波函数的统计解释

合集下载

§1.6 波函数的统计解释 量子力学课件

§1.6  波函数的统计解释 量子力学课件
|Ψ (r)|2 的意义是代表电子出现在 r 点附近几率的大小, 确切的说,
|Ψ (r)|2 Δx Δy Δz 表示在 r 点处,体积元Δx Δy Δz 中找到粒子的几率。波函数在空间某点的强度(振幅 绝对 值的平方)和在这点找到粒子的几率成比例,
据此,描写粒子的波可以认为是几率波,反映微观客体运 动的一 种统计规律性,波函数Ψ (r)有时也称为几率幅。 这就是首先由 Born 提出的波函数的几率解释,它是量子 力学的基本原理。
称为几率密度。
在体积 V 内,t 时刻找到粒子的几率为: W(t) = ∫V dW = ∫Vω( r, t ) dτ= C∫V |Ψ (r,t)|2 dτ
(2) 平方可积
由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即:
C∫∞ |Ψ (r , t)|2 dτ= 1, 从而得常数 C 之值为:
电子究竟是什么东西呢?是粒子?还是波? “ 电子既不是粒子也 不是波 ”,既不是经典的粒子也不是经典的波, 但是我们也可 以说,“ 电子既是粒子也是波,它是粒子和波动二重性矛盾的统 一。” 这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
经典概念中 粒子意味着
经典概念中 波意味着
1.有一定质量、电荷等“颗粒性”的属性; 2.有确定的运动轨道,每一时刻有一定
单位换算:
1ev~12.000K(温度表能量) ~2.410 14HZ(频率表能量)
~8.00c0m1(波长)
附录 量子力学的建立及相关科学家传略础之一,是研究微观粒 子运动规律的科学,使人们对物质世界的认识从宏观层次跨进 了微观层次。自1900年普朗克提出量子假设以来,量子力学便 以前所未有的速度发展起来,紧接着是1905年爱因斯坦提出光 量子假说,直接推动了量子力学的产生与发展。而玻尔运用量 子理论和核式结构模型解决了氢原子光谱之谜。之后德布罗意 的物质波理论使经典物理学的卫道士们大吃一惊。海森堡的矩 阵力学、“不确定原理”和薛定谔的波动力学成了量子力学独 当一面的基础。而数学高手狄拉克在此基础上进一步实现了量 子力学的统一,建立了著名的“狄拉克方程”。泡利的“不相 容原理”又给量子力学抹上了灿烂的一笔。

15-7波函数 玻恩统计解释

15-7波函数   玻恩统计解释

为了区别于经典波动,将上式写成:
( x, t ) 0e
i 2 (t x )
i (Et px)
0e
ψ0 e
第十五章
量子物理
1
物理学
第五版
15-7波函数 波函数物理意义
பைடு நூலகம்
玻恩统计解释
物质波与光波的对比
(波动观点) (微粒观点)
光波振幅平方大 光强大 光子在该处出现 的概率大
物理学
第五版
15-7波函数
玻恩统计解释
一、波函数(描写物质波的函数) 自由粒子的波函数 由波动理论,沿x轴传播的平面波波动方程:
y( x, t ) A cos 2 (t x )
y( x , t ) Ae
i 2 (t x )
只取实部
i 2 ( Et px ) h
2 2 势场中的一维运动粒子 E p i 2 2m x t
第十五章 量子物理
6
粒子在该处出现的 (微粒观点) 概率大 在空间某点波函数的平方和粒子在该点出现的 概率成正比. —玻恩统计解释.
第十五章 量子物理
2
物质波的 强度大
波函数振幅的平方大 (波动观点) | |2= *
物理学
第五版
15-7波函数
玻恩统计解释
物质波与经典波的本质区别
物质波是复函数,本身无具体的物理意义,
玻恩统计解释
一维自由粒子薛定谔方程 自由粒子波函数:
( x , t ) 0e
i ( Et px )
2 p2 2 2 x
非相对论粒子:
i E t
p2 E 2m

波函数的统计解释

波函数的统计解释
有关实验:
子弹 水波 光波
}{ 双缝衍射
子弹:P=P1+P2 波:I≠I1+I2
电子
电子:
1。与宏观粒子运动不同。 2。电子位置不确定。 3。几率正比于强度,即
(rr , t) 2
结论:
波函数的统计解释:波函数在空间某一点的强度(振幅绝对 值的平方)和在该点找到粒子的几率成正比。
数学表达: (r,t) | (r,t) |2
遮住缝1
遮住缝2
双缝都打开
遮住缝1
遮住缝2
双缝都打开
2.2 测不准原理
一. 宏观粒子运动状态确定,各种力学量同时具有确定值。但微观粒子的运动 从根本上讲不具有这种特点。
海森伯 1927年
共轭量
x px
t E
J
二.量子力学中的测量过程
1.海森伯观察实验
2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上它们就不可能同时 具有确定的值
(r , t)
c(
p,
t
)
p
(r )dpx
dpy
dpz
e
p (r )
1
(2) 2 3
i pr
§2.3 态迭加原理
测不准原理和态迭加原理是量子力学的两个基本原理,反映了微观粒子运动的根 本特性,是和量子力学对微观粒子描述的整个数学框架相一致的。
经典物理中,波的迭加只不过是将波幅迭加(波幅代表实际物体的运动 等),并在合成波中出现不同频率的波长的子波成分。微观粒子的波动性的迭加 性其实质是什么呢?

量子力学课件-波函数的统计解释

量子力学课件-波函数的统计解释

微观粒子的波-粒二象性如何理解? 微观粒子的波-粒二象性如何理解? 1.所谓的“粒子性” 是指粒子有一 1.所谓的“粒子性”, 是指粒子有一 所谓的 定质量、电荷等“颗粒性”的属性; 定质量、电荷等“颗粒性”的属性;
2.所谓的“波动性 是指粒子能发 2.所谓的“波动性”, 是指粒子能发 所谓的 生干涉、衍射现象;更深刻地说, 生干涉、衍射现象;更深刻地说, 波动性是微观粒子运动的统计规律 波动性是微观粒子运动的统计规律 的表现形式
nπ (x − a) A sin ψ 1( x) = 2a 0 nπ (x + a) A sin ψ 2 ( x) = 2a 0
请 问 : I 、 波 函 数 ψ 1 ( x ) 和 ψ 2 ( x )是 否 等 价 ? II 、 对 ψ 1 ( x ) 取 n = ± 2 两 种 情 况 , 得 到 的 两 个 波函数是否等价?
ψ 1 = e i2x /h , ψ 4 = −e i2x/h ,
ψ 2 = e −i2 x /h , ψ 5 = 3e − i ( 2 x + π h ) / h ,
ψ 3 = e i3x /h , ψ 6 = ( 4 + 2 i )e i 2 / h .
(2)
已知下列两个波函数: | x |≤ a | x |> a | x |≤ a | x |> a n = 1, 2, 3, L n = 1, 2, 3, L
1, 1.∫∞ C|Ψ(r,t)|2 dτ= 1, 归一化条件或平方可积条件. 此式称为波函数的归一化条件或平方可积条件 此式称为波函数的归一化条件或平方可积条件. |Ψ(r, dτ,( 归一化常数, C=1/∫∞ |Ψ(r,t)|2 dτ,(C)1/2归一化常数, Ψ(r,t)叫归一化波函数。 (C)1/2 Ψ(r,t)叫归一化波函数。 2.ω( r, t ) = C |Ψ (r,t)|2 为几率密度。

波函数及薛定谔方程

波函数及薛定谔方程
N ⋅ dV | Ψ ( x , y , z , t ) |2 的物理意义:
t 时刻,出现在空间(x,y,z)点附近单位体积内的 粒子数与总粒子数之比
t 时刻,粒子出现在空间(x,y,z)点附近单位体积 内的概率
t 时刻,粒子在空间的概率密度分布
注意:
物质波的波函数不表示任何实在物理 量的波动,不描述介质中运动状态(相 位)传播的过程,
NN
标准条件
Ψ是单值、有限、连续的 。
二、薛定谔方程: 是波函数 Ψ所遵从的方程 — 量子力学的基本方程 , 是量子力学的基本假设之一,其正确性由实验检验。
1. 建立 (简单→复杂, 特殊→一般)
一维自由粒子的振幅方程
Ψ (x,t)
=Ψ e−
i ℏ
(
E
t

px

x
)
0
=
Ψ
0e
+
i ℏ
p
x
⋅x
−i Et
2 x
2m
代入
d2ψ ( x) dx2
=

px ℏ2
2
ψ
(
x
)*

d 2ψ ( x ) dx2
+
2 mE ℏ2
ψ
(x)
=
0
即 一维自由粒子的振幅方程
p
2 x
=
2mE
一维定态薛定谔方程
粒子在力场中运动,且势能不随时间变化
E
=
Ek
+
Ep
=
p
2 x
2m
+U
px2 = 2m(E −U )
代入
d2ψ ( x) dx2
∴ 建立关于振幅函数 ψ(x)的方程 —— 振幅方程

波函数及其统计解释

波函数及其统计解释
上述的解释是对处于同一状态的大量电子而言。
在实验中可以控制电子枪的电压,使发出的电子束的 强度十分微弱,以至电子是一个一个通过。假如时间不 长,则落在屏幕上的是一个个的点,而不是扩散开的衍 射图案。就这个意义而言,电子是粒子而不是扩展开的 波。
但时间一长,则感光点在屏幕上的分布显示衍射图样, 与强度较大的电子束在较短时间内得到的图样相同。可 以认为:尽管不能确定一个电子一定到达照相底片的什 么地方,但它到达衍射图样极大值的几率必定较大,而 到达衍射图样极小值的地方的几率必定较小,甚至为零。
在量子物理中,却将这种波方程的复数表示借用过来, 并不再取它的实部,而赋予它新的物理意义。即 用它表示微观客体的波粒子二象性,它就是波函数。
在量子力学中,粒子的状态用波函数来描写,根据薛 定谔方程得出波函数的变化规律。如果已知波函数,则 可由它求出所有描述粒子状态的物理量。
在量子物理中,波函数常用ψ(x,y,z,t)表示,它的最简 单的一个表示式为
3.3 波函数及其统计解释
一、波函数 二、波函数的统计解释 三、波函数的标准条件和归一化
一、波函数
在经典力学中,我们只要知道了质点的运动 方程及其初始条件,就可以知道它的确切位置 和动量。这种方法在宏观世界取得很大的成功, 但不能适用于具有波粒二象性的微观粒子。
量子力学原理之一:微观粒子的状态可用 波函数来描述。
在经典物理中,为了计算方便,常将波方程表示成 复数,如单色平面波
y( x, t) Acos(t kx)
表示为Y ( x, t ) Aei(tkx)
显然,y(x,t)等于Y(x,t)的实部,这样计算时 用Y(x,t),算完后再取它的实部,这样做在经典物 理中是为了计算的方便,在物理学中并无新意。

波函数及其统计解释

波函数及其统计解释
5
动量分布概率(1)
设子设有平出 动 面pr现 量波 px在的ixip点波的y函pjr概y数j附z率k为近p如,zk的何则为概表(|粒r率示)(子r。?) 的|2eip动|r /量(x,,y, z那) |2么表粒示子粒具
任意粒子的波函数可以按此平面波做傅立叶展开
(r )
1
(2)3
2
( p)eipr / d 3 p
*
(
p)
p
(
p)d
3
p
p
*
(r )

(r )d
3r
,

力学量用算符表示
A
*
(r )

(r )d
3r
20
三、力学量用算符表示(5)
力学量 A 的平均值为
A
*
(r )

(r )d
3r
其 问中 题,:Aˆ坐为标力r学的量平A均的值算符r 。
*
(r )r
(r )d
该如何理解波函数的物理意义?为此,人们
提出了波函数的统计诠释来作为对波函数物
理意义的一种理解。
4
量子力学的基本假定之一
基本假定Ⅰ:波函数假定 微观粒子的状态可以被一个波函数完全 描述,从这个波函数可以得出体系的所 有性质。波函数一般满足连续性、有限 性和单值性三个条件。 说明:波函数一般是粒子坐标和时间的 复函数,波函数的模方代表粒子空间分 布的概率密度。
量子力学
波函数及其统计解释 粒子的动量分布 不确定度关系——进一步讨论
1
简短回顾
1、自由粒子的波函数 既然粒子具有波动性,那么就应该用一
个反映波动的函数来加以描述。 由平面波公式 Asin(kxt)

12-6波函数及其统计解释

12-6波函数及其统计解释

电磁波
E(x,t)

E0
cos

(t

x

)
H
( x, t )

H
0
cos 2π
(t

x

)
经典波为实函数
i 2π( t x )
y(x, t) Re[ Ae
]
第十二章 量子物理
12-6 波函数及其统计解释
2)自由粒子平面波函数
自由粒子能量 E 和动量
p
是确定的,其德布罗
意频率和波长均不变 ,可认为它是一平面单色波 .
某一时刻出现在某点附近在体积元 dV 中的粒子

的概率为
Ψ 2 dV ΨΨ*dV
某一时刻在整个空间内发现粒子的概率为
归一化条件
2
Ψ dV 1
第十二章 量子物理
波函数
i2π( t x )
(x,t) 0e

微观粒子的波粒二象性
E
h
h
p
i 2π (Et px)
Ψ (x,t) 0e h
第十二章 量子物理
12-6 波函数及其统计解释 二、波函数的统计解释 德布罗意波又称为概率波.
波函数的统计意义:在空间某处波函数绝对值的二 次方 2与粒子在该处单位体积中出现的概率成正 比.
12-6 波函数及其统计解释
薛定谔(Erwin Schrodinger,1887~1961)奥 地利物理学家.
1926年建立了以薛定谔 方程为基础的波动力学,并建 立了量子力学的近似方法 .
第十二章 量子物理
12-6 波函数及其统计解释
一、自由粒子的波函数
1)经典的波与波函数

波函数及其统计解释资料课件

波函数及其统计解释资料课件
特点
柱面波函数具有恒定的振幅和相位,并且传播方向与波数 k垂直。
应用
柱面波函数在声学、电磁学和天文学等领域都有广泛的应 用。
04
波函数的物理意义
波函数的粒子性
粒子位置与波函数的关联
波函数可以被视为一个概率幅,描述了粒子在空间中的概率分布 。
粒子动量与波函数的关联
波函数的傅里叶变换描绘了粒子的动量分布。
相干性是波动性质的重要表现之 一,它可以产生明暗相间的条纹
,即干涉现象。
波函数的对称性
波函数的对称性是指波函数在空间上的 分布是否具有某种对称性。
常见的对称性包括:轴对称、面对称、 旋转对称等。
波函数的对称性与其波动性质密切相关 ,不同的对称性会导致不同的干涉现象

03
波函数的分类
平面波函数
定义
象。
波函数是一种复数函数,其模方 表示粒子在某个位置出现的概率
密度。
波函数的统计解释的重要性
波函数的统计解释是理解量子力学的基础之一,它提供了从概率角度描述粒子的方 法。
通过波函数的统计解释,我们可以计算出粒子在某个位置出现的概率,以及测量某 个物理量的期望值和方差等统计性质。
波函数的统计解释还与量子纠缠、量子计算等重要概念密切相关。
波函数与量子态的关系
描述量子态的函数
波函数是描述量子态的函 数,它可以表示出量子态 的叠加原理和相干性。
波函数的模平方
波函数的模平方可以表示 出某个物理量的概率分布 ,如位置、动量等。
测量问题
波函数与测量问题密切相 关,测量会导致波函数塌 缩,进而影响后续的测量 结果。
波函数与测量问题
测量导致波函数塌缩
06
结论与展望

量子力学波函数的统计解释

量子力学波函数的统计解释

波由粒子组成的看法仅注意到了粒子性的一面,而抹杀了 粒子的波动性的一面,具有片面性。
(2) 粒子由波组成
电子是波包。把电子波看成是电子的某种实际结构,是三维
空间中连续分布的某种物质波包。因此呈现出干涉和衍射等
波动现象。波包的大小即电子的大小,波包的群速度即电子
的运动速度。
3
§2.1 波函数的统计解释(续3)
必须注意
称为几率密度(概率密度)
(1)“微观粒子的运动状态用波函数描述,描写粒子的波是概 概波”,这是量子力学的一个基本假设(基本原理)。
知道了描述微观粒子状态的波函数,就可知道粒子在空间各 点处出现的概率,以后的讨论进一步知道,波函数给出体系的一 切性质,因此说波函数描写体系的量子状态(简称状态或态)
设粒子状态由波函数 (r , t) 描述,波的强度是
(r ,t) 2 *(r ,t)(r ,t)
则微观粒子在t 时刻出现在 r 处体积元dτ内的概率
dW (r ,t) C2 (r ,t) 2 d
这表明描写粒子的波是几率波(概率波),反映微观客体运
动的一种统计规律性,波函数 r,t 有时也称为概率幅。
实验上观测到的电子,总是处于一个小区域内。例如一个
原子内的电子,其广延不会超过原子大小≈1
0
A

电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒子也不是波 ”,既不是经典的粒子也不是 经典的波,但是我们也可以说,“ 电子既是粒子也是波,它 是粒子和波动二重性矛盾的统一。”
这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
Chapter 2 The wave function and Schrödinger Equation

大学物理教程12.2 波函数及统计解释

大学物理教程12.2 波函数及统计解释
粒子在空间各点的概率总和应为 l

(r , t ) (r , t )dV 1
*
(x,t)
—( 全空间)
第12章 量子力学
x
12-2 波函数及统计解释
3
单值
从而保证概率密度——|ψ(r)|2在任意时刻t 都是 确定的单值
4 连续
波函数满足的微分方程为二阶的(见后),要 求波函数的一阶导数连续,波函数本身必须连续。 总之,波函数应满足的条件: 单值、有限、连续和归一
第12章 量子力学
12-2 波函数及统计解释
三 不确定性关系 1 位置和动量不确定关系 按照(经典)波动理论,约束在空间某区域内 的波不可能是单色的——不可能具有唯一的波长— —唯一动量。
这一结论对物质波同样正确:被束缚在某区域 的粒子不可能具有确定的动量,即粒子的坐标和动 量不能同时取确定值,存在一个不确定关系。


“粒子在某时的能量”;
这样的说法违背了不确定性原理;

不确定关系对测量或观测精度提出了限制。
第12章 量子力学
12-2 波函数及统计解释

设氢原子在第一激发态的寿命为10-8 s,由不
确定关系求能级宽度和原子谱线自然宽度。
解:E t
2
E1

E 2t
1107 eV
(5) “波动性”与“粒子性”的联系——玻恩统计解 释。
第12章 量子力学
12-2 波函数及统计解释
说明
3
关于量子力学的争论

以玻尔为首,包括海森堡、狄拉克、玻恩 的哥本哈根学派:宇宙中事物偶然性是根本的, 必然性是偶然性的平均表现。
以爱因斯坦为首,包括薛定谔、德布罗意 学派:自然规律根本上是决定论的。“上帝肯 定不是用掷骰子来决定电子应如何运动的!”

第4讲2波函数统计解释态叠加原理

第4讲2波函数统计解释态叠加原理

振荡着。拒绝服从经典定律,按与高斯定律截然
不同的波定律分布,呈波样状。
返回
几率进入物理学
• 被晶体发射的电子在照相底片上留下痕迹。这些痕迹形成的分 布曲线,玻恩建议称为德布罗意波。电子波决定电子射中照相 底片上的某点的几率,因此玻恩建议给它取个更恰当的名称- 几率波。
• 经典物理学中,从未遇到几率这个名称。牛顿公式不能直接应 用于气体分子的运动。
• 状态在经典和量子力学中的解释 • 态迭加原理内容 • 与经典波的叠加原理的区别 • 电子的衍射解释 • 态迭加原理的应用和推论
返回
状态在经典和量子力学中的解释
• 经典粒子的状态
• 描述:坐标和动量 • 因果律:已知初始的坐标和动量便可知以后任一时刻的。 • 轨道:粒子的轨道运动与其在任时刻确定的坐标和动量
返回
描述波的函数
• 回顾电子的行为:电子的衍射说明电子波不是由 粒子形成;再回顾玻尔理论遇到的困难—无法解 释电子的跃迁过程(光谱产生的过程)。
• 解决办法:电子的行为用波函数表示。这波函数 的自变量为电子的坐标和时间。因为由该波函数 应该可以得到粒子的状态。
• 定义—复函数(r,t)(波粒二象性) • 例子—自由运动的粒子
• 用几率法则、统计法则描述气体运动,确信深藏在这些法则后 面的是牛顿力学的精确定律。
• 几率法则:不可能设想每一瞬时所有分子都具有相同的速度。 对于一个分子而言的不规则性当应用于大数量分子时则转化为
规则性。
• 统计法则:分子运动不存在不规则性,每一次碰撞,每一个分 子的个别运动都可以用牛顿定律表述出来。
• 与经典的区别:用统计性完全确定这个状态。 • 和经典力学不同,量子力学用一个分布来描写系统的行为,

22.6波函数及其统计解释

22.6波函数及其统计解释

双缝 齐开时的声波为 ( A1 + A2 )e 声强为
iω t
I 12 = A1 + A2 = A1 + A2 + A A2 + A1 A
* 1
2
2
2
* 2
= I 1 + I 2 +干涉项 干涉项
再看物质波: 再看物质波: 电子的相干性 注意差别之处
干涉项
15
电子的状态用波函数Ψ 描述 •只开上缝时 电子有一定的概率通过上缝 只开上缝时 其状态用Ψ1 描述 •只开下缝时 电子有一定的概率通过下缝 只开下缝时 其状态用Ψ2描述
16
•双缝齐开时 双缝齐开时 电子可通过上 通过下 电子可通过上缝 也可通过下缝 通过上 各有一定的 一定的概率 通过上 下缝各有一定的概率 总概率幅
Ψ 12 = Ψ 1 + Ψ 2
2 2
∗ 1
总概率密度 P =| Ψ 12 | =| Ψ 1 + Ψ 2 | 12
2 2
= Ψ1 + Ψ 2 + Ψ1 +Ψ 2Ψ Ψ
少女? 少女? 老妇? 老妇?
两种图像不会 同时出现在你 的视觉中。 的视觉中。
8
二、波函数和概率波
1. 波函数
经典波(平面单色波) 经典波(平面单色波)
ψ = ψ o cos 2π (νt − ) λ
x
v 物质波波函数写成 Ψ (r,t)
2.玻恩(M.Born)假设 玻恩( 玻恩 ) 物质波不 物质波不代表实在物理量的波动 而是刻划粒子在空间概率分布的概率波 玻恩获得1954年诺贝尔物理学奖 年诺贝尔物理学奖 玻恩获得
22
三、自由粒子的波函数
所谓自由 即粒子不受任何形式力的作用

2.1波函数的统计解释详解

2.1波函数的统计解释详解

Chapter 2 The wave function and Schrödinger Equation
2.1 波函数的统计解释 The Wave function and its statistic explanation
2.3 薛定谔方程
The Schrödinger equation
2.4 粒子流密度和粒子数守恒定律
★ 描述自由粒子的波是具有确定能量和动量的平面波
Chapter 2 The wave function and Schrödinger Equation
P (r , t ) Ae
反例:i)自由粒子平 面波,占据整个空间 ii)色散 群速度: 相速度: apter 2 The wave function and Schrödinger Equation
The linear harmonic oscillator
2.8 势垒贯穿
The transmission of potential barrier
2
Chapter 2 The wave function and Schrödinger Equation
§2-1 波函数的统计解释
重点: 微粒的状态由波函数完全描写 难点: 波函数的意义和性质的理解
波粒二象性的正确解释
Chapter 2 The wave function and Schrödinger Equation
1)疏密波的观点(波由粒子组成) 如水波,声波,由物质的分子密度疏密变化而形 成的一种分布。 这种看法是与实验矛盾的,它不能解释长时间单 个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长, 底片上仍可呈现出衍射花纹。这说明电子的波动性 并不是许多电子在空间聚集在一起时才有的现象, 单个电子就具有波动性。

波函数的统计解释

波函数的统计解释

波函数的统计解释波函数是量子力学中描述粒子状态的数学函数。

它包含了粒子的可能位置、动量等信息,但并不直接表示物理实体。

波函数的统计解释是指通过波函数计算出的统计规律,用来预测大量粒子的行为。

1.概率解释:波函数的模的平方表示在一些空间点找到粒子的概率。

例如,对于一维运动的粒子,在其中一时刻,波函数的模的平方在一些位置上的积分就给出了粒子在该位置出现的概率。

这一概率解释使得波函数的统计解释与经典物理中的概率概念有了相似之处。

2.叠加解释:波函数的叠加原理使得多个波函数之间可以相互叠加。

这意味着多个波函数所代表的可能状态同时存在,并以一定的概率进行叠加。

这种叠加解释可以用来解释干涉和衍射等现象,这些现象是波粒二象性的体现。

3.线性解释:波函数的时间演化可以通过薛定谔方程进行描述。

根据薛定谔方程,波函数的演化是线性的,即满足叠加率和线性性质。

这一线性解释意味着多个波函数之间可以相互干涉和叠加,形成新的波函数。

4.统计解释:波函数可以用来确定粒子的期望值和方差等统计量。

例如,位置算符对应的期望值可以表示粒子的平均位置,动量算符对应的期望值可以表示粒子的平均动量。

通过对波函数进行数学计算,可以得到这些统计量,并与实验结果进行比较。

5.状态解释:波函数可以表示粒子的状态,包括其位置、动量和自旋等特征。

通过对波函数进行适当的测量,可以得到特定的物理量。

测量过程会导致波函数的坍缩,从而使得粒子的状态变为测量得到的特定值。

这一解释与量子力学的测量原理密切相关。

需要注意的是,波函数的统计解释并不是完美的,它依赖于量子力学中的一些基本假设和数学工具。

例如,波函数的坍缩是一个不可逆的过程,且测量结果具有一定的不确定性。

波函数的统计解释只能给出概率分布等统计规律,而无法提供关于单个粒子行为的具体预测。

总而言之,波函数的统计解释通过描述波函数的数学属性,从而预测大量粒子的行为。

它包括概率解释、叠加解释、线性解释、统计解释和状态解释等多个方面,为我们理解量子力学中的粒子行为提供了重要的物理和数学工具。

1-波函数的统计解释与薛定鄂方程

1-波函数的统计解释与薛定鄂方程

专题1−波函数的统计诠释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。

如何从波函数得到微观粒子的信息是量子力学的一个主要内容。

波恩的统计诠释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。

由于波函数的诠释,物理上的波函数必须是归一化1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)由波函数的统计诠释,波函需要满足标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。

);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t,坐标x有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。

由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。

.测量引起波函数的坍塌存在两类完全不同的物理过程:“正常”类,波函数按薛定鄂方程“从容不迫”的演化,“测量”类,由于测量,波函数突然和不连续的坍塌。

对于坐标这个力学量,由波函数我们可以得出它的信息(几率密度、期待值),那么其他力学量呢? 力学量的期待值当粒子处于态),(t x ψ时,对于一个力学量,如果我们还想知道测量这个力学量可以得到那些特定值,得到某个特定值的几率是多少,那么该如何做?波函数的统计解释(广义统计解释)给出。

首先,我们需要知道这个力学量的本征函数。

,n n n F Φ=Φ∧λ ,...3,2,1=n 分立谱本征函数满足正交归一条件(分立谱)nm n mdx δ=ΦΦ⎰∞∞-*将体系的状态波函数ψ用算苻ˆF的本征函数nΦ展开nnncΦ=ψ∑则在ψ态中测量力学量ˆF得到结果为nλ的几率是2n c,在测量后波函数坍塌为nΦ。

量子力学第二章波函数

量子力学第二章波函数

第二章波函数和薛定谔方程2.1 波函数的统计解释与态叠加原理1、波函数的统计解释上一章已说到,为了表示粒子的波粒二象性,可以用复数形式的平面波束描写自由粒子。

自由粒子是不受力场作用的,它的能量与动量都是常量。

如果粒子受到随时间及位置等变化的力场的作用,它的能量和动量就不再是常量,或者不再都是常量。

这时,粒子就不能用平面波来描写,设这时描写粒子的波是某一个函数,这个函数就称为波函数。

它描写粒子所处的状态,所以也称为态函数,它通常是一个复数。

究竟怎样理解波函数和它所描写的粒子之间的关系呢?对于这个问题,曾经有过各种不同的看法。

例如,将波看作是由它所描写的粒子构成的,这种看法是不对的。

我们知道,衍射现象是由波的干涉而产生的,如果波果真是由它所描写的粒子构成,则粒子流的衍射现象应当是由于构成波的这些粒子相互作用而形成的。

但事实证明,在粒子流的衍射实验中,照片上所显示出来的衍射图形与入射粒子流的强度无关,如果减少入射粒子流强度,即使粒子是一个一个地被衍射,虽然一开始照片上的点子看起来是毫无规则的,但当足够长的时间后,如果落在照片上的粒子数基本上保持不变,则所得到的衍射图形是相同的。

这说明每一个粒子被衍射的现象与其他粒子无关,衍射图形不是由粒子之间的相互作用而产生的。

除了上面的看法外,还有其他一些企图解释波函数的尝试,但都因与实验事实不符而被否定。

为人们所普遍接受的对波函数的解释,是由玻恩(Born)首先提出的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成比例。

按照这种解释,描写粒子的波及是几率波。

按照波函数的几率解释,很容易理解衍射实验:每一个粒子都具有波性,所以每一个粒子都被衍射。

但如果粒子数很少,则统计性质显示不出来,所以在照片上的点子看起来好象是毫无规则的;如果粒子数目足够大,则在波的强度最大的地方,粒子投射在这里的几率也最大,便出现衍射极大,在波的强度最小的地方,粒子投射在这里的几率也最小,便出现衍射极小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波函数的统计解释
一.波动-粒子二重性矛盾的分析
物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误?
实物粒子波长很短,一般宏观条件下,波动性不会表现出来。

到了原子世界(原子大小约1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。

传统对波粒二象性的理解:
(1)物质波包物质波包会扩散,电子衍射,波包说夸大了波动性一面。

(2)大量电子分布于空间形成的疏密波。

电子双缝衍射表明,单个粒子也有波动性。

疏密波说夸大了粒子性一面。

对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。

在经典概念下,粒子和波很难统一到一个客体上。

二.波函数的统计解释
1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。

波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

既描写粒子的波叫几率波。

描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。

几率波的概念将微观粒子的波动性和粒子性统一起来。

微观客体的粒子性反映微观客体具有质量,电荷等属性。

而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。

描述经典粒子:坐标、动量,其他力学量随之确定;
描述微观粒子:波函数,各力学的可能值以一定几率出现。

设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x 到x+dx、y到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体积和强度
归一化条件:在整个空间找到粒子的几率为1。

归一化常数可由归一化条件确定
重新定义波函数,
叫归一化的波函数。

在时刻t、在坐标 (x,y,z)点附近单位体积内找到粒子的几率称为几率密度,用
表示,则
归一化的波函数还有一不确定的相因子;
只有有限时才能归一化为1。

经典波和微观粒子几率波的区别:
(1)经典波描述某物理量在空间分布的周期变化,而几率波描述微观粒子某力学量的几率分布;
(2)经典波的波幅增大一倍,相应波动能量为原来四倍,就变成另一状态了;而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,将几率波的波幅增大一倍并不影响粒子在空间各点出现的几率,即将波函数乘上一个常数,所描述的粒子的状态并不改变;
(3)对经典波,加一相因子,状态会改变,而对几率波,加一相因子不会引起状态改变。

问题:设波函数为,求在()范围找到粒子的几率。

问题:在球坐标系中,粒子波函数表示为,求(a)在球壳中找到粒子的几率。

(b)在方向的立体角中找到粒子的几率。

相关文档
最新文档