
上述的解释是对处于同一状态的大量电子而言。
在实验中可以控制电子枪的电压,使发出的电子束的 强度十分微弱,以至电子是一个一个通过。假如时间不 长,则落在屏幕上的是一个个的点,而不是扩散开的衍 射图案。就这个意义而言,电子是粒子而不是扩展开的 波。
但时间一长,则感光点在屏幕上的分布显示衍射图样, 与强度较大的电子束在较短时间内得到的图样相同。可 以认为:尽管不能确定一个电子一定到达照相底片的什 么地方,但它到达衍射图样极大值的几率必定较大,而 到达衍射图样极小值的地方的几率必定较小,甚至为零。
在量子物理中,却将这种波方程的复数表示借用过来, 并不再取它的实部,而赋予它新的物理意义。即 用它表示微观客体的波粒子二象性,它就是波函数。
在量子力学中,粒子的状态用波函数来描写,根据薛 定谔方程得出波函数的变化规律。如果已知波函数,则 可由它求出所有描述粒子状态的物理量。
在量子物理中,波函数常用ψ(x,y,z,t)表示,它的最简 单的一个表示式为
3.3 波函数及其统计解释
一、波函数 二、波函数的统计解释 三、波函数的标准条件和归一化
一、波函数
在经典力学中,我们只要知道了质点的运动 方程及其初始条件,就可以知道它的确切位置 和动量。这种方法在宏观世界取得很大的成功, 但不能适用于具有波粒二象性的微观粒子。
量子力学原理之一:微观粒子的状态可用 波函数来描述。
在经典物理中,为了计算方便,常将波方程表示成 复数,如单色平面波
y( x, t) Acos(t kx)
表示为Y ( x, t ) Aei(tkx)
显然,y(x,t)等于Y(x,t)的实部,这样计算时 用Y(x,t),算完后再取它的实部,这样做在经典物 理中是为了计算的方便,在物理学中并无新意。

波函数及其统计解释

波函数及其统计解释
5
动量分布概率(1)
设子设有平出 动 面pr现 量波 px在的ixip点波的y函pjr概y数j附z率k为近p如,zk的何则为概表(|粒r率示)(子r。?) 的|2eip动|r /量(x,,y, z那) |2么表粒示子粒具
任意粒子的波函数可以按此平面波做傅立叶展开
(r )
1
(2)3
2
( p)eipr / d 3 p
*
(
p)
p
(
p)d
3
p
p
*
(r )

(r )d
3r
,

力学量用算符表示
A
*
(r )

(r )d
3r
20
三、力学量用算符表示(5)
力学量 A 的平均值为
A
*
(r )

(r )d
3r
其 问中 题,:Aˆ坐为标力r学的量平A均的值算符r 。
*
(r )r
(r )d
该如何理解波函数的物理意义?为此,人们
提出了波函数的统计诠释来作为对波函数物
理意义的一种理解。
4
量子力学的基本假定之一
基本假定Ⅰ:波函数假定 微观粒子的状态可以被一个波函数完全 描述,从这个波函数可以得出体系的所 有性质。波函数一般满足连续性、有限 性和单值性三个条件。 说明:波函数一般是粒子坐标和时间的 复函数,波函数的模方代表粒子空间分 布的概率密度。
量子力学
波函数及其统计解释 粒子的动量分布 不确定度关系——进一步讨论
1
简短回顾
1、自由粒子的波函数 既然粒子具有波动性,那么就应该用一
个反映波动的函数来加以描述。 由平面波公式 Asin(kxt)

12-6波函数及其统计解释

12-6波函数及其统计解释

电磁波
E(x,t)

E0
cos

(t

x

)
H
( x, t )

H
0
cos 2π
(t

x

)
经典波为实函数
i 2π( t x )
y(x, t) Re[ Ae
]
第十二章 量子物理
12-6 波函数及其统计解释
2)自由粒子平面波函数
自由粒子能量 E 和动量
p
是确定的,其德布罗
意频率和波长均不变 ,可认为它是一平面单色波 .
某一时刻出现在某点附近在体积元 dV 中的粒子

的概率为
Ψ 2 dV ΨΨ*dV
某一时刻在整个空间内发现粒子的概率为
归一化条件
2
Ψ dV 1
第十二章 量子物理
波函数
i2π( t x )
(x,t) 0e

微观粒子的波粒二象性
E
h
h
p
i 2π (Et px)
Ψ (x,t) 0e h
第十二章 量子物理
12-6 波函数及其统计解释 二、波函数的统计解释 德布罗意波又称为概率波.
波函数的统计意义:在空间某处波函数绝对值的二 次方 2与粒子在该处单位体积中出现的概率成正 比.
12-6 波函数及其统计解释
薛定谔(Erwin Schrodinger,1887~1961)奥 地利物理学家.
1926年建立了以薛定谔 方程为基础的波动力学,并建 立了量子力学的近似方法 .
第十二章 量子物理
12-6 波函数及其统计解释
一、自由粒子的波函数
1)经典的波与波函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波函数的统计解释
一.波动-粒子二重性矛盾的分析
物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误?
实物粒子波长很短,一般宏观条件下,波动性不会表现出来。

到了原子世界(原子大小约1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。

传统对波粒二象性的理解:
(1)物质波包物质波包会扩散,电子衍射,波包说夸大了波动性一面。

(2)大量电子分布于空间形成的疏密波。

电子双缝衍射表明,单个粒子也有波动性。

疏密波说夸大了粒子性一面。

对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。

在经典概念下,粒子和波很难统一到一个客体上。

二.波函数的统计解释
1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。

波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

既描写粒子的波叫几率波。

描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。

几率波的概念将微观粒子的波动性和粒子性统一起来。

微观客体的粒子性反映微观客体具有质量,电荷等属性。

而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。

描述经典粒子:坐标、动量,其他力学量随之确定;
描述微观粒子:波函数,各力学的可能值以一定几率出现。

设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x 到x+dx、y到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体积和强度
归一化条件:在整个空间找到粒子的几率为1。

归一化常数可由归一化条件确定
重新定义波函数,
叫归一化的波函数。

在时刻t、在坐标 (x,y,z)点附近单位体积内找到粒子的几率称为几率密度,用
表示,则
归一化的波函数还有一不确定的相因子;
只有有限时才能归一化为1。

经典波和微观粒子几率波的区别:
(1)经典波描述某物理量在空间分布的周期变化,而几率波描述微观粒子某力学量的几率分布;
(2)经典波的波幅增大一倍,相应波动能量为原来四倍,就变成另一状态了;而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,将几率波的波幅增大一倍并不影响粒子在空间各点出现的几率,即将波函数乘上一个常数,所描述的粒子的状态并不改变;
(3)对经典波,加一相因子,状态会改变,而对几率波,加一相因子不会引起状态改变。

问题:设波函数为,求在()范围找到粒子的几率。

问题:在球坐标系中,粒子波函数表示为,求(a)在球壳中找到粒子的几率。

(b)在方向的立体角中找到粒子的几率。

相关文档
最新文档