图的基本概念与性质
高中数学必修课件第一章直观图

矢量图是一种用箭头表示物理量大小和方向的直观图,广泛应用于力学、电磁学等领域。
化学中的分子结构图
分子结构图是一种用图形表示分子中原子连接方式的直观图,有助于理解分子的性质和化 学反应。
经济学中的图表分析
图表分析是一种用图表表示经济数据和趋势的分析方法,如折线图、柱状图、饼图等,有 助于理解经济现象和制定经济政策。
借助直观图进行空间想象
02
通过直观图可以帮助学生进行空间想象,更好地理解几何体的
形状和结构。
利用直观图解决实际问题
03
直观图可以帮助学生将实际问题抽象为几何问题,从而利用几
何知识解决实际问题。
典型例题讲解与思路分析
例题1
题目内容描述...
解题思路
首先,根据题意画出直观图; 其次,利用空间几何知识进行 分析;最后,得出结论。
04
03
06
总结与拓展
直观图在高中数学中重要性
直观图能够帮助学生 更好地理解数学概念 、定理和公式,提高 学习效率。
直观图有助于培养学 生的空间想象力和逻 辑思维能力。
通过直观图,可以将 抽象的数学问题具体 化,降低解题难度。
不同类型直观图适用场景比较
几何图形直观图
适用于解决几何问题,如平面几何、立体几何等。通过绘 制几何图形直观图,可以清晰地展示图形的形状、大小和 位置关系。
直观图作用
帮助理解和分析数学问题,使抽 象概念具体化,降低思维难度。
常见直观图类型介绍
01
平面图
在平面上表示点、线、面等元素的图形,如几何图形、 函数图像等。
02
立体图
在三维空间中表示点、线、面、体等元素的图形,如立 体几何图形、三维坐标系等。
图形的概念知识点总结

图形的概念知识点总结一、基本概念1. 点:图形的基本构成单位,没有长度、宽度和高度,用大写字母来表示,如A、B、C等。
2. 直线:在平面上无限延伸的线段,用小写字母或者两点的大写字母来表示,如l、AB等。
3. 封闭曲线:由连续点构成的曲线,首尾相连形成一个封闭的图形,如圆等。
4. 边:构成图形的线段,通常用大写字母表示,如AB、BC等。
5. 角:两条线段的交汇,有大小、方向和位置,通常用大写字母表示,如∠A、∠BAC等。
6. 维数:图形的维数是指图形的度量,表征了图形所在空间的维度,包括一维、二维和三维。
7. 多边形:由三条或以上的边构成的封闭图形,多边形的边数由多边形的边数来确定,如三角形、四边形等。
二、基本图形1. 点:没有大小和形状,是最基本的图形,用来构成直线、曲线及其他图形。
2. 直线:由无数个点组成,没有宽度和厚度,可以用两点来确定一条直线。
3. 封闭曲线:由连续的点组成,首尾相连形成一个封闭的图形,通常用来表示圆、椭圆等。
4. 角:由两条线段的交汇构成,可以分为锐角、直角、钝角等。
5. 多边形:由三条或以上的边构成的图形,包括三角形、四边形、五边形等。
6. 圆:由一点到平面上所有点的距离都相等的封闭曲线构成,是一种特殊的多边形。
7. 立体图形:具有三个维度、长度、宽度和高度的图形,包括正方体、长方体、圆柱体等。
三、图形的性质1. 对称性:图形的对称性包括中心对称和轴对称两种。
中心对称是指以图形的中心为对称中心,对折后两部分完全重合;轴对称是指以某条直线为轴,对折后两部分完全重合。
2. 等边性:指图形的所有边都相等,如正三角形、正方形等。
3. 相似性:指两个图形的形状相似,但大小不同。
相似的图形的相似比相等。
4. 包围性:指图形的边界围成的区域称为图形的内部,而不在图形内部的部分称为图形的外部。
5. 周长和面积:图形的周长是指图形的边界的长度总和,面积是指图形所包围的区域的大小。
6. 图形的位置关系:包括相离、相交、内含等不同的位置关系。
第14章-图基本概念

不同的圈(以长度3的为例) ① 定义意义下 无向图:图中长度为l(l3)的圈,定义意义下为2l个 有向图:图中长度为l(l3)的圈,定义意义下为l个 ② 同构意义下:长度相同的圈均为1个
试讨论l=3和l=4的情况
v 的关联集 I( v ) { e |e E ( G ) e 与 v 关 } 联 ② vV(D) (D为有向图)
v的后继D 元 (v)集 {u|uV(D)v,u E(D)uv} v的先驱D 元 (v)集 {u|uV(D)u,v E(D)uv} v的邻域ND(v)D (v)D (v) v的闭邻N域 D(v)ND(v){v}
2 m d (v) d (v) d (v)
v V
v V 1
v V 2
由于2m, d(v) 均为偶数,所以 d(v) 为偶数,但因为V1中
vV2
vV1
顶点度数为奇数,所以|V1|必为偶数.
12
握手定理应用
补例1 无向图G有16条边,3个4度顶点,4个3度顶点,其 余顶点度数均小于3,问G的阶数n为几? 解 本题的关键是应用握手定理. 设除3度与4度顶点外,还有x个顶点v1, v2, …, vx, 则
8
多重图与简单图
定义14.3 (1) 无向图中的平行边及重数:如果关联一对顶点的无向边多
于1条,则称这些边为平行边,平行边的条数称为重数。 (2) 有向图中的平行边及重数(注意方向性) 如果关联一对顶点的有向边多于1条,并且这些边的始点与
终点相同,则称这些边为平行边,平行边的条数称为重数。 (3) 多重图:含平行边的图称为多重图。 (4) 简单图:既不含平行边也不含有环的图。 在定义14.3中定义的简单图是极其重要的概念
平面图形的基本概念与性质

汇报人:XX
等腰三角形与等边三角形
等腰三角形是两边长度相等的三角形 等边三角形是三边长度都相等的三角形 等腰三角形有一个中垂线,将底边平分 等边三角形的三个内角都相等,每个角都是60度
等腰梯形与直角梯形
等腰梯形:两 腰相等,同一 底上的两个角
相等
直角梯形:有 一个角是直角, 另一底边平行
正方形与长方形
正方形与长方形都是四边形,具有四边形的性质。 正方形的四条边相等,四个角都是直角,具有轴对称性。 长方形的对边相等,相对的两个角是直角,具有平行四边形的性质。 正方形和长方形在几何学中有着广泛的应用,如建筑、设计等领域。
计算
应用:周长在 几何学、建筑 学、工程学等 领域有广泛应
用
面积的计算
定义:面积是指平面图形所占的平面大小 计算公式:长方形面积=长×宽,正方形面积=边长×边长,圆形面积=π×半径² 单位:常用的面积单位有平方米、平方厘米、平方分米等 计算方法:对于不规则图形,通常采用分割法或近似法来计算其面积
交通工具:汽车、 飞机和船舶的外的应用。
日常生活用品: 家电、家具、餐 具等的设计和制 作中,平面图形 也得到了广泛应 用,如圆形按钮、
矩形桌面等。
艺术领域:平面 图形在绘画、摄 影、平面广告等 领域中也有着广 泛的应用,如抽 象画、图案设计
等。
在艺术领域中的应用
边与角
边长性质:所有边等长 角度性质:所有内角相等 对边性质:对边平行且等长 对角性质:对角相等
图论的基本概念和应用

图论的基本概念和应用图论是数学中的一个分支,研究的是图的性质和图之间的关系。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图论的基本概念包括图的类型、图的表示方法、图的遍历算法等。
图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。
一、图的类型图可以分为有向图和无向图两种类型。
有向图中的边有方向,表示从一个节点到另一个节点的关系;无向图中的边没有方向,表示两个节点之间的关系是相互的。
有向图和无向图都可以有权重,表示边的权值。
二、图的表示方法图可以用邻接矩阵和邻接表两种方式来表示。
邻接矩阵是一个二维数组,数组的行和列分别表示图中的节点,数组中的元素表示节点之间的边;邻接表是一个链表数组,数组的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。
三、图的遍历算法图的遍历算法包括深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索从一个节点开始,沿着一条路径一直遍历到最后一个节点,然后回溯到上一个节点,再继续遍历其他路径;广度优先搜索从一个节点开始,先遍历与该节点相邻的所有节点,然后再遍历与这些节点相邻的节点,依次类推。
四、图论的应用1. 计算机科学:图论在计算机科学中有着广泛的应用。
例如,图可以用来表示计算机网络中的节点和连接关系,通过图的遍历算法可以实现网络路由和路径规划;图可以用来表示程序中的依赖关系,通过图的遍历算法可以实现代码的分析和优化。
2. 网络分析:图论在网络分析中有着重要的应用。
例如,社交网络可以用图来表示,节点表示用户,边表示用户之间的关系,通过图的遍历算法可以实现社交网络的分析和预测;互联网中的网页可以用图来表示,节点表示网页,边表示网页之间的链接关系,通过图的遍历算法可以实现搜索引擎的排名和推荐算法。
3. 运筹学:图论在运筹学中有着重要的应用。
例如,图可以用来表示物流网络中的节点和路径,通过图的遍历算法可以实现最短路径和最小生成树的计算;图可以用来表示任务调度中的依赖关系,通过图的遍历算法可以实现任务的优化和调度。
图形的所有知识点

图形的所有知识点图形是数学中的一个重要概念,它在几何学、代数学以及其他数学学科中扮演着重要的角色。
在本文中,我们将探讨图形的各种类型和相关概念,以帮助您更好地理解和应用图形知识。
一、基本概念与术语图形是由点和线组成的几何形状。
它由以下基本概念和术语组成:1. 点:图形中最基本的元素,通常用大写字母表示,例如 A、B、C。
2. 线:由两个点之间的直接路径组成,可以是直线、曲线或弧线。
3. 线段:连接两个点的部分,用小写字母表示,例如 AB。
4. 射线:从一个点开始,通过另一个点的路径,表示为以起始点为中心的一个方向。
5. 平行线:在同一平面上不相交且始终保持相同距离的线。
6. 垂直线:形成直角交叉的两条线。
7. 角:由两条射线共享一个公共起点组成。
8. 多边形:由线段组成的封闭图形,例如三角形、四边形和多边形。
二、图形的类型图形可以根据其形状和性质进行分类。
下面是一些常见的图形类型:1. 三角形:由三条线段组成的多边形。
2. 四边形:由四条线段组成的多边形。
3. 圆:由一个固定中心点和与该中心点距离相等的所有点组成的图形。
4. 正多边形:所有边相等且所有角均相等的多边形。
5. 平行四边形:拥有两组平行线的四边形。
6. 梯形:拥有两条平行线段的四边形。
三、图形的性质与公式图形的性质和公式帮助我们计算其各种属性,例如面积、周长和体积。
在下面,我们将介绍一些常见的图形性质和相关公式:1. 三角形:三角形的面积可以通过以下公式计算:面积 = 底边长 ×高 / 2。
周长等于三条边长的和。
2. 四边形:四边形的面积可以通过以下公式计算:面积 = 对角线之积 / 2。
周长等于四条边长的和。
3. 圆:圆的面积可以通过以下公式计算:面积= π × 半径的平方。
圆的周长可以通过以下公式计算:周长= 2 × π × 半径。
4. 矩形:矩形的面积可以通过以下公式计算:面积 = 长 ×宽。
《离散数学》第6章 图的基本概念

E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。
图的基本概念与握手定理

定理2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
n
n
n
d(vi ) 2m, 且
d (vi ) d (vi ) m
i 1
i 1
i 1
15
握手定理推论及应用
推论 任何图 (无向或有向) 中,奇度顶点的个数是 偶数.
例1 无向图G有16条边,3个4度顶点,4个3度顶 点,其余顶点度数均小于3,问G的阶数n为几?
解 设除3度与4度顶点外,还有x个顶点v1, v2, …, vx, 则 d(vi) 2,i =1, 2, …, x,
于是 32 24+2x
得 x 4, 阶数 n 4+4+3=11.
16
五、图的同构
定义 设G1=<V1,E1>, G2=<V2,E2>为两个图(有向或 无向图), (1)若存在双射函数f:V1V2, 对于vi,vjV1,
分别为D的最大出度、最小出度、最大入度、最小 入度。简记作△、、 △+、+ 、 △- 、- 。
14
四、握手定理
定理1 设G=<V,E>为任意无向图,V={v1,v2,…,vn},
|E|=m, 则
n
d(vi ) 2m
i 1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
13
三、 结点的度数
在无向图G中,令 △(G)=max{d(v)|v∈V(G)} (G)= min{d(v)| v∈V(G) }
称△(G)和 (G)分别为G的最大度和最小度。
在有向图D中,类似定义△(D)、(G)。另外,令 △+(G) = max{d+(v)| v∈V(D) } +(G) = min{d+(v)| v∈V(D) } △-(G) = max{d-(v)| v∈V(D) } -(G) = min{d-(v)| v∈V(D) }
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章图的基本概念与性质一、概念图——图可以用集合的形式表示,即图可以表示为一个三元组,包含结点集、边集,以及边与结点对集间的映射.如果用结点对来表示边,则图可以表示成一个由结点集与边集组成的二元组.定义3.1.1图G是一个三元组<V(G),E(G),ϕG>,其中V(G)是一个非空的结点集(或称顶点集),E(G)是边集,ϕG是从边集E(G)到结点偶对(无序偶或有序偶)集上的函数.图定义中的结点偶对可以是有序的,也可以是无序的.有向边、端点——若图中的边e所对应的结点偶对是有序的,记为<a,b>,则称e是有向边(简称弧).a,b分别称为弧的始点与终点,并均称为e的端点.称e是关联于结点a 和b的,结点a和结点b是相、邻的,或称结点a和结点b是邻接的.无向边、端点——若图中的边e所对应的结点偶对是无序的,记为(a,b),则称e是无向边(简称棱).a,b称为e的端点.称e是关联于结点a和b的,结点a和结点b是相、邻的,或称结点a和结点b是邻接的.有向图——每一条边均为有向边的图称为有向图.无向图——每一条边均为无向边的图称为无向图.底图——如果把有向图中每条有向边都看作无向边,就得一个无向图,此无向图称为原有向图的底图.底图只表示出结点间的连接关系而没有表示出连接边的方向.弧立结点——图中不与任何相邻的结点称为弧立结点.零图——全由孤立结点构成的图称为零图.自回路(环)——关联于同一结点的一条边称为自回路或环.重边(平行边)——在有向图中,两结点间(包括结点自身间)若多于一条边,则称这几条边为重边或平行边.多重图——含有重边的图称为多重图.线图——非多重图称为线图.定义3.1.2(简单图)无自回路的线图称为简单图.定义3.1.3(结点的度数、最大度、最小度)图G=<V,E>中,与V中结点v(v∈V)相关联的边数,称为该结点的度数,记作为deg(v).记∆(G)= max{deg(v)| v∈V(G)},δ(G)= min{deg(v)| v∈V(G)},分别称为G=<V,E>的最大度和最小度.定义3.1.4(出度、入度、度数)在有向图中,对于任何结点v,以v为始点的边的条数称为结点v的引出次数(或出度);以v为终点的边的条数称为结点v的引入次数(或入度);结点v的引出次数和引入次数之和称为v的次数(或度数).定义3.1.5(二部图)设G=〈V,E>是n阶无向图,若能将V分成两个互不相交的子集V1与V2使得G中任一边的两端点都不在同一个V i(i=1,2)中,则称G为二部图.记G=<V1,V2,E>.定义3.1.6(完全图)简单图G=<V,E>中,若每一对结点间都有边相连,则称该图为完全图.有n个结点的无向完全图记为K n.定义3.1.7(k-正则图)若无向简单图中,每个结点的度均为某个固定整数k,则称该图为k-正则图.定义3.1.8(赋权图)赋权图G是一个三重组<V,E,g>或四重组<V,E,f,g>,其中V是结点集合,E是边的集合,f是定义在V上的函数,g是定义在E上的函数.定义3.1.9(补图)设图G=<V,E>有n个顶点,图H=<V,E’>也有同样的顶点,而E’是由n个结点的完全图的边删去E所得,则图H称为图G的补图,记为H=G,显然,G=H.定义3.1.10(子图、真子图、生成子图)设G=<V,E>和G’=<V’,E’>是两个图.(1)若V’⊆V且E’⊆E,则称G’是G的子图;(2)若V’⊂V或E’⊂E,则称G’是G的真子图;(3)若V’=V和E’⊆E,则称G’是G的生成子图;(4)若子图G’中没有孤立结点,G’由E’唯一确定,则称G’为由边集E’导出的子图;(5)若子图G’中,对V’中的任意两个结点u,v,当u,v∈V’时有[u,v]∈E’,则G’由V’唯一确定,则称G’为由结点集V’导出的子图.定义3.1.11(补图) 设G’=<V’,E’>是G=<V,E>的子图,若给定另外一个图G’’=<V’’,E’’>,使得E’’=E-E’,且V’’中仅包含E’’的边所关联的结点,则称G’’是子图G’的相对于G 的补图.定义3.1.12(同构) 设G=〈V,E>和G’=<V’,E’>是两个图,若存在从V到V’的双射函数f,使对任意[a,b]∈E,当且仅当[f(a),f (b)]∈E’,并且[a,b]和[f(a),f (b)]有相同的重数,则称G和G’是同构的.定义3.1.13(路径) 在图G=<V,E>中,设v0,v1,…,v n∈V,e1,e2,….,e n∈E,其中e i是关联于结点v i-1,v i的边,交替序列v0 e1 v1 e2…e n v n称为联结v0到v n的路径(或称路).v0与v n分别称为路的起点与终点,边的数目n称为路的长度.孤立点——长度为0的路定义为孤立点.简单路径——若序列中所有的边e1,e2,…., e n均互不相同,则称此路径为简单路径.基本路径——若序列中所有的点v0,v1,…,v n均互不相同,则称此路径是基本路径.回路——若v0=v n,即路径中的终点与始点相重合,则称此路径为回路.简单回路——没有相同边的回路称为简单回路.基本回路(圈)——各结点均互不相同的回路称为基本回路(或圈).奇圈(偶圈)——长度为奇(偶)数的圈称为奇(偶)圈.定义3.2.1(可达、连通)在图G=<V,E>中,设有结点v j与v k,若从v j到v k存在任何一条路径,则称结点v k从结点v j可达,也称结点v j与v k是连通的.定义3.2.2(连通图、非连通图、分离图)若G是平凡图或G中任意两个结点都是连通的,则称G是连通图,否则称G为非连通图或分离图.定义3.2.3(连通分支)设G=<V,E>是图,连通关系的商集为{V1,V2,…,V m},则其导出的子图G(V i)(i=1,2,…m)称为图G的连通分支(图),将图G的连通分支数记作W(G).定义3.2.4(短程线)设u与v是图G的两个结点,若u与v连通,则称u与v之间的长度最短的路为u与v之间的短程线,短程线的长度可作为结点u与v间的距离,记作d(u,v),其满足下列性质:d(u,v) ≥ 0,u=v时,d(u,v) =0 (非负性)d(u,v) = d(v,u) (对称性)d(u,v) + d(v,w) ≥d(u,w) (三角不等式)若u与v不连通,则通常记d(u,v) = ∞.定义3.2.5(单向连通、强连通、弱连通)在简单有向图中,如果在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G是单向(侧)连通的;如果在任何结点偶对中,两结点对互相可达,则称图G是强连通的;如果图的底图(在图G中略去边的方向,得到无向图)是连通的,则称图G是弱连通的.定义3.2.6(极大强连通子图、极大单向连通子图、极大弱连通子图、强分图、单向分图、弱分图) 在简单有向图G =<V ,E >中,G’是G 的子图,如G’是强连通的(单向连通的,弱连通的),且没有包含G’的更大的子图G’’是强连通的(单向连通的,弱连通的),则称G’是极大强连通子图(极大单向连通子图,极大弱连通子图)又叫强分图(单向分图,弱分图).定义3.2.7(点割集、割点) 设无向图G =<V ,E >为连通图,若有点集V 1⊂V ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图是连通图,则称V 1是G 的一个点割集.若某个结点构成一个点割集,则称该结点为割点.定义3.2.8(点连通度) 若G 为无向连通图且不含Kn 为生成子图,则称k (G )=min{|V 1| ∣V 1是G 的一个点割集}为G 的点连通度(简称连通度).规定:完全图Kn 的点连通度为n ,n ≥1.非连通图的点连通度为0.若k (G ) ≥k ,则称G 为k -连通图.定义3.2.9(边割集、割边、桥) 设无向图G =<V ,E >为连通图,若有边集E 1⊂E ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图是连通图,则称E 1是G 的一个边割集.若某个边构成一个边割集,则称该结点为割边(或桥). 定义3.2.10(连通度) 若G 为无向连通图,则称λ(G )=min{|E 1| ∣E 1是G 的一个边割集}为G 的边连通度.规定:非连通图的边连通度为0.若λ(G ) ≥k ,则称G 为k 边-连通图.定义3.3.1(邻接矩阵) 设G =<V ,E >是一个简单图,其中V ={v 1,v 2,…, v n },则n 阶方阵A (G )=(a ij )称为G 的邻接矩阵.其中各元素⎪⎩⎪⎨⎧==ji v v v v a j i j i ij 不相邻或与相邻与01 定义3.3.2(可达性矩阵) 设G =<V ,E >是一个简单图,|V |=n ,假定G 的结点已编序,即V ={v 1,v 2,…, v n },定义一个n ⨯n 方阵P =(p ij ).其中⎪⎩⎪⎨⎧=不存在一条路与从至少存在一条路到从j i j i ij v v v v p 01 则称矩阵P 为图G 的可达性矩阵.最短路径的数学模型——给定一个网络N (有向或无向赋权图),u 0与v 0是N 中指点的两个顶点,在N 中找一条从u 0到v 0且权最小的路.规定N 中的一条路P 的权w (P )称为p 的长度.若N 中存在从u 到v 的路,则将N 中从u 到v 且权最小的路称为u 到v 的最短路,其长度称为u 到v 的距离,记为d N (u ,v ).二、定理定理3.1.1(握手定理) 设G 是一个图,其结点集合为V ,边集合为E ,则∑∈=V v E v ||2)deg(定理3.1.2 图中次数为奇数的结点有偶数个.定理3.1.3 在任何有向图中,所有的入度之和等于所有结点的出度之和.定理3.1.4 有n 个结点的无向完全图K n 的边数为n (n -1)/2.定理3.1.5 在具有n 个结点的简单图G =<V , E >中,若从结点v j 到结点v k 有一条路,则从结点v j 到结点v k 有一条长度不大于n -1的路.定理3.1.5推论在一个具有n个结点的图G=<V, E>中,如果从结点v j到结点v k有一条路,则从结点v j到结点v k必有一条长度小于n的通路.定理3.1.6在具有n个结点的图G=<V,E>中,如果经v有一条回路,则经v有一条长度不超过n的回路.定理3.1.6推论在具有n个结点的图G=<V,E>中,如果经v有一条简单回路,则经v 有一条长度不超过n的基本回路.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.定理3.2.2在有向图G=〈V,E〉中,G的每一结点都在也只在一个强(弱)分图中.定理3.2.3在有向图G=〈V,E〉中,G的每一结点都处在一个或一个以上的单向分图中.定理3.2.4(Whitney)对于任何一个图G,有k(G) ≤λ (G) ≤δ(G)其中k(G)、λ (G)、δ(G)分别为G的点连通度、边连通度和最小度.定理3.2.5一个连通无向图G中的结点v是割点的充分必要条件是存在两个结点u与w,使得结点u与w的每一条路都通过v.三、方法1.两图同构的必要条件:(1)结点数相等;(2)边数相等;(3)度数相同的结点数相等.2.邻接矩阵运算特征(1)图G=<V,E>的邻接矩阵不唯一,而与V中的元素标定次序有关.对V中各元素不同的标定次序可得到同一图G的不同邻接矩阵.但这些邻接矩阵经过适当地交换行和列的次序,就从一个邻接矩阵变到另一个邻接矩阵.根据不同邻接矩阵所作的有向图都是同构的.因此,可选V元素的任一种标定次序所得出的邻接矩阵.(2)当有向线图代表关系时,邻接矩阵就可看作是一种关系矩阵.有向图是自反的,矩阵的对角线元素全为1.有向图是非自反的,矩阵的对角线元素全为0.有向图是对称的,对所有i和j,矩阵是对称的.有向图是反对称的,对所有i和j,矩阵是以主对角线对称的元素不可能同时为1.(3)零图的邻接矩阵的元素全为零,并称其为零矩阵.(4)图的每一顶点都有自回路而再无其它边时,图的邻接矩阵是单位矩阵.(5)设有向线图G=<V,E>的邻接矩阵是A,则A的逆图的邻接矩阵是A的转置矩阵.3.可达性矩阵的计算方法一般地,可以由图G的邻接矩阵A得到可达性矩阵P.即令B n=A+A2+…+A n,在从B n中将不为0的元素改为1,而为零的元素不变,这样改换的矩阵即为可达性矩阵P.也可以将矩阵A,A2,…,A n分别改为布尔矩阵A,A(2),…,A(n),简化计算,故P= A∨A(2)∨…∨A(n),其中A(i)表示在布尔运算下A的i次方.4.求最短路径的Dijkstra算法步骤(1)置l(u0)=0,对v∈V-{ u0},l(v)= +∞,S0 ={ u0},i=0.(2)对每个v∈ N G-Si(u i),用min{ l(v),l(u i)+ w(u i,v)}代替l(v).若l(v)取到l(u i)+w(u i,v),则在v旁边记下(u i).计算min(v∈G- S i ){ l(v)},并将达到最小值的这个顶点记为u i+1.置S i+1= S i⋃{ u i+1}.(3)若i=|G|-1,则算法停止,否则用置i 为i+1,并转入第(2)步.算法结束时,从u0到v的距离由最终的标号给出l(v),并且可根据各个顶点旁边的(u i)追回出从u0到v的最短路径.若为求某个特定的顶点v时,则可以在u j= v时使算法停止即求得结果.。