圆锥曲线中的最值和取值范围

合集下载

(完整版)圆锥曲线的最大值、定问题

(完整版)圆锥曲线的最大值、定问题

圆锥曲线最值、定值、范围一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac 的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP→+OQ→与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.。

专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

专题23  圆锥曲线中的最值、范围问题  微点1  圆锥曲线中的最值问题试题及答案
题型四、与面积有关的最值问题
例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题

2-1,圆锥曲线最值与取值范围

2-1,圆锥曲线最值与取值范围

圆锥曲线最值与取值范围几何最值:1,已知P 为椭圆2212516x y +=上的一点,M 、N 分别为圆()2231x y ++=和圆()2234x y -+=上的点,则||||PM PN +的最小值为( B )A .5B .7C .13D .152,已知椭圆22:12x C y +=的两焦点为1F 、2F ,点()00,P x y 满足2200012x y <+<,则12||||PF PF +的取值范围为_________________2,⎡⎣ 3,1F 、2F 分别为椭圆()222210x y a b a b+=>>的两个焦点,若椭圆上有一点P ,使12PF PF ⊥,试确定b a 的取值范围。

试确定离心率e 的取值范围。

⎛⎝⎦;⎫⎪⎪⎣⎭4,已知点A ()1,1,1F 是椭圆22195x y +=的左焦点,P 是椭圆上任意一点,求1||||PF PA +的最小值。

6代数最值:1, 已知椭圆2241x y +=及直线y x m =+。

(1) 当直线和椭圆有公共点时,求实数m 的取值范围。

(2) 求被椭圆截得的最长弦所在的直线方程。

(1)m ≤≤;(2)d =,当m=0时,d 最大,方程为y=x 。

2, 已知方程()22222k x ky k k -+=-表示焦点在x 轴上的椭圆,求k 的取值范围。

12k <<3, 已知点()()2,0,2,0A B -,P 是平面内一动点,直线PA 、PB 的斜率之积为34-。

(1) 求动点P 的轨迹方程;(2) 过点1,02⎛⎫ ⎪⎝⎭作直线l ,与点P 的轨迹交于E 、F 两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围。

(1)()221243x y x +=≠±;(2)1188k -≤≤。

4, 若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P为椭圆上的任意一点,求OP FP 的最大值。

圆锥曲线中范围与最值问题

圆锥曲线中范围与最值问题

§9.10 圆锥曲线中范围与最值问题题型一 范围问题例1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,且短轴的两个端点与右焦点构成等边三角形.(1)求椭圆C 的方程;(2)设过点M (1,0)的直线l 交椭圆C 于A ,B 两点,求|MA |·|MB |的取值范围. 解 (1)由题意,椭圆短轴的两个端点与右焦点构成等边三角形,故c =3b ,a =b 2+c 2=2b , 即椭圆C :x 24b 2+y 2b2=1, 代入P ⎝⎛⎭⎫1,32, 可得b =1,a =2.故椭圆C 的方程为x 24+y 2=1. (2)分以下两种情况讨论:①若直线l 与x 轴重合,则|MA |·|MB |=(a -1)(a +1)=a 2-1=3;②若直线l 不与x 轴重合,设直线l 的方程为x =my +1,设点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1,x 24+y 2=1,消去x 可得(m 2+4)y 2+2my -3=0, 则Δ=4m 2+12(m 2+4)=16(m 2+3)>0恒成立,由根与系数的关系可得y 1+y 2=-2m m 2+4,y 1y 2=-3m 2+4, 由弦长公式可得|MA |·|MB |=1+m 2·|y 1|·1+m 2·|y 2| =(1+m 2)·|y 1y 2|=3(1+m 2)m 2+4=3(m 2+4)-9m 2+4=3-9m 2+4, 因为m 2+4≥4,则0<9m 2+4≤94, 所以34≤3-9m 2+4<3. 综上所述,|MA |·|MB |的取值范围是⎣⎡⎦⎤34,3. 教师备选(2022·武汉调研)过双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1的动直线l 与Γ的左支交于A ,B 两点,设Γ的右焦点为F 2.(1)若△ABF 2可以是边长为4的正三角形,求此时Γ的标准方程;(2)若存在直线l ,使得AF 2⊥BF 2,求Γ的离心率的取值范围.解 (1)依题意得|AF 1|=2,|AF 2|=4,|F 1F 2|=2 3.∴2a =|AF 2|-|AF 1|=2,a =1,2c =|F 1F 2|=23,c =3,b 2=c 2-a 2=2,此时Γ的标准方程为x 2-y 22=1. (2)设l 的方程为x =my -c ,与x 2a 2-y 2b2=1联立, 得(b 2m 2-a 2)y 2-2b 2cmy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2b 2cm b 2m 2-a 2,y 1y 2=b 4b 2m 2-a2, 由AF 2⊥BF 2,F 2A —→·F 2B —→=0,(x 1-c )(x 2-c )+y 1y 2=0,(my 1-2c )(my 2-2c )+y 1y 2=0⇒(m 2+1)b 4-4m 2c 2b 2+4c 2(b 2m 2-a 2)=0⇒(m 2+1)b 4=4a 2c 2⇒(m 2+1)=4a 2c 2b 4≥1 ⇒4a 2c 2≥(c 2-a 2)2,∴c 4+a 4-6a 2c 2≤0⇒e 4-6e 2+1≤0,又∵e >1,∴1<e 2≤3+22,∴1<e ≤1+2,又A ,B 在左支且l 过F 1,∴y 1y 2<0,b 4b 2m 2-a 2<0⇒m 2<a 2b 2⇒m 2+1=4a 2c 2b 4<a 2b 2+1, ∴4a 2<b 2=c 2-a 2⇒e 2>5. 综上所述,5<e ≤1+ 2.思维升华 圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 从抛物线C 1:x 2=2py (p >0)和椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)上各取两点,将其坐标记录于下表中:(1)求抛物线C 1和椭圆C 2的方程;(2)抛物线C 1和椭圆C 2的交点记为A ,B ,点M 为椭圆上任意一点,求MA →·MB →的取值范围.解 (1)∵C 1:x 2=2py (p >0),当y ≠0时,x 2y=2p , 根据表格的数据验证,可知⎝⎛⎭⎫-3,94,⎝⎛⎭⎫1,14满足方程x 2=2py , 解得p =2,得抛物线C 1的方程为x 2=4y .将(0,2),⎝⎛⎭⎫5,32代入椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)可得a 2=8,b 2=2, 即椭圆C 2的方程为x 28+y 22=1. (2)由⎩⎪⎨⎪⎧ x 2=4y ,x 2+4y 2-8=0,解得⎩⎪⎨⎪⎧ x 1=-2,y 1=1或⎩⎪⎨⎪⎧x 2=2,y 1=1,不妨令A (-2,1),B (2,1). 设M (x 0,y 0)是C 2:x 28+y 22=1上的动点, 则x 20=8-4y 20≥0.即得-2≤y 0≤ 2.于是有MA →·MB →=(-2-x 0,1-y 0)·(2-x 0,1-y 0)=x 20+y 20-2y 0-3 =-3y 20-2y 0+5=-3⎝⎛⎭⎫y 0+132+163. ∵-2≤y 0≤ 2.即-1-22≤-3⎝⎛⎭⎫y 0+132+163≤163. 于是-1-22≤MA →·MB →≤163. 故MA →·MB →的取值范围是⎣⎡⎦⎤-1-22,163. 题型二 最值问题例2 (2022·金昌模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝⎛⎭⎫-1,22,短轴长为2. (1)求椭圆C 的标准方程;(2)过点(0,2)的直线l (直线l 不与x 轴垂直)与椭圆C 交于不同的两点M ,N ,且O 为坐标原点.求△MON 的面积的最大值.解 (1)依题意得(-1)2a 2+⎝⎛⎭⎫222b 2=1,而b =1, 则1a 2+12=1⇒1a 2=1-12=12⇒a 2=2, 所以椭圆C 的标准方程为x 22+y 2=1. (2)因为直线l 不与x 轴垂直,则l 的斜率k 存在,l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 22+y 2=1,得(2k 2+1)x 2+8kx +6=0,因为直线l 与椭圆C 交于不同的两点M ,N ,则有Δ=(8k )2-4·(2k 2+1)·6=16k 2-24>0⇒k 2>32, 即k <-62或k >62, 设点M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8k 2k 2+1, x 1x 2=62k 2+1, 所以|MN |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 2k 2+12-4·62k 2+1=1+k 2·8(2k 2-3)(2k 2+1)2=1+k 2·22·2k 2-32k 2+1, 而原点O 到直线l :kx -y +2=0的距离d =2k 2+1,△MON 的面积S =12·|MN |·d =12·1+k 2·22·2k 2-32k 2+1·2k 2+1=22·2k 2-32k 2+1,令t =2k 2-3⇒2k 2=t 2+3(t >0),S =22t t 2+4=22t +4t, 因为t +4t ≥2t ·4t=4, 当且仅当t =4t ,即t =2时取“=”,此时k 2=72, 即k =±142,符合要求, 从而有S ≤224=22, 故当k =±142时, △MON 的面积的最大值为22. 教师备选(2022·厦门模拟)设椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点A ,B ,C 分别为Γ的上、左、右顶点,且|BC |=4.(1)求Γ的标准方程;(2)点D 为直线AB 上的动点,过点D 作l ∥AC ,设l 与Γ的交点为P ,Q ,求|PD |·|QD |的最大值.解 (1)由题意得2a =|BC |=4,解得a =2.又因为e =c a =32,所以c =3,则b 2=a 2-c 2=1.所求Γ的标准方程为x 24+y 2=1. (2)方法一 由(1)可得A (0,1),B (-2,0),C (2,0),则k AC =-12, 直线AB 的方程为x -2y +2=0,设直线l 的方程为y =-12x +λ. 联立⎩⎨⎧ y =-12x +λ,x 24+y 2=1,消去y ,整理得,x 2-2λx +2λ2-2=0.①由Δ>0,得-2<λ<2,联立⎩⎪⎨⎪⎧y =-12x +λ,x -2y +2=0,解得D 的坐标为⎝⎛⎭⎪⎫λ-1,λ+12, 设P (x 1,y 1),Q (x 2,y 2), 由①知⎩⎪⎨⎪⎧ x 1+x 2=2λ,x 1x 2=2λ2-2,② 又|PD |=52|x 1-(λ-1)|, |QD |=52|x 2-(λ-1)|, 所以|PD |·|QD |=54|x 1x 2-(λ-1)(x 1+x 2)+(λ-1)2|,③ 将②代入③,得|PD |·|QD |=54|λ2-1| ,λ∈(-2,2), 所以当λ=0时,|PD |·|QD |有最大值54.方法二 设AD →=λAB →=λ(-2,-1)=(-2λ,-λ),则D (-2λ,1-λ),由点斜式,可得直线l 的方程为y -(1-λ)=-12(x +2λ), 即y =-12x -2λ+1. 联立⎩⎨⎧ y =-12x -2λ+1,x 24+y 2=1,消去y ,得x 2+(4λ-2)x +8λ2-8λ=0,①由Δ=(4λ-2)2-4×(8λ2-8λ)>0, 解得1-22<λ<1+22, 设P (x 1,y 1),Q (x 2,y 2),由①得⎩⎪⎨⎪⎧ x 1+x 2=2-4λ,x 1x 2=8λ2-8λ,② 由题意可知|PD |=52|x 1+2λ|, |QD |=52|x 2+2λ|, 所以|PD |·|QD |=54|x 1x 2+2λ(x 1+x 2)+4λ2|,③ 将②代入③得|PD |·|QD |=54|4λ2-4λ| =5|λ2-λ|,当λ=12时,|PD |·|QD |有最大值54. 思维升华 圆锥曲线中最值的求法(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等.跟踪训练2 如图所示,点A ,B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.解 (1)由已知可得点A (-6,0),F (4,0),设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ),∵P A ⊥PF ,∴AP →·FP →=0,则⎩⎪⎨⎪⎧x 236+y 220=1,(x +6)(x -4)+y 2=0,可得2x 2+9x -18=0,得x =32或x =-6. 由于y >0,故x =32,于是y =532. ∴点P 的坐标是⎝⎛⎭⎫32,532. (2)由(1)可得直线AP 的方程是x -3y +6=0,点B (6,0).设点M 的坐标是(m ,0),则点M 到直线AP 的距离是|m +6|2,于是|m +6|2=|m -6|, 又-6≤m ≤6,解得m =2.由椭圆上的点(x ,y )到点M 的距离为d , 得d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49⎝⎛⎭⎫x -922+15, 由于-6≤x ≤6,由f (x )=49⎝⎛⎭⎫x -922+15的图象(图略)可知, 当x =92时,d 取最小值,且最小值为15. 课时精练1.已知双曲线C 的焦点F (3,0),双曲线C 上一点B 到F 的最短距离为3- 2.(1)求双曲线的标准方程和渐近线方程; (2)已知点M (0,1),设P 是双曲线C 上的点,Q 是P 关于原点的对称点.设λ=MP →·MQ →,求λ的取值范围. 解 (1)设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0), ∵双曲线C 的焦点F (3,0),双曲线C 上一点B 到F 的最短距离为3-2,∴c =3,c -a =3-2,∴a =2,∴b 2=c 2-a 2=(3)2-(2)2=1,则双曲线的方程为x 22-y 2=1, 渐近线方程为y =±22x . (2)设P 点坐标为(x 0,y 0),则Q 点坐标为(-x 0,-y 0),∴λ=MP →·MQ →=(x 0,y 0-1)·(-x 0,-y 0-1)=-x 20-y 20+1=-32x 20+2. ∵|x 0|≥2,∴λ的取值范围是(-∞,-1].2.(2022·阳泉模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为22,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,△F 1PF 2的面积为1.(1)求椭圆C 的方程;(2)设斜率存在的直线PF 2,与椭圆C 的另一个交点为Q .若存在T (t ,0),使得|TP |=|TQ |,求t 的取值范围.解 (1)由题意可知⎩⎪⎨⎪⎧ c a =22,12·b ·2c =1,b 2+c 2=a 2,解得⎩⎪⎨⎪⎧ a =2,b =1,c =1,故椭圆C 的方程为x 22+y 2=1. (2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为N (x 0,y 0),直线PF 2的斜率为k , 由(1)设直线PQ 的方程为y =k (x -1).当k =0时,t =0符合题意;当k ≠0时,联立⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1,得(1+2k 2)x 2-4k 2x +2k 2-2=0,∴Δ=16k 4-4(1+2k 2)(2k 2-2)=8k 2+8>0,x 1+x 2=4k 21+2k 2, ∴x 0=x 1+x 22=2k 21+2k 2, y 0=k (x 0-1)=-k 1+2k 2, 即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.∵|TP |=|TQ |,∴直线TN 为线段PQ 的垂直平分线,∴TN ⊥PQ ,即k TN ·k =-1. ∴-k 1+2k 22k 21+2k 2-t ·k =-1, ∴t =k 21+2k 2=12+1k 2. ∵k 2>0,∴1k 2>0 ,2+1k2>2, ∴0<12+1k 2<12, 即t ∈⎣⎡⎭⎫0,12.3.(2021·北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,-2),以四个顶点围成的四边形面积为4 5. (1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M ,N ,若|PM |+|PN |≤15,求k 的取值范围.解 (1)因为椭圆过A (0,-2),故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5, 故椭圆的标准方程为x 25+y 24=1. (2)设B (x 1,y 1),C (x 2,y 2),因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x 1y 1+2, 同理x N =-x 2y 2+2. 直线BC :y =kx -3,由⎩⎪⎨⎪⎧y =kx -3,4x 2+5y 2=20,可得(4+5k 2)x 2-30kx +25=0,故Δ=900k 2-100(4+5k 2)>0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2, 故x 1x 2>0,所以x M x N >0.又|PM |+|PN |=|x M +x N | =⎪⎪⎪⎪⎪⎪x 1y 1+2+x 2y 2+2=⎪⎪⎪⎪⎪⎪x 1kx 1-1+x 2kx 2-1 =⎪⎪⎪⎪⎪⎪2kx 1x 2-(x 1+x 2)k 2x 1x 2-k (x 1+x 2)+1 =⎪⎪⎪⎪⎪⎪⎪⎪50k4+5k 2-30k4+5k 225k 24+5k 2-30k 24+5k 2+1=5|k |, 故5|k |≤15,即|k |≤3,综上,-3≤k <-1或1<k ≤3.4.(2022·德州模拟)已知抛物线E :x 2=-2y ,过抛物线上第四象限的点A 作抛物线的切线,与x 轴交于点M .过M 作OA 的垂线,交抛物线于B ,C 两点,交OA 于点D .(1)求证:直线BC 过定点;(2)若MB →·MC →≥2,求|AD |·|AO |的最小值.(1)证明 由题意知,抛物线E :x 2=-2y ,则y =-12x 2,可得y ′=-x , 设A (2t ,-2t 2)(t >0),则k AM =-2t ,所以l AM :y +2t 2=-2t (x -2t ),即y =-2tx +2t 2,所以M (t ,0),又k OA =-2t 22t =-t ,所以k BC =1t, 所以l BC :y -0=1t (x -t ),即y =1tx -1, 所以直线BC 过定点(0,-1).(2)解 联立方程⎩⎪⎨⎪⎧y =1t x -1,x 2=-2y ,整理得x 2+2tx -2=0,设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=-2t,x 1x 2=-2, 则MB →·MC →=(x 1-t ,y 1)·(x 2-t ,y 2)=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+14x 21x 22=1+t 2≥2, 所以t 2≥1,又由|AD |=⎪⎪⎪⎪1t ·2t +2t 2-11+1t 2=2t 2+1t 2+1·t , |AO |=(2t )2+(-2t 2)2=2t 1+t 2, 所以|AD |·|AO |=2t 2+1t 2+1·t ·2t ·1+t 2 =⎝⎛⎭⎫2t 2+122-14, 因为2t 2≥2,所以当2t 2=2,即t =1时, |AD |·|AO |的最小值是6.。

第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件

第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件

当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4

圆锥曲线中的最值问题

圆锥曲线中的最值问题

圆锥曲线是指在二维平面上满足一定条件的曲线,其中包括双曲线和抛物线等。

当圆锥曲线是双曲线或抛物线时,可以利用其函数的性质解决最值问题。

对于双曲线y=a/x,在x>0时,它的最小值为y=a/xmin,最大值为y=a/xmax。

对于抛物线y=ax^2,在a>0时,它的最小值为y=0,最大值为y=+∞。

对于其他类型的圆锥曲线,最值问题的解决方法需要根据其具体函数形式进行分析。

对于一般的圆锥曲线,解决最值问题需要利用微积分知识。

对于函数y=f(x)在区间[a,b]上的最值问题,可以通过对函数在该区间内求导,然后求函数在该区间内的极值点。

求导之后,求函数在该区间内的极值点,即对导数为0的点进行分析。

通过二分法或牛顿迭代等方法来求导数为0的点的值,对导数为0的点进行分析,即可求得圆锥曲线在该区间内的最值点。

需要注意的是,在求解过程中需要证明该点是极值点,而非局部极值点。

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。

【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.[典例] (2018·武昌调研)已知椭圆的中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与直线AB 相交于点D ,与椭圆相交于E ,F 两点.(1)若ED ―→=6DF ―→,求k 的值; (2)求四边形AEBF 的面积的最大值. [思路演示]解:(1)由题设条件可得,椭圆的方程为x 24+y 2=1,直线AB 的方程为x +2y -2=0.设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2, 由⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1得(1+4k 2)x 2=4, 解得x 2=-x 1=21+4k 2.① 由ED ―→=6DF ―→,得x 0-x 1=6(x 2-x 0), ∴x 0=17(6x 2+x 1)=57x 2=1071+4k 2.由点D 在直线AB 上,得x 0+2kx 0-2=0,∴x 0=21+2k. ∴21+2k =1071+4k2,化简,得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式可知,点E ,F 到AB 的距离分别为d 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2),d 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2),又|AB |=22+12=5, ∴四边形AEBF 的面积为S =12|AB |(d 1+d 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k 2=21+4k1+4k 2=21+44k +1k≤21+424k ·1k =22,当且仅当4k =1k (k >0),即k =12时,等号成立.故四边形AEBF 的面积的最大值为2 2. [解题师说]由于四边形AEBF 中的四个顶点中,A ,B 为已知定点,E ,F 为直线y =kx 与椭圆的交点,其坐标一定与k 有关,故四边形AEBF 的面积可用直线y =kx 的斜率k 表示,最后通过变形,利用基本不等式求最值.[应用体验]1.已知椭圆C 的左、右焦点分别为F 1(-1,0),F 2(1,0),且F 2到直线x -3y -9=0的距离等于椭圆的短轴长.(1)求椭圆C 的方程;(2)若圆P 的圆心为P (0,t )(t >0),且经过F 1,F 2,Q 是椭圆C 上的动点且在圆P 外,过点Q 作圆P 的切线,切点为M ,当|QM |的最大值为322时,求t 的值. 解:(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).依题意可知,2b =|1-9|2=4,所以b =2.又c =1,故a 2=b 2+c 2=5, 故椭圆C 的方程为x 25+y 24=1.(2)由题意,圆P 的方程为x 2+(y -t )2=t 2+1.设Q (x 0,y 0),因为PM ⊥QM ,所以|QM |=|PQ |2-t 2-1=x 20+(y 0-t )2-t 2-1=-14(y 0+4t )2+4+4t 2. 若-4t ≤-2, 即t ≥12,当y 0=-2时,|QM |取得最大值, |QM |max =4t +3=322,解得t =38<12(舍去).若-4t >-2,即0<t <12, 当y 0=-4t 时,|QM |取最大值,且|QM |max =4+4t 2=322,解得t =24.综上可知,当t =24时,|QM |的最大值为322.(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[典例] (2018·合肥质检)已知点F 为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.[思路演示]解:(1)由题意,得a =2c ,b =3c , 则椭圆E 的方程为x 24c 2+y 23c2=1.由⎩⎨⎧x 24+y 23=c 2,x 4+y 2=1得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0,解得c 2=1, ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝⎛⎭⎫1,32, ∵直线x 4+y2=1与y 轴交于P (0,2),∴|PM |2=54.当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|PA |·|PB |⇒λ=45.当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0消去y ,得(3+4k 2)x 2+16kx +4=0, 则x 1x 2=43+4k2,且Δ=48(4k 2-1)>0, ∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, ∴λ=45⎝⎛⎭⎫1+13+4k 2,∵k 2>14,∴45<λ<1.综上可知,实数λ的取值范围是⎣⎡⎭⎫45,1. [解题师说]在关系式λ|PM |2=|PA |·|PB |中,P ,M 为已知定点,而A ,B 两点是动直线l 与椭圆的交点,故λ与直线l 的斜率有关,应考虑建立λ关于k 的函数关系式求解.[应用体验]2.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1―→·PF 2―→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.解:(1)依题意,设椭圆E 的方程为y 2a 2+x 2b 2=1(a >b >0),半焦距为c .∵椭圆E 的离心率等于223,∴c =223a ,b 2=a 2-c 2=a 29. ∵以线段PF 1为直径的圆经过F 2, ∴PF 2⊥F 1F 2. ∴|PF 2|=b 2a.∵9PF 1―→·PF 2―→=1,∴9|PF 2―→|2=9b 4a2=1.由⎩⎨⎧b 2=a 29,9b4a 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1.(2)∵直线x =-12与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9得(k 2+9)x 2+2kmx +(m 2-9)=0. ∵直线l 与椭圆E 交于两个不同的点M ,N , ∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0, 即m 2-k 2-9<0. 则x 1+x 2=-2kmk 2+9. ∵线段MN 被直线2x +1=0平分,∴2×x 1+x 22+1=0,即-2km k 2+9+1=0.由⎩⎪⎨⎪⎧m 2-k 2-9<0,-2km k 2+9+1=0得⎝⎛⎭⎫k 2+92k 2-(k 2+9)<0.∵k 2+9>0,∴k 2+94k 2-1<0,∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝⎛⎭⎫π3,π2∪⎝⎛⎭⎫π2,2π3.1.(2018·广东五校协作体诊断)若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同两点A ,B ,且AC ―→=2CB ―→,当△AOB 的面积最大时,求直线l 的方程.解:(1)由题意知,c +b2=3⎝⎛⎭⎫c -b 2, 所以b =c ,a 2=2b 2, 所以e =ca =1-⎝⎛⎭⎫b a 2=22.(2)设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =ky -1(k ≠0),因为AC ―→=2CB ―→,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即2y 2+y 1=0.①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1,x 2+2y 2=2b 2消去x ,得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2k k 2+2.②由①②知,y 2=-2k k 2+2,y 1=4kk 2+2.因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤3·122|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号,此时直线l 的方程为x =2y -1或x =-2y -1, 即x -2y +1=0或x +2y +1=0. 2.(2018·惠州调研)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S △PAM ∶S △PBN =λ,求实数λ的取值范围.解:(1)因为BF 1⊥x 轴,所以点B ⎝⎛⎭⎫-c ,-b2a , 由⎩⎪⎨⎪⎧a =2,b2a (a +c )a 2=b 2+c 2,=12,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1.(2)因为S △PAM S △PBN =12|PA |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN =2|PM ||PN |=λ,所以|PM ||PN |=λ2(λ>2),所以PM ―→=-λ2PN ―→.由(1)可知P (0,-1),设直线MN :y =kx -1⎝⎛⎭⎫k >12, M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx -1,x 24+y 23=1消去y ,化简得(4k 2+3)x 2-8kx -8=0.则⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM ―→=(x 1,y 1+1),PN ―→=(x 2,y 2+1),则x 1=-λ2x 2.将x 1=-λ2x 2代入(*)可得,(2-λ)2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),则1<(2-λ)2λ<4,且λ>2,解得4<λ<4+23, 所以实数λ的取值范围为(4,4+23).3.(2018·广西三市第一次联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b2=1(a >b >0)过点⎝⎛⎭⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝⎛⎭⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.解:(1)∵椭圆C 过点⎝⎛⎭⎫1,32,∴1a 2+94b2=1,① ∵椭圆C 关于直线x =c 对称的图形过坐标原点,∴a =2c , ∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝⎛⎭⎫12,0且斜率不为零,故可设其方程为x =my +12. 由⎩⎨⎧x =my +12,x 24+y 23=1消去x ,并整理得4(3m 2+4)y 2+12my -45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0), ∴y 1+y 2=-3m3m 2+4,∴y 0=y 1+y 22=-3m2(3m 2+4), ∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m 4m 2+4.①当m =0时,k =0; ②当m ≠0时,k =14m +4m,∵4m +4m =4|m |+4|m |≥8,∴0<|k |≤18,∴-18≤k ≤18且k ≠0.综合①②可知,直线MA 的斜率k 的取值范围是-18,18.4.已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b2=1相交于A ,B 两点.记λ=OA ―→·OB ―→,且23≤λ≤34. (1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解:(1)由题意知2c =2,所以c =1.因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1.(2)因为直线l :y =kx +m 与圆x 2+y 2=1相切, 所以原点O 到直线l 的距离为|m |12+k 2=1, 即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.λ=OA ―→·OB ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎡⎦⎤-1,-22∪⎣⎡⎦⎤22,1. (3)|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23, 即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23。

圆锥曲线的最值与参数范围

圆锥曲线的最值与参数范围

圆锥曲线的最值与参数范围
圆锥曲线是微积分教学中的重要概念,其最值及参数范围也是学习者需要掌握的重要内容。

本文旨在探讨圆锥曲线的最值与参数范围。

首先,我们从定义谈起。

圆锥曲线是由两个圆弧及一条直线组成的曲线,该曲线对称且连接着两个有限定点,形状由两个参数决定,分别为圆心角α和高h。

其次,我们来讨论圆锥曲线的最值。

圆锥曲线的极值是在其上的直线段的端点处,也就是左右的圆弧的交点。

我们可以利用数学知识来求出该点的坐标,即最大值点。

另外,如果曲线以y=kx+b的直线
对称,其最小值点就是y轴上的端点。

最后,让我们来讨论圆锥曲线的参数范围。

圆心角α的取值范围是0到2π,而高h的范围依赖于圆心角的取值。

当圆心角α取值为0时,圆锥曲线为一个圆,此时高h的取值范围是0到无穷大。

而当α取值在0到2π之间时,高h的取值范围就会发生变化,其最小取值为0,最大值不定。

以上就是圆锥曲线的最值与参数范围简述。

从定义出发到最值的求解以及参数范围,从多角度深入地讨论圆锥曲线。

圆锥曲线是众多曲线中的一种,其最值与参数范围的掌握不仅是数学知识的重要内容,同时也对更为深入的曲线学习有着重要的意义。

- 1 -。

常考问题16 与圆锥曲线有关的定点、定值、最值、范围问题

常考问题16 与圆锥曲线有关的定点、定值、最值、范围问题

知识与方法
热点与突破
审题与答题
热点与突破
热点一 圆锥曲线的弦长问题 【例 1】 如图,F1,F2 分别是椭圆 C:
ax22+by22=1(a>b>0)的左、右焦点, A 是椭圆 C 的顶点,B 是直线 AF2 与椭圆 C 的另一个交点,∠F1AF2=60°. (1)求椭圆 C 的离心率; (2)已知△AF1B 的面积为 40 3,求 a,b 的值.
知识与方法
热点与突破
审题与答题
由 S△AF1B=12|AF1||AB| sin∠F1AB=12a·156c·23=253a2=40 3,解 得 a=10,b=5 3. 法二 设|AB|=t. 因为|AF2|=a,所以|BF2|=t-a. 由椭圆定义|BF1|+|BF2|=2a,可知|BF1|=3a-t. 再由余弦定理(3a-t)2=a2+t2-2atcos 60°, 可得 t=85a.由 S△AF1B=12a·85a·23=253a2=40 3, 知 a=10,b=5 3.
知识与方法
热点与突破
审题与答题
由题意可设直线 CD 方程为 y=x+m,
所以设 C(x3,y3),D(x4,y4), 将 y=x+m 代入x62+y32=1 得 3x2+4mx+2m2-6=0,则|CD|= 2
x3+x42-4x3x4=43 9-m2, 又因为 Δ=16m2-12(2m2-6)>0,即-3<m<3,
知识与方法
热点与突破
审题与答题
将 A(x1,y1),B(x2,y2)代入抛物线 C 的方程,整理得 4m2+4m- y20=0,4n2+4n-y20=0,所以 m,n 是方程 4x2+4x-y20=0 的两根, 故 m+n=-1.所以对任意的直线 l,m+n 为定值-1.

最全总结之圆锥曲线最值,范围问题

最全总结之圆锥曲线最值,范围问题

圆锥曲线中最值与范围问题类型1 斜率的取值范围例1.(陕西省2019届)已知、为椭圆()的左右焦点,点为其上一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于、两点,且原点在以线段为直径的圆的外部,试求的取值范围.解析:(1)由题可知,解得,所以椭圆的标准方程为:.(2)设,由,得,由韦达定理得:,,由得或.又因为原点在线段为直径的圆外部,则,,即,综上所述:实数的取值范围为【点睛】本题考查了椭圆标准方程的求法,直线与椭圆位置关系的综合应用,属于中档题。

跟踪训练一1.(临川一中,南昌二中,九江一中,新余一中等九校重点中学协作体2019届)已知椭圆的右焦点,,,是椭圆上任意三点,,关于原点对称且满足.(1)求椭圆的方程.(2)若斜率为的直线与圆:相切,与椭圆相交于不同的两点、,求时,求的取值范围.解析:(1)由题可设,,,所以两式相减得,.即,所以,又,,所以,,所以椭圆的标准方程为.(2)设直线方程为,交椭圆于点,.联立方程,得,,.所以=,因为直线与圆相切,所以,即,代入,得.所以因为,所以,化简得,或(舍).所以或,故k的取值范围为.【点睛】本题考查了椭圆的标准方程及其性质,弦长公式,涉及直线与圆相切的充要条件、一元二次方程的根与系数的关系、不等式的解法,考查了推理能力与计算能力,属于难题.2.(龙岩市2019届)已知椭圆,点和都在椭圆上,其中为椭圆的离心率.(1)求椭圆的方程;(2)若过原点的直线与椭圆交于两点,且在直线上存在点,使得是以为直角顶点的直角三角形,求实数的取值范围解析:(1)由题设知,.由点在椭圆上,得.解得,又点在椭圆上,.即,解得.所以椭圆的方程是.(2)设、,由得,,,设,则依题意,得即有解化简得,或【点睛】本题考查了直线与椭圆的综合问题,涉及椭圆方程的求法,椭圆的离心率,一元二次方程根的特点,直角三角形的几何关系的利用,属于难题。

3.(沈阳市东北育才学校2019届)已知椭圆:的左、右焦点分别为,离心率为,直线:与椭圆交于,四边形的面积为.(Ⅰ)求的方程;(Ⅱ)作与平行的直线与椭圆交于两点,且线段的中点为,若的斜率分别为,求的取值范围.解析:由(1)可得,,带入得,椭圆方程为(2)设直线的方程为由,得,得,设,则()【点睛】该题考查的是有关直线与圆锥曲线的问题,涉及到的知识点有椭圆方程的求解,直线与圆锥曲线的位置关系,斜率坐标公式等,属于中档题目.类型2 面积的取值范围与最值例1.(韶关市2019届)已知椭圆的中心在原点,焦点在轴上,椭圆的一个顶点为,右焦点到直线的距离为.(1)求椭圆的标准方程;(2)若过作两条互相垂直的直线,且交椭圆于、两点,交椭圆于、两点,求四边形的面积的取值范围.解析:(1)依题意,设椭圆的方程为:则,设,由右焦点到直线的距离为,可得,解得或(舍去).所以,.故椭圆的方程为:.(2)①当直线的斜率不存在时,此时的斜率为0,此时,,则四边形的面积.②当直线的斜率为0,此时的斜率不存在,同理可得四边形的面积.③当直线的斜率存在,且斜率时,,则,将直线的方程代入椭圆方程中,并化简整理得,可知,设、,则有则同理可得则的面积.令,则,令,则有,则.综上,.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.跟踪训练二例2.(上饶市重点中学2019届)已知椭圆的短轴长等于,右焦点距最远处的距离为3.(1)求椭圆的方程;(2)设为坐标原点,过的直线与交于两点(不在轴上),若,求四边形面积的最大值.解析:(1)由已知得,,(2)因为过的直线与交于两点(不在轴上),所以设,设则,,由对勾函数的单调性易得当即【点睛】本题考查了求椭圆的标准方程和四边形的面积的最值问题,转化为两个三角形的面积最值是关键,属于中档题.跟踪训练三1.(肇庆市2019届)已知椭圆经过点,左焦点,直线与椭圆交于两点,是坐标原点.(1)求椭圆的标准方程;(2)求面积的最大值.解析:(1)依题意可得解得,右焦点,,所以,所以椭圆的标准方程为.(2)设,由得由得,到的距离当且仅当,即时,得,面积取得最大值【点睛】本小题主要考查椭圆标准方程的求法,考查椭圆的定义,考查椭圆和直线相交所形成的三角形的面积计算及面积最大值的求法,考查利用基本不等式求最大值,综合性较强,属于较难的题目.求解椭圆中三角形的面积问题,一方面要利用弦长公式求得弦长,另一方面求出面积的表达后,要选择合适的方法来求最值.2.(济南外国语学校2019届)抛物线的焦点为F,圆,点为抛物线上一动点.已知当的面积为.(I)求抛物线方程;(II)若,过P做圆C的两条切线分别交y轴于M,N两点,求面积的最小值,并求出此时P点坐标.解析:(Ⅰ)由题意知:,,,,抛物线方程为.(Ⅱ)设过点P且与圆C相切的直线的方程为令x=0,得切线与x轴的交点为而,整理得,设两切线斜率为,则,,,,则,令,则,而当且仅当,即t=1时,“=”成立.此时,的最小值为2,【点睛】本题主要考查了抛物线的标准方程和直线与抛物线的关系.直线与圆锥曲线的问题常涉及到圆锥曲线的性质和直线的基本知识点,如直线被圆锥曲线截得的弦长、弦中点问题,垂直问题,对称问题.与圆锥曲线性质有关的量的取值范围等是近几年命题的新趋向.3.(邯郸市2019届)已知椭圆的左、右焦点分别为为上的一个动点,且的最大值为,的离心率与椭圆的离心率相等.求的方程;直线与交于两点(在轴的同侧),当时,求四边形面积的最大值.解析:依题意可知解得则,故的方程为.延长交于点,由可知,设,设的方程为,由得,故设与的距离为,则四边形的面积为S,当且仅当,即时,等号成立,故四边形面积的最大值为.【点睛】本题考查椭圆的综合,考察直线与椭圆的位置关系,面积公式,转化与化归思想,第二问利用椭圆对称性,将面积转化是关键,是中档题类型3 参数的取值范围例1.(武邑中学2019届)已知平面直角坐标系内的动点P到直线的距离与到点的距离比为.(1)求动点P所在曲线E的方程;(2)设点Q为曲线E与轴正半轴的交点,过坐标原点O作直线,与曲线E相交于异于点的不同两点,点C满足,直线和分别与以C为圆心,为半径的圆相交于点A和点B,求△QAC与△QBC的面积之比的取值范围.解析:(1)设动点P的坐标为,由题意可得,整理,得:,即为所求曲线E的方程;(2)(解法一)由已知得:,,,即圆C方程为由题意可得直线MQ,NQ的斜率存在且不为0设直线MQ的方程为,与联立得:所以,同理,设直线NQ的方程为,与联立得:所以因此由于直线过坐标原点,所以点与点关于坐标原点对称设,,所以,又在曲线上,所以,即故,由于,所以,(解法二)由已知得:,,,即圆C方程为由题意可得直线MQ,NQ的斜率存在且不为0设直线MQ的方程为,则点C到MQ的距离为所以于是,设直线NQ的方程为,同理可得:所以由于直线l过坐标原点,所以点M与点N关于坐标原点对称设,,所以,又在曲线上,所以,即故,由于,所以,【点睛】本题主要考查椭圆方程的求法,直线与椭圆的位置关系,三角形的面积公式的应用,向量数量积的应用,考查计算能力,转化思想.跟踪训练四1.已知椭圆C : )0(12222>>=+b a by a x 的离心率22=e ,过点)0,(m A -、)0)(0,(>m m B 分别作两平行直线1l 、2l , 1l 与椭圆C 相交于M 、N 两点, 2l 与椭圆C 相交于P 、Q 两点,且当直线2l 过右焦点和上顶点时,四边形MNQP 的面积为316. (1)求椭圆C 的标准方程;(2)若四边形MNQP 是菱形,求正数m 的取值范围. 解析:(1)2222222c b a e ==⇒=直线2l 过右焦点和上顶点时,方程为c x y +-=,联立得:c x cx x Q 340432=⇒=- 四边形MNQP 的面积为2c 2316c 342=⇒=⋅c所以椭圆方程为: 22142x y +=; (2)设m ky x l m ky x l +=-=:,:21,由椭圆的对称性可知M 与Q 关于原点对称,N 与P 关于原点对称,所以直线MQ 过原点,直线NP 过原点。

圆锥曲线中的最值、范围、证明问题

圆锥曲线中的最值、范围、证明问题

第九节 圆锥曲线中的最值、范围、证明问题突破点(一) 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.考点贯通 抓高考命题的“形”与“神”利用几何性质求最值[例1] 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|P A |+|PB |=2a =10,连接P A ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|P A |+|PB |-2R =8;连接P A ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|P A |+|PB |+2R =12,即最小值和最大值分别为8,12.[答案] C[方法技巧]利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法.建立目标函数求最值本节主要包括3个知识点: 1.圆锥曲线中的最值问题; 2.圆锥曲线中的范围问题; 3.圆锥曲线中的几何证明问题.[例2] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.[解] (1)由题意知焦点F (0,1),准线方程为y =-1. 设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2, 所以P (22,2)或P (-22,2),由PF =3FM ,得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0. 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415, 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k 2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43, 令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数, 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135. [方法技巧](1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等.利用基本不等式求最值[例3] 已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3, 所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|= 2(x 1+x 2)2-4x 1x 2=247.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0), 联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1),消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. [方法技巧](1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析:(1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4, 所以|AB |=1+k 2×(x 1+x 2)2-4x 1x 2=1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为410×4552=8 2.2.[考点二]平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解析:(1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*)则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2.设m 21+4k 2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3. 当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3.3.[考点三]定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.解析:(1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M . ∵|NM |+|NF |=4>|FM |,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k 2,∴|OA |2=x 2A +y 2A =4(1+k 2)1+4k 2.将上式中的k 替换为-1k ,可得|OC |2=4(1+k 2)k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=4(1+k 2)1+4k 2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4). ∵(1+4k 2)(k 2+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)2,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .突破点(二) 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.考点贯通 抓高考命题的“形”与“神”利用判别式构造不等关系求范围[例1] 已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.[解] (1)因为|BC |=2|AC |且BC 过(0,0),则|OC |=|AC |.因为AC ·BC =0,所以∠OCA =90°, 即C (3,3).又因为a =23,设椭圆的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c 2=1,解得c 2=8,b 2=4.所以椭圆的方程为x 212+y 24=1.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0 由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0),则x 0=x 1+x 22=-3kt1+3k 2,y 0=kx 0+t =t1+3k 2,所以H ⎝⎛⎭⎫-3kt 1+3k 2,t1+3k 2,由|DP |=|DQ |,所以DH ⊥PQ ,即k DH =-1k ,所以t1+3k 2+2-3kt 1+3k 2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4). 综上可得t ∈(1,2).[方法技巧]圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.利用函数性质求范围[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2.(1)求椭圆C 的方程;(2)若λ∈⎣⎡⎦⎤12,2,求弦长|AB |的取值范围.[解] (1)由已知e =22,得c a =22, 又当直线垂直于x 轴时,|AB |=2, 所以椭圆过点⎝⎛⎭⎫1,22, 代入椭圆方程得1a 2+12b2=1,∵a 2=b 2+c 2,联立方程可得a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点, λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,由根与系数的关系可得,⎩⎨⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m 2m 2+2,又知λ∈⎣⎡⎦⎤12,2, ∴-λ-1λ+2∈⎣⎡⎦⎤-12,0, ∴-12≤-4m 2m 2+2≤0,解得m 2∈⎣⎡⎦⎤0,27. |AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝⎛⎭⎫1-1m 2+22, ∵m 2∈⎣⎡⎦⎤0,27, ∴1m 2+2∈⎣⎡⎦⎤716,12,∴|AB |∈⎣⎡⎦⎤2,928. [方法技巧]利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围.1.[考点一]设F 1,F 2分别是椭圆E :x 24+y 2b 2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.解析:(1)易知a =2,c =4-b 2,b 2<4, 所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则1PF ·2PF =(-4-b 2-x ,-y )·(4-b 2-x ,-y )=x 2+y 2-4+b 2=x 2+b 2-b 2x 24-4+b 2=⎝⎛⎭⎫1-b 24x 2+2b 2-4.因为x ∈[-2,2],故当x =±2,即点P 为椭圆长轴端点时,1PF ·2PF 有最大值1, 即1=⎝⎛⎭⎫1-b24×4+2b 2-4,解得b 2=1. 故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0,故y 1+y 2=2kk 2+4,y 1·y 2=-3k 2+4.又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0,又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k 24+k 2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝⎛⎭⎫-12,12. 2.[考点二]已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C .(1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.解析:(1)由x 2+y 2+2x -15=0,得(x +1)2+y 2=16, 所以圆心为H (-1,0),半径为4.连接MA ,由l 是线段AB 的中垂线,得|MA |=|MB |, 所以|MA |+|MH |=|MB |+|MH |=|BH |=4, 又|AH |=2<4.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎫1,-32·⎝⎛⎭⎫-3,32=-3-94=-214. ②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214. ③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将直线PQ 的方程代入曲线C 的方程,并整理得,(3+4k 2)x 2-8k 2x +4k 2-12=0, 所以x P +x Q =8k 23+4k 2,x P ·x Q =4k 2-123+4k 2.于是AP ·AQ =(x P -1)(x Q -1)+y P ·y Q =(1+k 2)[x P x Q -(x P +x Q )+1] =(1+k 2)⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-9(1+k 2)3+4k 2.将上面的k 换成-1k ,可得AE ·AF =-9(1+k 2)4+3k 2,所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝⎛⎭⎫13+4k 2+14+3k 2. 令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝⎛⎭⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝⎛⎭⎫1t -122. 由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎡⎦⎤-214,-367.突破点(三) 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等.考点贯通 抓高考命题的“形”与“神”圆锥曲线中的几何证明问题[典例] 如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .[解] (1)设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). ∵|MN |=3,∴r 2=⎝⎛⎭⎫322+22,解得r 2=254. ∴r =52,圆C 的方程为(x -2)2+⎝⎛⎭⎫y -522=254. (2)证明:把x =0代入方程(x -2)2+⎝⎛⎭⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4). ①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1. 联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2. ∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x 2.若k AN +k BN =0,则∠ANM =∠BNM . ∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0, ∴∠ANM =∠BNM .1.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3.(1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .解析:(1)由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23,所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1.(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC ,所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝⎛⎭⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .2.已知点A (-4,0),直线l :x =-1与x 轴交于点B ,动点M 到A ,B 两点的距离之比为2.(1)求点M 的轨迹C 的方程;(2)设C 与x 轴交于E ,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE ,PF 分别与C 交于另一点S ,T ,证明:A ,S ,T 三点共线.解析:(1)设点M (x ,y ),依题意,|MA ||MB |=(x +4)2+y 2(x +1)2+y 2=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)证明:由(1)知曲线C 的方程为x 2+y 2=4,令y =0得x =±2,不妨设E (-2,0),F (2,0),如图所示.设P (-1,y 0),S (x 1,y 1),T (x 2,y 2),则直线PE 的方程为y =y 0(x +2),由⎩⎪⎨⎪⎧y =y 0(x +2),x 2+y 2=4得(y 20+1)x 2+4y 20x +4y 20-4=0, 所以-2x 1=4y 20-4y 20+1,即x 1=2-2y 20y 20+1,y 1=4y 0y 20+1.直线PF 的方程为y =-y 03(x -2),由⎩⎪⎨⎪⎧y =-y 03(x -2),x 2+y 2=4得(y 20+9)x 2-4y 20x +4y 20-36=0, 所以2x 2=4y 20-36y 20+9,即x 2=2y 20-18y 20+9,y 2=12y 0y 20+9.所以k AS =y 1x 1+4=4y 0y 20+12-2y 20y 20+1+4=2y 0y 20+3, k AT =y 2x 2+4=12y 0y 20+92y 20-18y 20+9+4=2y 0y 20+3,所以k AS =k AT ,所以A ,S ,T 三点共线.[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解析:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.(2013·新课标全国卷Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解析:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.[课时达标检测] 难点增分课时——设计3级训练,考生据自身能力而选 一、全员必做题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎫1,22.(1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且2F A =λ2F B ,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.解析:(1)由题易知c =1,1a 2+12b 2=1,又a 2=b 2+c 2,解得b 2=1,a 2=2,故椭圆E 的标准方程为x 22+y 2=1.(2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 22+y 2=1得(k 2+2)y 2+2ky -1=0, Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2.QC =QA +QB =(x 1+x 2-4,y 1+y 2)=⎝ ⎛⎭⎪⎫-4(k 2+1)k 2+2,-2k k 2+2,∴|QC |2=|QA +QB |2=16-28k 2+2+8(k 2+2)2,由此可知,|QC |2的大小与k 2的取值有关.由2F A =λ2F B 可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=(y 1+y 2)2-2y 1y 2y 1y 2=-6k 2-4k 2+2,由λ∈[-2,-1]得⎝⎛⎭⎫λ+1λ∈⎣⎡⎦⎤-52,-2,从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎡⎦⎤716,12,∴|QC |2=8t 2-28t +16=8⎝⎛⎭⎫t -742-172, ∴当t =12时,|QC |min =2.2.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解析:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r. 因为点A(2,m)在抛物线E :y2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A(2,22). 由A(2,22),F(1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22x -1,y2=4x ,得2x2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G(-1,0),故直线GA 的方程为22x -3y +22=0, 从而r =|22+22|8+9=4 217 .又直线GB 的方程为22x +3y +22=0, 所以点F 到直线GB 的距离 d =|22+22|8+9=4217=r.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.3.已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围. 解析:(1)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由条件知,⎩⎪⎨⎪⎧2a =4,e =c a =32,a 2=b 2+c 2,解得a =2,c =3,b =1,故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,设△OAB 的面积为S ,由x 1x 2=-3k 2+4<0,知S =12×1×|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=2k 2+3(k 2+4)2,令k 2+3=t ,知t ≥3, ∴S =21t +1t+2. 对函数y =t +1t (t ≥3),知y ′=1-1t 2=t 2-1t 2>0,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32. 故△OAB 面积的取值范围为⎝⎛⎦⎤0,32. 二、重点选做题1.过离心率为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0)作直线l 与椭圆C 交于不同的两点A ,B ,设|F A |=λ|FB |,T (2,0).(1)求椭圆C 的方程;(2)若1≤λ≤2,求△ABT 中AB 边上中线长的取值范围. 解析:(1)∵e =22,c =1,∴a =2,b =1, 即椭圆C 的方程为:x 22+y 2=1.(2)①当直线的斜率为0时,显然不成立. ②设直线l :x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2+2y 2-2=0,x =my +1得(m 2+2)y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,由|F A |=λ|FB |,得y 1=-λy 2, ∵-λ+1-λ=y 1y 2+y 2y 1,∴-λ+1-λ+2=(y 1+y 2)2y 1y 2=-4m 2m 2+2,∴m 2≤27,又∵AB 边上的中线长为12 |TA +TB |=12(x 1+x 2-4)2+(y 1+y 2)2=4m 4+9m 2+4(m 2+2)2= 2(m 2+2)2-7m 2+2+4∈⎣⎡⎦⎤1,13216.2.如图所示,已知直线l 过点M (4,0)且与抛物线y 2=2px (p >0)交于A ,B 两点,以弦AB 为直径的圆恒过坐标原点O .(1)求抛物线的标准方程;(2)设Q 是直线x =-4上任意一点,求证:直线QA ,QM ,QB 的斜率依次成等差数列. 解析:(1)设直线l 的方程为x =ky +4, 代入y 2=2px 得y 2-2kpy -8p =0.设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=2kp ,y 1y 2=-8p ,而AB 为直径,O 为圆上一点,所以OA ·OB =0, 故0=x 1x 2+y 1y 2=(ky 1+4)(ky 2+4)-8p =k 2y 1y 2+4k (y 1+y 2)+16-8p , 即0=-8k 2p +8k 2p +16-8p ,得p =2, 所以抛物线方程为y 2=4x .(2)设Q (-4,t )由(1)知y 1+y 2=4k ,y 1y 2=-16,所以y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32.因为k QA =y 1-t x 1+4=y 1-t y 214+4=4(y 1-t )y 21+16,k QB =y 2-t x 2+4=y 2-t y 224+4=4(y 2-t )y 22+16,k QM =t -8,所以k QA +k QB =4(y 1-t )y 21+16+4(y 2-t )y 22+16=4×(y 1-t )(y 22+16)+(y 2-t )(y 21+16)(y 21+16)(y 22+16)=4×y 1y 22+16y 1-ty 22-16t +y 2y 21+16y 2-ty 21-16t y 21y 22+16(y 21+y 22)+16×16=-t (y 21+y 22)-32t 8×16+4(y 21+y 22)=-t (16k 2+32)-32t 8×16+4(16k 2+32) =-t 4=2k QM . 所以直线QA ,QM ,QB 的斜率依次成等差数列.三、冲刺满分题1.已知椭圆C :x 24+y 2b 2=1(0<b <2)的离心率为32,与坐标轴不垂直且不过原点的直线l 1与椭圆C 相交于不同的两点A ,B (如图所示),过AB 的中点M 作垂直于l 1的直线l 2,设l 2与椭圆C 相交于不同的两点C ,D ,且CN =12CD . (1)求椭圆C 的方程;(2)设原点O 到直线l 1的距离为d ,求d |MN |的最大值. 解析:(1)依题意得,⎩⎪⎨⎪⎧a =2,c a =32,c 2=a 2-b 2,解得b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)设直线l 1:y =kx +m (k ≠0,m ≠0), 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m 得(1+4k 2)x 2+8kmx +4m 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2.故M ⎝⎛⎭⎫-4mk 1+4k 2,m 1+4k 2. l 2:y -m 1+4k 2=-1k ⎝⎛⎭⎫x +4mk 1+4k 2,即y =-1k x -3m 1+4k 2.由⎩⎨⎧ y =-1k x -3m 1+4k 2,x 24+y 2=1, 得⎝⎛⎭⎫1+4k 2x 2+24m k (1+4k 2)x +36m 2(1+4k 2)2-4=0, 设C (x 3,y 3),D (x 4,y 4),则x 3+x 4=-24mk (1+4k 2)(k 2+4), 故N ⎝⎛⎭⎫-12mk (1+4k 2)(k 2+4),-3mk 2(1+4k 2)(k 2+4). 故|MN |=|x M -x N | 1+1k 2=4|m |(k 2+1)k 2+1(1+4k 2)(k 2+4). 又d =|m |1+k 2,所以d |MN |=(1+4k 2)(k 2+4)4(k 2+1)2. 令t =k 2+1(t >1),则d |MN |=4t 2+9t -94t 2=-94t 2+94t +1=-94⎝⎛⎭⎫1t -122+2516≤2516(当且仅当t =2时取等号), 所以d |MN |的最大值为2516. 2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解析:(1)由题意得c =3,根据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1. (2)法一:由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2).所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a 2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为2F A =(x 1-3,y 1),2F B =(x 2-3,y 2), 所以2F A ·2F B =(x 1-3)(x 2-3)+y 1y 2=⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8, 结合b 2+9=a 2,解得a 2=12(a 2=6舍去), 所以离心率e =32.(若设A (x 1,y 1),B (-x 1,-y 1)相应给分) 法二:设A (x 1,y 1),又AB ,F 1F 2互相平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得:⎩⎨⎧ x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1, 将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1, 由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21, 又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14, 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 即直线PB 的斜率k 2的取值范围是⎝⎛⎭⎫18,14.。

圆锥曲线中最值、范围、定值及存在性问题

圆锥曲线中最值、范围、定值及存在性问题

法 、函数 法 、不 等式 法.几 何 法是根 据 图形几 何性 质
求解 的方法 ;函数 法是指 将所 求 变量 表示成 某个 相
关 变量 的 函数 ,再 求 函数 的最 值 ;不 等式 法 是 根 据
曲线 性 质及条 件建 立一个 关 于所 求 变量 的不 等式 ,
再解 不 等式求 其最 值 的方法 .
参 考 文 献
刘 清源.构建 高效教 学 探 求数 学本 质— — 如何 解好 三 角形 [J].数 学教 学与研 究 ,2011 (36):78—79. [2] 覃埋 基 .一 类解三 角形 问题 的 另一 解 法 [J]. 数 学通 讯 ,2003(12):9.
圆 锥 曲 线 中 最 值 、范 围 、定 值 及 存 在 性 问 题
·35 ·
显然 △=(3m) 一4×3(m 一3)=3(12一m )>0,

一 12<m< ̄//l2且 m≠O.
由韦 达定 理 ,得
m 一3
Xa+xB m,YA+YB 丁 ’
因此 lAB l=v/1+kAB I A一 B I=


பைடு நூலகம்
·
又 因为点 P(2,1)到直 线 Z的距离 为
●J寞金 龙 (绍兴市第一中学 浙江绍兴 312000)
1 考点 回顾
圆锥 曲线中最值 、范 围、定值及存在性 问题是 历年 高考 命题 的热 点之 一.此 类 问题 涉及 的知识 面
广、综合性大、隐蔽性强 、计算量大 ,常常令考生头
疼.解决 此类 问题 常 常 要 用 到 数学 思 想 方 法 ,有 时
【△=(一4m) 一4(m +3)>0,
解得

2025届高中数学一轮复习《圆锥曲线最值与范围问题》ppt

2025届高中数学一轮复习《圆锥曲线最值与范围问题》ppt

高考一轮总复习•数学
第9页
圆锥曲线中最值的求法 (1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决,这就是几何法. (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函 数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及单 调性法等.
5-82=2.
第23页
高考一轮总复习•数学
第24页
圆锥曲线中取值范围问题的五种常用解法 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间 的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数 的取值范围.
第22页
高考一轮总复习•数学
即 16y20<(x0-4)2. 因为x420+y20=1,所以y02x-02 1=-14, 所以 5x20-8x0>0,解得 x0>85或 x0<0. 因为 0<x0≤2,所以85<x0≤2, 所以 EF=2 r2-d2=2 x40-12-4xy002=2 5-x80≤2 所以该圆被 x 轴截得的弦长|EF|的最大值为 2.
所以|AB|= 1+14 x1+x22-4x1x2= 解得 p=2(负值舍去).
1+14 8p-22-4=4 15,
高考一轮总复习•数学
第6页
(2)由题知,直线 MN 的斜率不为 0,设直线 MN 的方程为 x=my+b,由(1)知,抛物线
C 的方程

2025高考数学圆锥曲线中的最值、范围问题课件练习题

2025高考数学圆锥曲线中的最值、范围问题课件练习题
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
方法技巧
圆锥曲线中最值(范围)问题的求解方法
几何法
若题目的条件和结论明显能体现几何特征及意义,则考虑利用图形性质来
解决.
若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再
代数法 求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不
第八章
平面解析几何
突破2 圆锥曲线中的最值、范围问题
目录
Contents
01
练习 练透好题 精准分层
突破2
圆锥曲线中的最值、范围问题
命题点1 最值问题
例1 [2023全国卷甲]已知直线 x -2 y +1=0与抛物线 C : y 2=2 px ( p >0)交于 A , B
两点,| AB |=4 15 .
.
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
又 · =( x 3 -1, y 3 )·( x 4 -1, y 4 )= x 3 x 4 -( x 3 + x 4 )+1+ y 3 y 4 =0,
所以
2
2

4−2
2
+1+
4

=0,化简得 m 2 + k 2 +6 km =4.
(2)若动点 P 与双曲线 C 的两个焦点 F 1, F 2的距离之和为定值(大于| F 1 F 2|),且
cos
1
∠ F 1 PF 2的最小值为- ,求动点 P 的轨迹方程.
9
[解析]
2
2
由椭圆定义得 P 点轨迹为椭圆,可设其轨迹方程为 2 + 2 =1( a > b >0),

圆锥曲线中的最值与范围问题

圆锥曲线中的最值与范围问题
2 (2023·阜阳一模)已知椭圆 C:ax22+by22=1(a>b>0)的离心率为 23,且过 A(2,1). (1)求 C 的方程.
【解答】
ac= 23, 由题意得a42+b12=1,
解得
a2=8,b2=2,所以
C
的方程为x82+y22=1.
a2=b2+c2,
研题型·通法悟道 举题说法
2 (2023·阜阳一模)已知椭圆 C:ax22+by22=1(a>b>0)的离心率为 23,且过 A(2,1). (2)若 B,P 为 C 上不与 A 重合的两点,O 为原点,且O→P=λO→A+μO→B,λ2+μ2=1.
研题型·通法悟道 举题说法
再将③代入④,可得6m3mn22+-44=6m3mn2n++41,解得 n=-4,所以直线 l 的方程为 x=
my-4,且由②可得 3m2+4>16,即 m2>4.由点 F(-1,0)到直线 l 的距离 d=
|-1×11+-m02+4|= 1+3 m2,|AB|= 1+m2· y1+y22-4y1y2=12 1+m2· 3mm22+-44,S
|MN|=
1+14|x1-x2|=
5 2
x1+x22-4x1x2=
54-m2,A 到直线 l 的距离 d=
|m-2| 1+14

22-m 5
,所以△Fra bibliotekAMN
面积为
S

1 2
|MN|·d

4-m22-m2 =
2+m2-m3,令 f(m)=(2+m)·(2-m)3(-2<m<2,m≠0),f′(m)=-4(2-m)2(m
研题型·通法悟道 举题说法
1 (2023·淮南一模)已知椭圆 C:ax22+by22=1(a>b>0)的左焦点为 F,C 上任意一 点 M 到 F 的距离最大值和最小值之积为 3,离心率为12. (2)若过点P(n,0)(n<-2)的直线l交C于A,B两点,且点A关于x轴的对称点落在直线 BF上,求n的值及△FAB面积的最大值.

圆锥曲线中的最值及范围问题

圆锥曲线中的最值及范围问题

圆锥曲线中的最值及范围问题高考热点解析几何与代数的综合 解题点拨1. 圆锥曲线的最值问题的解决方法:(1)重要不等式;(2)求函数的最值;(3)导数法2. 圆锥曲线的范围问题的解决方法:(1)判别式法(2)点在曲线的内部(3)解不等式(4)求函数的值域例1利用圆锥曲线的定义解题1:已知椭圆221259x y +=的有右焦点为F ,且有定点A (1,1),又P 为椭圆上任一点,求|PF| +|PA| 的最大值2:已知点A (-1,1),B (1,0)且点P 为椭圆22143x y +=上一点,求|PA|+2|PB|的最小值练习:1:已知实数,x y 满足240y x -=的最小值2:P 为双曲线221916x y -=的右支上一点,M,N 分别是圆2222(5)1,(5)1x y x y ++=-+=上的点,则|PM|-|PN|最大值例2设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值。

练习1:设直线y=kx+2交椭圆2215x y +=于M ,N 两点,O 为原点,求ΔMON 面积的最大值。

例2已知椭圆W 的中心在原点,焦点在x6. 椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C .(Ⅰ)求椭圆W 的方程;(Ⅱ)求证:CF FB λ= (λ∈R );(Ⅲ)求MBC ∆面积S 的最大值.练习2:在平面直角坐标系xOy 中,抛物线y=x 2上异于原点的两不同动点A ,B 满足AO ⊥BO 。

(1)求ΔAOB 的重心G 的轨迹方程。

(2)ΔAOB 的面积是否存在最小值?若存在,求出。

例3 点B (-c,0),C(c,0),AH ⊥BC ,垂足为H ,且BH=3HC.(1)若0AB AC =,求以B ,C 为焦点并且经过点A 的椭圆的离心率;(2)D 分有向线段AB 的比为λ,A ,D 同在B 、C 为焦点的椭圆上,当-5≤λ≤-72时,求椭圆的离心率e 的取值范围。

广东专用2024版高考数学总复习:圆锥曲线中的最值或范围问题课件

广东专用2024版高考数学总复习:圆锥曲线中的最值或范围问题课件
设 的面积为 ,所以 ,当且仅当 时等号成立,此时满足 .故 面积的最大值为 .
【点拨】求与直线或与圆锥曲线有关的某个量的取值范围问题,依据已知条件建立关于该量的函数表达式,转化为求函数值域问题,要正确确定定义域.应注意到的是本例第(1)问使用了判别式法求参数范围.
变式1 如图,在平面直角坐标系 中,已知等轴双曲线 的左顶点为 ,过右焦点 且垂直于 轴的直线与 交于 , 两点,若 的面积为 .
由 得 .因为点 为 与 的一个交点,所以 ,解得 .所以 .直线 的方程变形为 ,设原点到直线 的距离为 ,则 .所以 .
(方法一) .设 ,则 .所以
.因为 (当且仅当 时,等号成立).所以 面积的最大值为 .(方法二) .设 ,则 .所以 .
第八章 平面解析几何
综合突破五 圆锥曲线的综合问题第1课时 圆锥曲线中的最值或范围问题
核心考点 精准突破
课时作业 知能提升
规范答题——解析几何解答题
考点一 构造函数求最值或范围问题
例1 已知椭圆 上两个不同的点 , 关于直线 对称.
(1) 求实数 的取值范围;
解:如图,由题意知 ,可设直线 的方程为 , , .由
(2) 当点 在 轴上方时,过点 作 轴的垂线与 轴相交于点 ,设直线 与双曲线 相交于不同的两点 , ,若 ,求实数 的取值范围.
, ,又 ,所以 ,所以 (由题意取负),所以直线 的斜率为 .代入 式,得 ,所以 ,所以 ,又 ,所以 的取值范围为 .
【点拨】若题设中给出直线(曲线)与曲线有公共点或无公共点的条件时,可以通过联立消元,得到一元二次方程,进而用判别式法得到不等关系代入求范围.
[答案] (方法一)设切点 ,因为 ,所以 ,则在点 处的切线方程为 ,化简得 ,令 ,得 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
解得X"或…泞,则AM k28k2 -6
3 4k2
=1 k2
12
3 4k2
因为AM _AN,所以圆锥曲线中的最值和范围
圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解
决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。

回顾几年高考中的圆锥曲线
试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。

本文就第二问题进行归纳和分析。

最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可
利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。

对目标函数的的整理和恰当变形是难点。

所涉及的量有斜率、面积、离心率、线段长度等。

一.近几年高考试题回顾。

X y2
1.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的
t 3
直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN
的面积;(II)当2 AM二AN时,求k的取值范围•
2 2
X y
【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0,
4 3
则直线AM的方程为y =k X • 2 .
'2 2
£ I 二1
联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0
y -k X 2
厂匚2 12
厂〒2 12
因为 AM 二 AN , k 0,所以 1 k
FTk^
= 1 k
3I 7^,
k
整理得k -1 4k —k ・4产0 , 4k 2_k ・4=0无实根,所以k
.
⑵直线AM 的方程为y 二k x • ..t ,
r 2
2
x y
1
联立 t 3
并整理得,3 tk 2 x 2 2x t 2k ^3^-0 y =k (X + JT )
解得 3 2 ::: k ::: 2 .
2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q ,
点Q 到抛物线C 的准线的距离为 3 .
[来源学科网]
(I)求抛物线 C 的方程;(n)是否存在点 M , 4
使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ••• yQ — = 3 =
o
抛物线方程x 2 =2y
4 2 4
1 2
所以△ AMN 的面积为| AM | =
144 79
解得 ^-F 或x =曲昇,
3 +tk 2
所以 AM
2
3 tk
2
6 t
AN = 1 亠 k 2
—―—
"k E 所以
3k 」
k
因为
2 AM | | AN 所以 2
T k
6
・口隹,整理得,
k
3 tk
2
t 6k -3k t
3
k -2
因为椭圆E 的焦点在x 轴,所以
t 3,即
1 k —
2 k3_2 ::
(n)设存在点
2
X。

2
又取FM 中点N^0 , X °4^),由垂径定理知 FM _QN ,
所以 FM QN =(X o , 2^)(-产,弓)=0二 X o =』2,所以存在 M (、2 , 1).
2 4X o 4
f x i +X 2 = 2k
设 A(X i , y i ),B(X ?,y 2),则有,
_ 1
X 1X 2 :
所以,I AB|2=(1 k 2)[(X 1 X 2)2 -4X 1X 2] =(1 k 2)(4k 2 2).
2
|AB|2 |DE :(1 k 2)(4k 2 2)
6k 2 * 曽忌(新心2)
记 f (x) =4x 2+6x +严+習 1^x (寸兰 x 兰4),
f'(x) =8x 6-25
— 6-孕 0,所以 f(x)在[1,4] 上单增,
8 (1+x)2 8 4
所以当X *,f (X)取得最小值f min (X )= f © =号, 所以当k=*时,|AB|2+|DE|2取得最小值 号.
2
3 (2016年浙江高考)如图,设椭圆 务• y 2 =1 (a > 1 )
a
(I )求直线y =kx +1被椭圆截得的线段长(用 a 、k 表示); (II )若任意以点
A (0,1 )为圆心的圆与椭圆至多有 3个公共点,求椭圆离心率的取
k MQ
X 0 1 ~2 一4
X o —
X Q
X o 1
--- 十-----
2 4X o
圆心Q 到直线 所以,
|DE |2 = 4(r 2 —d 2) =4 27 - k 32 27+2k 2 8(1 k 2).
又联立
x 2=2y _ y
=kX 4 一
八2心=0,
=Xo =■
(川)依题MC .2, 1),圆心
^kX 4的距离为
值范围
y 二 kx 1 I
【试题解析】(I )设直线y = kx +1被椭圆截得的线段为AP ,由{ x 2
2 r + y =1
2 2 2 2
1 a k x 2akx=0 ,故凶=° ,
(II )假设圆与椭圆的公共点有 4个,由对称性可设 y 轴左侧的椭圆上有两个不同的点
?,
Q ,满足AP = AQ •记直线AP , A Q 的斜率分别为k 1, k 2,且k 1, k 2 > 0 , k^ k 2.
AP = AQ= (k ; —k ; %+k ; +k ; +a 2(2—a 2 k ;k ;】=0
由 k^k 2,k 1,k^>0,所以上式可化为
;+1 f 1
2 +1 =1 + a 2(a 2 — 2)
'<k 1人k 2丿
上式关于k 1,k 2有解的充要条件是1 • a 2 a 2 -2 a (2)
因此,以A 0,1为圆心的圆与椭圆至多有三个交点的充要条件是
V a 2
得 0<e 2
2
(I )求椭圆C 的方程;
(II )设P 是E 上的动点,且位于第一象限, E 在点P 处的切线丨与C 交与不同的两点 A ,
A M/

2
2a 2
k 2 2 -
1 a k
因此AP =山+k 2
X 1
「X 2
2
刑’时.
-1 a 2k 2
由(I )
AP =
2a 2 k 1
1 a 2kr 1
苛 AQ=^
1+a 2k ;
4. (2016年山东高考)平面直角坐标系
xOy 中,椭圆C : 2
- 丄 2 - a
b 2
=1 a > b >0 的离心 率是 x 2二2y 的焦点F 是C 的一个顶点。

相关文档
最新文档