圆锥曲线中的最值、范围问题
圆锥曲线中的最值和范围问题

圆锥曲线中的最值和范围问题一、【基础考点】与圆锥曲线有关的最值和范围问题在高考中突出考试的知识点: (1)圆锥曲线的定义和方程;(2)点与曲线的位置关系;特别是点在曲线上,点的坐标满足方程; (3)a 、b 、c 、p 、e 的几何意义及相关关系; (4)二次函数、均值不等式及导数的应用。
基础训练:1.已知双曲线12222=-bya x(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C )A.( 1,2)B. (1,2)C.[2,)+∞D.(2,+∞)2. P 是双曲线221916xy-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为( D )A. 6B.7C.8D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A )A .43B .75C .85D .34.已知双曲线22221,(0,0)xya b a b-=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B )(A)43 (B)53 (C)2 (D)735.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 326.对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( B )(A )(-∞,0) (B )(-∞,2] (C )[0,2] (D )(0,2)二、【热点透析】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
圆锥曲线中范围与最值问题

§8.10 圆锥曲线中范围与最值问题题型一 范围问题例1 (2022·临沂模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆C 上,以PF 1为直径的圆E :x 2+⎝⎛⎭⎫y -142=4916过焦点F 2. (1)求椭圆C 的方程;(2)若椭圆C 的右顶点为A ,与x 轴不垂直的直线l 交椭圆C 于M ,N 两点(M ,N 与A 点不重合),且满足AM ⊥AN ,点Q 为MN 的中点,求直线MN 与AQ 的斜率之积的取值范围. 解 (1)在圆E 的方程中,令y =0,得x 2=3,解得x =±3,所以F 1,F 2的坐标分别为(-3,0),(3,0).因为E ⎝⎛⎭⎫0,14, 又因为|OE |=12|F 2P |,OE ∥F 2P , 所以点P 的坐标为⎝⎛⎭⎫3,12, 所以2a =|PF 1|+|PF 2|=2×74+12=4, 得a =2,b =1,即椭圆C 的方程为x 24+y 2=1. (2)右顶点为A (2,0),由题意可知直线AM 的斜率存在且不为0,设直线AM 的方程为y =k (x -2),由MN 与x 轴不垂直,故k ≠±1.由⎩⎪⎨⎪⎧y =k (x -2),x 24+y 2=1,得(1+4k 2)x 2-16k 2x +16k 2-4=0,设M (x 1,y 1),N (x 2,y 2),又点A (2,0),则由根与系数的关系可得2x 1=16k 2-41+4k 2, 得x 1=8k 2-21+4k 2,y 1=k (x 1-2)=-4k 1+4k 2, 因为AM ⊥AN ,所以直线AN 的方程为y =-1k(x -2), 用-1k 替换k 可得,x 2=8-2k 24+k 2,y 2=4k 4+k 2, 所以点Q 坐标为⎝ ⎛⎭⎪⎫30k 2(1+4k 2)(4+k 2),6k (k 2-1)(1+4k 2)(4+k 2), 所以直线AQ 的斜率k 1=6k (k 2-1)(1+4k 2)(4+k 2)30k 2(1+4k 2)(4+k 2)-2=3k (1-k 2)2(2k 4+k 2+2), 直线MN 的斜率k 2=y 2-y 1x 2-x 1=4k 4+k 2+4k 1+4k 28-2k 24+k 2-8k 2-21+4k 2=5k 4(1-k 2), 所以k 1k 2=15k 28(2k 4+k 2+2)=158⎝⎛⎭⎫2k 2+2k 2+1, 因为k 2>0且k 2≠1,所以2k 2+2k 2+1>22k 2×2k2+1=5, 所以0<158⎝⎛⎭⎫2k 2+2k 2+1<38,即k 1k 2∈⎝⎛⎭⎫0,38. 所以直线MN 与AQ 的斜率之积的取值范围是⎝⎛⎭⎫0,38. 教师备选(2022·武汉调研)过双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1的动直线l 与Γ的左支交于A ,B 两点,设Γ的右焦点为F 2.(1)若△ABF 2可以是边长为4的正三角形,求此时Γ的标准方程;(2)若存在直线l ,使得AF 2⊥BF 2,求Γ的离心率的取值范围.解 (1)依题意得|AF 1|=2,|AF 2|=4,|F 1F 2|=2 3.∴2a =|AF 2|-|AF 1|=2,a =1,2c =|F 1F 2|=23,c =3,b 2=c 2-a 2=2,此时Γ的标准方程为x 2-y 22=1. (2)设l 的方程为x =my -c ,与x 2a 2-y 2b2=1联立, 得(b 2m 2-a 2)y 2-2b 2cmy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2b 2cm b 2m 2-a 2,y 1y 2=b 4b 2m 2-a2, 由AF 2⊥BF 2,F 2A -→·F 2B -→=0,(x 1-c )(x 2-c )+y 1y 2=0,(my 1-2c )(my 2-2c )+y 1y 2=0⇒(m 2+1)b 4-4m 2c 2b 2+4c 2(b 2m 2-a 2)=0⇒(m 2+1)b 4=4a 2c 2⇒(m 2+1)=4a 2c 2b 4≥1 ⇒4a 2c 2≥(c 2-a 2)2,∴c 4+a 4-6a 2c 2≤0⇒e 4-6e 2+1≤0,又∵e >1,∴1<e 2≤3+22,∴1<e ≤1+2,又A ,B 在左支且l 过F 1,∴y 1y 2<0,b 4b 2m 2-a 2<0⇒m 2<a 2b 2⇒m 2+1=4a 2c 2b 4<a 2b 2+1, ∴4a 2<b 2=c 2-a 2⇒e 2>5. 综上所述,5<e ≤1+ 2.思维升华 圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 (2022·南昌模拟)已知圆M :x 2+(y -1)2=8,点N (0,-1),P 是圆M 上一动点,若线段PN 的垂直平分线与PM 交于点Q .(1)求点Q 的轨迹方程C ;(2)若直线l 与曲线C 交于A ,B 两点,D (1,0),直线DA 与直线DB 的斜率之积为16,求直线l 的斜率的取值范围.解 (1)由题意可知|QN |=|QP |,又点P 是圆上的点,则|PM |=22,且|PM |=|PQ |+|QM |,则|QN |+|QM |=22>2,由椭圆的定义可知,点Q 的轨迹是以M ,N 为焦点的椭圆,其中a =2,c =1,b =1,则点Q 的轨迹方程C :y 22+x 2=1.(2)由已知得直线l 的斜率存在,设直线l 的方程为y =kx +m (k ≠0),联立方程⎩⎪⎨⎪⎧y 22+x 2=1,y =kx +m ,消去y 得(k 2+2)x 2+2kmx +m 2-2=0,Δ=8k 2-8m 2+16>0,解得m 2<k 2+2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2km k 2+2,x 1x 2=m 2-2k 2+2, 所以k DA ·k DB =y 1x 1-1·y 2x 2-1 =kx 1+m x 1-1·kx 2+m x 2-1=16, 化简得2(m 2-k 2)(m +k )2=16. 当m =-k 时,直线l 的方程为y =kx -k 恒过(1,0),不符合题意;当m ≠-k 时,得m =1311k , 直线l 的方程为y =kx +1311k 恒过⎝⎛⎭⎫-1311,0, 由m 2<k 2+2得169121k 2<k 2+2, 即k ∈⎝⎛⎭⎫-11612,0∪⎝⎛⎭⎫0,11612. 题型二 最值问题例2 (2022·广州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝⎛⎭⎫-1,22,短轴长为2. (1)求椭圆C 的标准方程;(2)过点(0,2)的直线l (直线l 不与x 轴垂直)与椭圆C 交于不同的两点M ,N ,且O 为坐标原点.求△MON 的面积的最大值.解 (1)依题意得(-1)2a 2+⎝⎛⎭⎫222b 2=1,而b =1, 则1a 2+12=1⇒1a 2=1-12=12⇒a 2=2, 所以椭圆C 的标准方程为x 22+y 2=1. (2)因为直线l 不与x 轴垂直,则l 的斜率k 存在,l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 22+y 2=1,得(2k 2+1)x 2+8kx +6=0,因为直线l 与椭圆C 交于不同的两点M ,N ,则有Δ=(8k )2-4·(2k 2+1)·6=16k 2-24>0⇒k 2>32, 即k <-62或k >62, 设点M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8k 2k 2+1, x 1x 2=62k 2+1, 所以|MN |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 2k 2+12-4·62k 2+1=1+k 2·8(2k 2-3)(2k 2+1)2 =1+k 2·22·2k 2-32k 2+1, 而原点O 到直线l :kx -y +2=0的距离d =2k 2+1,△MON 的面积S =12·|MN |·d=12·1+k 2·22·2k 2-32k 2+1·2k 2+1 =22·2k 2-32k 2+1,令t =2k 2-3⇒2k 2=t 2+3(t >0),S =22t t 2+4=22t +4t, 因为t +4t ≥2t ·4t=4, 当且仅当t =4t ,即t =2时取“=”,此时k 2=72, 即k =±142,符合要求, 从而有S ≤224=22, 故当k =±142时, △MON 的面积的最大值为22. 教师备选(2022·厦门模拟)设椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点A ,B ,C 分别为Γ的上、左、右顶点,且|BC |=4.(1)求Γ的标准方程;(2)点D 为直线AB 上的动点,过点D 作l ∥AC ,设l 与Γ的交点为P ,Q ,求|PD |·|QD |的最大值.解 (1)由题意得2a =|BC |=4,解得a =2.又因为e =c a =32, 所以c =3,则b 2=a 2-c 2=1.所求Γ的标准方程为x 24+y 2=1. (2)方法一 由(1)可得A (0,1),B (-2,0),C (2,0),则k AC =-12, 直线AB 的方程为x -2y +2=0,设直线l 的方程为y =-12x +λ. 联立⎩⎨⎧ y =-12x +λ,x 24+y 2=1,消去y ,整理得,x 2-2λx +2λ2-2=0.①由Δ>0,得-2<λ<2,联立⎩⎪⎨⎪⎧y =-12x +λ,x -2y +2=0,解得D 的坐标为⎝⎛⎭⎪⎫λ-1,λ+12, 设P (x 1,y 1),Q (x 2,y 2), 由①知⎩⎪⎨⎪⎧ x 1+x 2=2λ,x 1x 2=2λ2-2,② 又|PD |=52|x 1-(λ-1)|, |QD |=52|x 2-(λ-1)|, 所以|PD |·|QD |=54|x 1x 2-(λ-1)(x 1+x 2)+(λ-1)2|,③ 将②代入③,得|PD |·|QD |=54|λ2-1| ,λ∈(-2,2), 所以当λ=0时,|PD |·|QD |有最大值54. 方法二 设AD →=λAB →=λ(-2,-1)=(-2λ,-λ),则D (-2λ,1-λ),由点斜式,可得直线l 的方程为y -(1-λ)=-12(x +2λ), 即y =-12x -2λ+1. 联立⎩⎨⎧ y =-12x -2λ+1,x 24+y 2=1,消去y ,得x 2+(4λ-2)x +8λ2-8λ=0,①由Δ=(4λ-2)2-4×(8λ2-8λ)>0, 解得1-22<λ<1+22, 设P (x 1,y 1),Q (x 2,y 2),由①得⎩⎪⎨⎪⎧ x 1+x 2=2-4λ,x 1x 2=8λ2-8λ,② 由题意可知|PD |=52|x 1+2λ|, |QD |=52|x 2+2λ|, 所以|PD |·|QD |=54|x 1x 2+2λ(x 1+x 2)+4λ2|,③ 将②代入③得|PD |·|QD |=54|4λ2-4λ|=5|λ2-λ|, 当λ=12时,|PD |·|QD |有最大值54. 思维升华 圆锥曲线中最值的求法(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等.跟踪训练2 如图所示,点A ,B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.解 (1)由已知可得点A (-6,0),F (4,0),设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ),∵P A ⊥PF ,∴AP →·FP →=0,则⎩⎪⎨⎪⎧ x 236+y 220=1,(x +6)(x -4)+y 2=0,可得2x 2+9x -18=0,得x =32或x =-6. 由于y >0,故x =32,于是y =532. ∴点P 的坐标是⎝⎛⎭⎫32,532. (2)由(1)可得直线AP 的方程是x -3y +6=0,点B (6,0).设点M 的坐标是(m,0),则点M 到直线AP 的距离是|m +6|2,于是|m +6|2=|m -6|, 又-6≤m ≤6,解得m =2.由椭圆上的点(x ,y )到点M 的距离为d ,得d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2 =49⎝⎛⎭⎫x -922+15, 由于-6≤x ≤6,由f (x )=49⎝⎛⎭⎫x -922+15的图象可知,当x =92时,d 取最小值,且最小值为15. 课时精练1.已知双曲线x 2a 2-y 2b2=1(a >0,b >0),O 为坐标原点,离心率e =2,点M (5,3)在双曲线上.(1)求双曲线的方程;(2)如图,若直线l 与双曲线的左、右两支分别交于点Q ,P ,且OP →·OQ →=0,求|OP |2+|OQ |2的最小值.解 (1)因为e =c a=2, 所以c =2a ,b 2=c 2-a 2=3a 2.所以双曲线的方程为x 2a 2-y 23a2=1, 即3x 2-y 2=3a 2.因为点M (5,3)在双曲线上,所以15-3=3a 2,所以a 2=4.所以所求双曲线的方程为x 24-y 212=1. (2)设直线OP 的方程为y =kx (k ≠0),则直线OQ 的方程为y =-1kx , 由⎩⎪⎨⎪⎧x 24-y 212=1,y =kx ,得⎩⎪⎨⎪⎧ x 2=123-k 2,y 2=12k 23-k 2,所以|OP |2=x 2+y 2=12(k 2+1)3-k 2. 同理可得|OQ |2=12⎝⎛⎭⎫1+1k 23-1k 2=12(k 2+1)3k 2-1, 所以1|OP |2+1|OQ |2=3-k 2+(3k 2-1)12(k 2+1)=2+2k 212(k 2+1)=16. 设|OP |2+|OQ |2=t ,则t ·⎝⎛⎭⎫1|OP |2+1|OQ |2=2+⎝⎛⎭⎫|OQ ||OP |2+⎝⎛⎭⎫|OP ||OQ |2 ≥2+2=4,所以t ≥416=24, 即|OP |2+|OQ |2≥24(当且仅当|OP |=|OQ |=23时取等号).所以当|OP |=|OQ |=23时,|OP |2+|OQ |2取得最小值24.2.(2022·阳泉模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为22,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,△F 1PF 2的面积为1.(1)求椭圆C 的方程;(2)设斜率存在的直线PF 2,与椭圆C 的另一个交点为Q .若存在T (t,0),使得|TP |=|TQ |,求t 的取值范围.解 (1)由题意可知⎩⎪⎨⎪⎧ c a =22,12·b ·2c =1,b 2+c 2=a 2,解得⎩⎪⎨⎪⎧ a =2,b =1,c =1,故椭圆C 的方程为x 22+y 2=1. (2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为N (x 0,y 0),直线PF 2的斜率为k ,由(1)设直线PQ 的方程为y =k (x -1).当k =0时,t =0符合题意;当k ≠0时,联立⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1,得(1+2k 2)x 2-4k 2x +2k 2-2=0,∴Δ=16k 4-4(1+2k 2)(2k 2-2)=8k 2+8>0,x 1+x 2=4k 21+2k 2, ∴x 0=x 1+x 22=2k 21+2k 2, y 0=k (x 0-1)=-k 1+2k 2, 即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2. ∵|TP |=|TQ |,∴直线TN 为线段PQ 的垂直平分线,∴TN ⊥PQ ,即k TN ·k =-1.∴-k1+2k 22k 21+2k 2-t ·k =-1, ∴t =k 21+2k 2=12+1k 2.∵k 2>0,∴1k 2>0 ,2+1k 2>2, ∴0<12+1k 2<12, 即t ∈⎣⎡⎭⎫0,12.3.(2021·北京)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点A (0,-2),以四个顶点围成的四边形面积为4 5.(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M ,N ,若|PM |+|PN |≤15,求k 的取值范围.解 (1)因为椭圆过A (0,-2),故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5, 故椭圆的标准方程为x 25+y 24=1. (2)设B (x 1,y 1),C (x 2,y 2),因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x 1y 1+2, 同理x N =-x 2y 2+2. 直线BC :y =kx -3,由⎩⎪⎨⎪⎧y =kx -3,4x 2+5y 2=20, 可得(4+5k 2)x 2-30kx +25=0,故Δ=900k 2-100(4+5k 2)>0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2, 故x 1x 2>0,所以x M x N >0.又|PM |+|PN |=|x M +x N |=⎪⎪⎪⎪⎪⎪x 1y 1+2+x 2y 2+2=⎪⎪⎪⎪⎪⎪x 1kx 1-1+x 2kx 2-1 =⎪⎪⎪⎪⎪⎪2kx 1x 2-(x 1+x 2)k 2x 1x 2-k (x 1+x 2)+1 =⎪⎪⎪⎪⎪⎪⎪⎪50k 4+5k 2-30k 4+5k 225k 24+5k 2-30k 24+5k 2+1=5|k |, 故5|k |≤15,即|k |≤3,综上,-3≤k <-1或1<k ≤3.4.(2022·德州模拟)已知抛物线E :x 2=-2y ,过抛物线上第四象限的点A 作抛物线的切线,与x 轴交于点M .过M 作OA 的垂线,交抛物线于B ,C 两点,交OA 于点D .(1)求证:直线BC 过定点;(2)若MB →·MC →≥2,求|AD |·|AO |的最小值.(1)证明 由题意知,抛物线E :x 2=-2y ,则y =-12x 2,可得y ′=-x , 设A (2t ,-2t 2)(t >0),则k AM =-2t ,所以l AM :y +2t 2=-2t (x -2t ), 即y =-2tx +2t 2,所以M (t,0),又k OA =-2t 22t =-t ,所以k BC =1t, 所以l BC :y -0=1t (x -t ),即y =1tx -1, 所以直线BC 过定点(0,-1).(2)解 联立方程⎩⎪⎨⎪⎧y =1t x -1,x 2=-2y ,整理得x 2+2tx -2=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=-2t,x 1x 2=-2, 则MB →·MC →=(x 1-t ,y 1)·(x 2-t ,y 2) =(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+14x 21x 22=1+t 2≥2, 所以t 2≥1, 又由|AD |=⎪⎪⎪⎪1t ·2t +2t 2-11+1t 2=2t 2+1t 2+1·t ,|AO |=(2t )2+(-2t 2)2=2t 1+t 2, 所以|AD |·|AO |=2t 2+1t 2+1·t ·2t ·1+t 2 =⎝⎛⎭⎫2t 2+122-14, 因为2t 2≥2,所以当2t 2=2,即t =1时, |AD |·|AO |的最小值是6.。
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题
2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。
圆锥曲线中的最值和取值范围

2解得X"或…泞,则AM k28k2 -63 4k2=1 k2123 4k2因为AM _AN,所以圆锥曲线中的最值和范围圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。
回顾几年高考中的圆锥曲线试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。
本文就第二问题进行归纳和分析。
最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。
对目标函数的的整理和恰当变形是难点。
所涉及的量有斜率、面积、离心率、线段长度等。
一.近几年高考试题回顾。
X y21.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的t 3直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN的面积;(II)当2 AM二AN时,求k的取值范围•2 2X y【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0,4 3则直线AM的方程为y =k X • 2 .'2 2£ I 二1联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0y -k X 2厂匚2 12厂〒2 12因为 AM 二 AN , k 0,所以 1 kFTk^= 1 k3I 7^,k整理得k -1 4k —k ・4产0 , 4k 2_k ・4=0无实根,所以k.⑵直线AM 的方程为y 二k x • ..t ,r 22x y1联立 t 3并整理得,3 tk 2 x 2 2x t 2k ^3^-0 y =k (X + JT )解得 3 2 ::: k ::: 2 .2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q ,点Q 到抛物线C 的准线的距离为 3 .[来源学科网](I)求抛物线 C 的方程;(n)是否存在点 M , 4使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ••• yQ — = 3 =o抛物线方程x 2 =2y4 2 41 2所以△ AMN 的面积为| AM | =144 79解得 ^-F 或x =曲昇,3 +tk 2所以 AM23 tk26 tAN = 1 亠 k 2—―—"k E 所以3k 」k因为2 AM | | AN 所以 2T k6・口隹,整理得,k3 tk2t 6k -3k t3k -2因为椭圆E 的焦点在x 轴,所以t 3,即1 k —2 k3_2 ::(n)设存在点2X。
圆锥曲线中的范围与最值问题

解:(2)由 2 =λ 1 ,
延长 BF 1, AF 2交椭圆于 C , D 两点,根据椭圆的对
称性可知,四边形 ABCБайду номын сангаас 为平行四边形,且四边形
ABF 1 F 2的面积为四边形 ABCD 的面积的一半.
由题知, BF 1的斜率不为零,
故设 BF 1的方程为 x = my - 2 ,
= 4,
(*), x 1
+ x 2=4 k , x 1 x 2=-4 b ,所以| AB |= 1 + 2 | x 1- x 2|=
1 + 2 · (1 +2 )2 − 41 2 =4 1 + 2 · 2 + .因为 x 2=4 y ,即 y =
2
1
,所以y'= ,则抛物线在点 A 处的切线斜率为 ,在点 A 处的切线方
3
3
2 2
1 2
2
2
2
2
∴b =a -c =a - a = a ,
3
3
∴椭圆的标准方程为 x 2+3 y 2= a 2.
2 + 3 2 =2 ,
2 −2
由൝
⇒ y =±
.
3
= 2
2 −2
2 3
由题可知2
=
,解得 a 2=3,
3
3
2
∴椭圆 C 的方程为 + y 2=1.
3
(2)若 A 和 B 为椭圆 C 上在 x 轴同侧的两点,且 2 =λ 1 ,求四边形
的纵坐标的最小值为( A )
D. 1
(2)设 A ( x 1, y 1), B ( x 2, y 2), M ( x 0, y 0),直线 AB 的方程为 y = kx +
圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
圆锥曲线中的最值与范围、证明与探索性问题

点击对应数字即可跳转到对应题目
1
2
3
4
5
配套精练
1.(2024·漳州期初)已知椭圆 C:ax22+by22=1(a>b>0)的左焦点为 F1(- 3,0),且过
点
A
3,12.
(2) 不过原点 O 的直线 l 与 C 交于 P,Q 两点,且直线 OP,PQ,OQ 的斜率成等比
数列.
①求 l 的斜率; ②求△OPQ 的面积的取值范围.
圆锥曲线中的最值与范围、证明与探索性问题
研题型 能力养成
研题型 能力养成 举题说法
举题说法
目标 1 最值与范围问题
1 (2023·淮北一模节选)已知椭圆 Γ:ax22+by22=1(a >b>0),A,F 分别为 Γ 的左顶点和右焦点,O 为坐 标原点,以 OA 为直径的圆与 Γ 交于点 M(第二象限), |OM|=a2. (1) 求椭圆Γ的离心率e;
+
y2)
+
(2
-
m)2
=
9(t2+1) 3t2-1
-
12t2(2-m) 3t2-1
+
(2
-
m)2
=
(3m2-3)t23-t2-(m12-4m-5),
→→
→→
若MP·MQ为定值,则有 3m2-3=3(m2-4m-5),解得 m=-1,此时MP·MQ=0.当直
线 l 与 x 轴重合时,则 P,Q 为双曲线的两顶点,不妨设点 P(-1,0),Q(1,0).对于
2
(2023·泰安期末)已知椭圆
E:ax22+by22=1(a>b>0)过
A1,
26,B
3, 22两点.
(2) 已知 Q(4,0),过 P(1,0)的直线 l 与 E 交于 M,N 两点,求证:||MNPP||=||MNQQ||.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中的最值、范围问题圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型① 涉及距离、面积的最值以及与之相关的一些问题;② 求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些 问题. (2)两种解法① 几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决;② 代数法,若题目的条件和结论能体现一种明确的函数关系, 则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.[典例](2018武昌调研)已知椭圆的中心在坐标原点,A(2,0), B(0,1)是它的两个顶点,直线y = kx(k>0)与直线AB 相交于点D ,与椭圆相交于 E , F 两点.(1) 若 ED — = 6I D F ,求 k 的值; (2) 求四边形AEBF 的面积的最大值. [思路演示]2解:(1)由题设条件可得,椭圆的方程为X + y 2= 1,直线AB 的方程为x + 2y — 2= 0. 4设 D(x o , kx o ), E(X 1, kx 1), F(X 2, kx ?),其中 X 1<X 2,2解得X 2=—x1=〒4F •①-- >由 ED — = 6DF ,得 x 0— x 1= 6(x 2— x 0),解得k = 2或k = 3.2由点D 在直线AB 上,得X o + 2kx 0-2 =x o =百.2 1 + 2k 10 7 .1 + 4k 2' 化简,得24k 2— 25k + 6= 0,y = kx , 由 V y2= 1得(1 + 4k 2)x 2= 4,X o = ^(6X 2+ X 1) = 5x 2 = _10_7 ;1 +⑵根据点到直线的距离公式和①式可知, 点E ,F 到AB 的距离分别为d 1= |X1+ 2kX1 2|=2(1 + 2k + 寸 1 + 4k 2,A /5(1 + 4 k 2 )'|X 2+ 2kx 2— 2| 2 1 + 2k - 1 + 4k 2d 2= ------ : ----- = J2 -------- ,\5心(1 + 4k 2)又 |AB|= 22 + 12= 5, •••四边形AEBF 的面积为 1 」1 厂 4(1 + 2k ) S = 2A B|(d1+ d2) = 2 • 5 • 51 + 402 2解:(1)设椭圆的方程为 字+器=1(a >b >0). 依题意可知,2b =与^= 4,所以b = 2. 又 c = 1,故 a 2= b 2+ c 2= 5,22故椭圆C 的方程为:+y =1.5 4⑵由题意,圆P 的方程为x 2 + (y —1)2= t 2+1. 设 Q(x o , y o ),因为 PM 丄 QM ,.54k 1+ 1 + 4k 2 当且仅当1 14k = k (k>0),即k =1时,等号成立. 故四边形 AEBF 的面积的最大值为 2 2.[解题师说由于四边形 AEBF 中的四个顶点中,A ,B 为已知定点,E , F 为直线y = kx 与椭圆的 交点,其坐标一定与 k 有关,故四边形 AEBF 的面积可用直线 y = kx 的斜率k 表示,最后通过变形,利用基本不等式求最值.[应用体验]1已知椭圆 C 的左、右焦点分别为F i (- 1,0), F 2(1,0),且F 2 到直线 X - _ 3y - 9 = 0的距离等于椭圆的短轴长.(1) 求椭圆C 的方程;(2) 若圆P 的圆心为P(0, t)(t >0),且经过F i , F 2, Q 是椭圆C 上的动点且在圆 P 夕卜, 过点Q 作圆P 的切线,切点为 M ,当QM |的最大值为t 的值.1 + 4k~ + 4k 1 + 4 k2 = 2=2(1+ 2k = 2 =_1 + 4k 2=2 =21+ —= 2羽,2 4kk41+ ----- W 2 1 4k + .k,求所以|QM|= |PQ|2-12- 1 = x0+ y o—t2—t2— 1=p-揄+ 4t f+ 4+ 4代1若—4t W —2,即t>-,当y°=—2时,|QM|取得最大值,|QM |max = 4t+ 3= %2,解得t= 8<-(舍去).若—4t>—2,即O v t v2, 当y0=—4t 时,|QM |取最大值,且|QM |max=寸4+ 4『=^J2,解得t^-42. 综上可知,当t=¥时,|QM|的最大值为冷2.解决圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;⑵利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的(3) 利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4) 利用已知的不等关系构造不等式,从而求出参数的取值范围;(5) 利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.2 2x y[典例](2018 •肥质检)已知点F为椭圆E: / +器=1(a>b>0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x+ y=1与椭圆E有且仅有一个交点M.4 2(1)求椭圆E的方程;⑵设直线x+ y= 1与y轴交于P,过点P的直线l与椭圆E交于不同的两点A, B,若开PM |2= |PA| |PB|,求实数入的取值范围.[思路演示]解:⑴由题意,得a = 2c, b= 3c,2 2则椭圆E的方程为4^2+总=1.2 2x_+v _—c 24 十 3 = C , 由 x+ 2— 1 4 2•••直线X + y — 1与椭圆E 有且仅有一个交点 M ,4 2 • △— 4— 4(4 — 3c 2) — 0,解得 c 2= 1,2 2•椭圆E 的方程为x- + y — 1.4 3•••直线x + y = 1与y 轴交于P (O ,2),4 2 25•- |PM|2=-当直线I 与x 轴垂直时,|PA| |PB|= (2 + .3) X (2 — 3) = 1, 2 4••• 4PM |2= |PA| |PB|? X=.5 当直线I 与x 轴不垂直时,设直线 I 的方程为 y = kx + 2, A(X 1, y 1), B (X 2, y 2), y = kx + 2, 2 2 由 2 2消去 y ,得(3 + 4k 2)x 2+ 16kx + 4 = 0,3x 2 + 4‘- 12= 0r42则 X 1X 2= 2,且△= 48(4k — 1)>0 ,3 + 4k • |PA| |PB|=仆 + k2)x 1X 2= (1 + k 2) 1+ ^2=入• 4= -1+缶,vk 2f ,• 4<综上可知,实数 入的取值范围是 -,1 . [解题师说]在关系式4PM |2= |PA| |PB|中,P , M 为已知定点,而 A , B 两点是动直线I 与椭圆的 交点,故4与直线I 的斜率有关,应考虑建立 4关于k 的函数关系式求解.得 x ? — 2x + 4 — 3c ?— 0.(2)由(1)得 M 1,3- 2[应用体验]2•已知椭圆E 的中心在原点,焦点 F i , F 2在y 轴上,离心率等于 乎,P 是椭圆E 上直线l 的倾斜角的取值范围.c =乎,b 2= a 2- c 2=-.••• PF 2丄 F 1F 2.•••IPF 2= a.a 2= 9,解得b 2 =2•・椭圆E 的方程为£ + x 2= 1.⑵•.•直线x =- 2与x 轴垂直,且由已知得直线i 与直线x =-号相交, •直线I 不可能与x 轴垂直,•设直线 I 的方程为 y = kx + m , M (X 1, y“,N (X 2, y 2), ,y = kx + m, q 2 2 2由 2 2得(k 2+ 9)x 2 + 2kmx + (m 2- 9)= 0.9x + y = 9•••直线I 与椭圆E 交于两个不同的点 M , N , 二△= 4k 2m 2- 4(k 2+ 9)(m 2-9)>0 , 即 m 2- k 2- 9<0.—2 km则X 1+ x 2=丙亍.•••线段 MN 被直线2x + 1 = 0平分,2b 2 =屯, 由9b 4 终=1a ,-- > -- > T 9PF 1 PF 2 = 1,-- 之 2 ••• 9|PF 2|2= 爷=1. 的点•以线段 PF 1为直径的圆经过 F 2,且—> 9PF 1 —> PF 2 = 1.(1)求椭圆 E 的方程;(2)作直线 l 与椭圆E 交于两个不同的点N.如果线段 MN 被直线2x + 1 = 0平分,求解:(1)依题意,设椭圆2E 的方程为y2 +X 2R= 1(a>b>0),半焦距为 c.•••椭圆E 的离心率等于 2,2 3,•••以线段PF i 为直径的圆经过 F 2,x i + X 2 口戸一2 km ••• 2X -^2- + 1 = 0,即齐9 + 3 4= 0.2 2j m — k — 9<0 , 2 由 I - 2km 得 lk+9)-(k 2 + 9)<0.2「c + 1 = 0 I 2k 丿 k + 9 22k + 9T k + 9>0,.・.=^- 1<0 , 4k-k 2>3,解得 k> 3或 k< - 3. •••直线I 的倾斜角的取值范围为[升级增分训练]⑴求椭圆的离心率;⑵过点C ( - 1,0)的直线I 交椭圆于不同两点 A , B ,且N CC = 2©首,当△ AOB 的面积最 大时,求直线I 的方程.解:(1)由题意知,c +b =3 c - 所以 b = c, a 2= 2b 2,(2)设 A (X I , y i ), B (X 2, y 2), 直线AB 的方程为x = ky - 1(k z 0),因为 AC = 2 CB ,所以(一1 — X i , — y i )= 2(x 2+ 1, y 2), 即 2y 2 + y 1 = 0.①由(1)知,a 2= 2b 2,所以椭圆方程为 x 2+ 2y 2= 2b 2.x = ky -1,222222 消去 x ,得(k 2+ 2)y 2- 2ky + 1-2b 2= 0,x + 2y = 2b 所以y 1+ y 2=命•② 由①②知,y2=-命,y1=伞.2 24 (2018广东五校协作体诊断)若椭圆(+皆1(a >b>0)的左、右焦点分别为F1, F1 2,线段F i F 2被抛物线y 2= 2bx 的焦点所以e =c-ar因为 S A AOB = 2ly i 1+ 2“2|,即k = ± 2时取等号,此时直线l 的方程为x = 2y - 1或x =- 2y — 1, 即 x — 2y + 1 = 0 或 x +_ 2y + 1 = 0. 2.2 2x y(2018惠州调研)如图,椭圆 C : a 2 + b 2= 1(a > b >0)的右顶点为 A(2,0),左、右焦点分 别为F 1, F 2,过点A 且斜率为舟的直线与y 轴交于点P ,与椭圆交于另一个点 B ,且点B 在x 轴上的射影恰好为点 F 1.(1)求椭圆C 的标准方程;1⑵过点P 且斜率大于1的直线与椭圆交于 M ,N 两点(|PM| > |PN|),若S ^RAM : S ^RBN =人 求实数入的取值范围.解:(1)因为BF 1丄x 轴,所以点B — C ,—号,a = 2,=2,解得 b = 3,[c = 1,2 2 所以椭圆C 的标准方程是x 4+卷=1.所以 PM ―=—扌PN —>.由(1)可知 P(0, — 1),设直线 MN : y = kx — 1 k > 1 , M (X 1, y 1), N (X 2, y 2),所以S A AOB=3皋=3打|k| 1 1a=b 2, 由 aa +ca 2 =b 2+c 2, (2)因为PAMS ^ PBN 1?|PA| |PM| sin / APM12|PB| |PN| sin / BPN|PM| 入 品=厂2),,当且仅当|k|2= 2,y = kx — 1, 联立x 2 y 2消去y ,x +y= 1 4 3化简得(4k 2+ 3)x 2— 8kx — 8 = 0.f丄8kx1+ x2=4k T 3, 则 —8 x1x2=4k?T 5.(1,4),所以实数 入的取值范围为(4,4 + 2 3).2 23. (2018广西三市第一次联考)已知右焦点为F 2(C ,0)的椭圆C : x 2+占=1(a>b>0)过点a b1, 3,且椭圆C 关于直线x = c 对称的图形过坐标原点.(1)求椭圆C 的方程;的右顶点,求直线 MA 的斜率k 的取值范围.解:⑴•••椭圆C 过点1, 2 , •丰+ 49b 2= 1,①•••椭圆C 关于直线X = c 对称的图形过坐标原点,••• a = 2c ,T a 2= b 2 + c 2,「. b 2= 3a 2,②4由①②得a 2= 4, b 2= 3, 2 2 •椭圆C 的方程为x + y= 1.4 3 2, 0且斜率不为零,故可设其方程为 x = my +2x = my + 1, 由 22消去 x ,并整理得 4(3m 2+ 4)y 2 + 12my — 45= 0.x+ y = 1 4 3(*)又 PM 一 = (X 1,力+ 1), PN 一 = (X 2, y 2 + 1),贝V 论 入 2X 2.将x 1=—衣代入(*)可得,2 f2 —入216k入= 224k 2+ 3.则1 <2—人< 4,且心2,解得 人4v X< 4+ 2\i 3,(2)过点2,0作直线I 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C(2)依题意,直线l 过点设 E(x i , y i ), F(X 2, y 2), M(x o , y o ), •-y i + y 2=- 3鸽 4,3m + 412. y om•-xo =myo +2=,…k =x o -2=4m r 4.①当m = 0时,k = 0;1②当mz 0时,k = ------------ ,4 4m +mm 4m + 4 = 4|m|+8,m i i |m|• ov|k|w -, •-k w -且 k z o.8 8 8一一 1 1 综合①②可知,直线 MA 的斜率k 的取值范围是—1,-.8 82 24.已知圆x 2+ y 2= 1过椭圆字+生=1(a > b > o)的两焦点,与椭圆有且仅有两个公共点, 2 22 2x y —> —>直线l :y = kx + m 与圆x 2+ y 2 = 1相切,与椭圆孑+十=1相交于A ,B 两点.记X= OA ・OB ,(1) 求椭圆的方程; (2) 求k 的取值范围;(3) 求厶OAB 的面积S 的取值范围. 解:(1)由题意知2c = 2,所以c = 1. 因为圆与椭圆有且只有两个公共点,从而b = 1,2故a = -. 2,所以所求椭圆方程为 专+ 1.(2)因为直线l : y = kx + m 与圆x 2+ y 2= 1相切,y= kx + m ,即 m 2= k 2+ 1.由 x 2 22+y =1消去 y ,得(1 + 2k 2)x 2+ 4kmx + 2m 2 — 2= 0. 设 A(X 1, y 1), B(X 2, y 2),••• yo=恃3m 2 3m 2 + 4, 所以原点O 到直线l 的距离为2—4km 2m — 2则x i+ x2—2, X1X2 —2.1 + 2k 1 + 2k—> —> 2 2 k2+1 2 3 如 1 入=OA -OB = X1X2 + y1y2= (1+ k )x1X2 + km(x1 + x2)+ m =齐昴,由3 三疋4,得2< k2< 1,即k的取值范围是⑶|AB|= 1 + k [ X1+ X2 —4X1X2]22k2+ 1 2,由k2< 1,得-2< |AB|w 3.设厶OAB的AB边上的高为d,… 1 1则S= 2|AB|d= 2|AB|,所以譽s w 2,4 3即厶OAB的面积S的取值范围是。