教你看懂音箱测频响曲线

合集下载

喇叭相位曲线和频响曲线的关系_解释说明以及概述

喇叭相位曲线和频响曲线的关系_解释说明以及概述

喇叭相位曲线和频响曲线的关系解释说明以及概述1. 引言1.1 概述喇叭相位曲线和频响曲线是研究声学系统中的重要参数,它们描述了喇叭在不同频率下的相位特性和频率响应。

喇叭作为一种常用的音频输出设备,其性能对于实现高质量音效至关重要。

了解喇叭相位曲线和频响曲线之间的关系对于喇叭设计、优化和声学系统调节具有重要意义。

1.2 文章结构本文将首先概述喇叭相位曲线和频响曲线的概念及定义,并详细阐述其各自的解释。

接着,我们将深入探讨喇叭相位曲线和频响曲线之间存在的关系,包括相位曲线对频响曲线的影响以及频响曲线对相位曲线的影响。

然后,通过实例一和实例二,我们将进一步解释说明这两个参数在不同情况下的变化趋势,并进行相关数据分析。

最后,在结论部分总结以上讨论内容,并探讨喇叭设计和优化方面的意义,并提出建议。

1.3 目的本文旨在深入研究喇叭相位曲线和频响曲线之间的关系,帮助读者更好地理解这两个参数的含义和作用。

通过分析实例和数据,我们将展示不同情况下喇叭相位曲线和频响曲线的变化模式,并探讨其在实际应用中的意义。

希望本文能为喇叭设计、优化以及声学系统调节等相关领域的研究工作提供一定的指导和启示。

2. 喇叭相位曲线和频响曲线的概述:2.1 喇叭相位曲线的定义和解释:喇叭相位曲线是指在不同频率下,声音在喇叭系统中传播时所引起的声音波动的相位差。

当音频信号经过喇叭系统时,不同频率的声波会因为传播路径的不同而产生相位差。

喇叭相位曲线描述了这种相位差与频率之间的关系。

喇叭相位曲线通常以角度或时间延迟来表示。

对于一个完美设计的喇叭系统,其相位响应应该是线性平坦的,即角度保持一致或时间延迟保持恒定。

然而,在实际情况下,由于电子元件、声学特性等因素的存在,喇叭系统可能会出现相位失真。

2.2 频响曲线的定义和解释:频响曲线是指在不同频率下音响系统所产生声音信号输出与输入之间增益或减益比例的测量结果。

换句话说,它显示了音响系统如何对不同频率构成的输入信号做出反应,并通过增加或降低某些频率上的能量来形成最终的声音输出。

频响曲线

频响曲线

扬声器的频率特性扬声器的锥盆具有一定的刚性,它在低频段可以看做一个刚体,但当扬声器的工作频率增高时,扬声器的锥盆就不再是一个刚体,锥盆将出现分割运动。

此外扬声器的锥盆和折环在振动叶还会出现相互干扰的现象。

由于这些原因,当我们将不同频率的音频信号输给扬声器单元时,虽然音频信号电压保持不变,扬声器单元辐射出的声压却随着信号频率的不同而变化。

扬声器的频率特性揭示了扬声器单元对不同频率的声波的辐射能力,因此,它是扬声器的重要参数之一,扬声器的频率特性可以通过频响曲线,有效频率范畴,不均匀度这三个方面综合表示。

扬声器的频响曲线频响曲线是一条记录在频宽为5CM或10CM纸上的连续不规则的曲线,记录纸上的X轴表示输入扬声器单元的电信号频率,Y轴表示被测扬声器单元在不同频率范围的电信号时所产生的声压级,我们人耳可以听到的声压级范围相当大,从耳朵刚能听到的到耳朵感到疼痛时的声压级上下相差一百万倍,如此宽大的声压级变化范围直接用声压进行测量和比较是十分的不利的。

人们在试验中发现,人耳的听觉特性具有指数特性能,用指数形式来表示声压级大小,从客观上也能符合人的听觉分辨力。

声压级的单位是分贝(DB)它在音响技术中是一个相当有用的度量单位。

某一发声体的声压级可用该发声体所产生的有效的声压P 与基准声压PR的比值常用对数乘以20来表示。

这里的基准声压是大多数听力正常的人刚能听到频率为1000HZ的声音时该声音的声压,我们通常将人耳刚能听到的声压定为0DB,那么我们感觉到震耳欲聋时的声压级只有140DB,由此可见对数形式表示打印机的大小可以使声压级测量的比较变得十分的简单。

扬声器的频响曲线大多都在消声室测得的,被测扬声器放在固定的消声室的障板上测量话筒放置在被测扬声器的同轴上,目前大多数的扬声器的频响曲线上在1M1W 的条件下测得的,信号发生器的输出信号经功率放大器放大反馈送到被测扬声器,被测扬声器辐射出的声信号被测量话筒接收后转变成为电信号经测量放大器处理后送至点评记录仪。

教你看懂音箱测试的频响曲线

教你看懂音箱测试的频响曲线

前言:声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。

发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。

那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。

声卡的频响曲线:在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。

Frequency response(频率响应)[url=/images/html/viewpic_pconline.htm?http://img3.pc/pcon ...iy&subnamecode=home][/url]General performance: ExcellentFrequency range ResponseFrom 20 Hz to 20 kHz, dB-0.00, +0.01From 40 Hz to 15 kHz, dB-0.00, +0.00上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。

理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。

目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。

不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为24bit。

上图即是采用PCM编码方式192kHz/24bit的采样结果。

一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。

如何看懂频响曲线

如何看懂频响曲线

首先,频响是什么?频率响应,简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。

同失真一样,这也是一个非常重要的参数指标。

一个“完美”的交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大率,并且对于相应的负载具有同等的驱动能力。

显然这在目前技术水平下是完全不可能的,那么针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围内的频率的信号。

这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz,也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。

实际上,根据研究表明,高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放大器甚至会达到0.1~数百KHz。

但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们连这样的要求也不可能达到。

于是,就有了“频响”这个指标。

(附言:指标本身就代表着“不完美”,如果一切都“完美”了,指标也就没有存在的理由了。

)频响的测试方法与标注任何可以被写上说明书的“指标”都是必须借助仪器来测量的,这些指标必须有一个共同的特点,就是“可重复性”,也就是说,只要你用同样的设备,就可以重复得到相同货相近的测量结果。

我们把这一类指标称为“客观指标”,频响当然是属于此类。

频响的测量方法很简单,在放大器的输入端接入一个标准信号发生器,这个信号发生器可以产生标准的正弦波信号,并且可以通过调节使得这个发生器的输出信号的频率发生变化,而幅度不变。

在放大器的输出端接一个标准的纯阻性负载,并且接一个交流电平表,通过读取电平表的数据,就可以测量该放大器的频响特性了。

音响曲线识别基础知识

音响曲线识别基础知识

重新对准麦克风 后高頻上调了
解決方案: 如果出现有这种高頻下跌的曲线, 要证明曲线是否是因为麦克风 没有对准的话,可以測试单边曲线, 如单边曲线有上升那就是麦克风没对准。
高頻下跌,原因 是麦克风 没有对准
青色高低音 组合SPL
红色高音 SPL
蓝色低音 SPL
TS参数 说明见下 页
Vb1=15*Vas*QTS2.87次方
IEC标准测试障板 配置:高密度压合板(2m*1.2m*15.mm)4张 刨花板(2m*1.2m*2mm)2张 2mm不锈钢全包边与支撑架壹套 定向脚轮2个,万向转轮带自锁2个 测试模板与喇叭定位支架1幅 附送:喇叭测试安装高线
风管口不加布网,风 管口无阻 风管口盖上布网,出 风有阻
系统曲线
风管口不加布网,风 管口无阻
风管口盖上布网,出 风有阻
箱体SPL曲线
风管口不加布网,风 管口无阻
风管口盖上布网,出 风有阻
原:SUB:6Ω/SAT:白色.
改喇叭:SUB:8Ω/SAT:黑色.
國外專家Neville Thiele對揚聲器參數發展的40年歷程還做了回顧,證明了揚聲器 參數的有效性和精確性都在不斷提高; 聲學博士FloydE.Toole從理論及實踐證明 86%左右的消費者從聽感上判斷音質好的揚聲器,頻率響應曲線都是非常平坦的, 這就給我們在設計揚聲器時提供了設計指標.
曲线识别基础知识
---研发部內部教材
woofer音箱正確曲线
Notebook音箱正確曲线
Notebook音箱漏风曲线
此处漏风严重
Notebook音箱漏风曲线
此处漏风严重
Notebook音箱漏风曲线
此条是风管口有补胶
此条是风管口未补胶 漏风

监听音响指标 lf

监听音响指标 lf

监听音响指标 lf监听音响指标lf,顾名思义是听觉范围内感受到的最大声压级,以毫瓦为单位。

lf代表频响曲线,它包括主频率曲线和主加权等响曲线两部分,由两个特性曲线组成,一个叫做主频率特性曲线,另一个叫做加权等响曲线。

这里的“主”和“加权”,都是指这些曲线的起始频率都比较高,因此叫做主曲线;而所谓“等响”,是指这些曲线在频率点上的斜率逐渐减少,声压也越来越小,因此叫做等响曲线。

lf和音乐没有必然的联系,但在制作人的音响设计中,却常常用到这个数据。

可见,理解lf曲线,就等于掌握了监听音响的表现手段,了解了监听音响与音乐表现手法的不同。

lf曲线与音乐的关系如图1。

从图中可以看出,一般而言, lf 曲线越宽、越平坦,说明音乐的表现力越丰富,音乐作品的魅力就越大。

当lf曲线非常平直、几乎垂直时,则意味着音乐的表现力已经达到极限,音乐已经失去了表现力,失去了活力,使聆听者的精神无法集中到音乐的细节之中,从而使整个音乐的结构变得混乱,严重的甚至会使听者产生反感的情绪。

在这种情况下,除非能够找到能够表现出更丰富、更有张力的音乐形式,否则监听音响只能是维持现状,难有作为。

影响lf曲线的因素有许多,但总的来说主要可以分为三类:音响环境,音响设备,音响技术。

实际上每一个因素都可以通过不同的途径改变lf曲线,只要人们注意这些影响因素,并进行相应的调整,就可以将lf曲线改造成自己所需要的效果。

lf曲线对音乐表现力有一定的限制。

在传统监听音响中,人们总是通过控制监听音响的输入音量,来控制lf曲线。

具体地讲,就是通过控制音量的大小,使lf曲线的下降或上升,达到控制音乐表现力的目的。

一般而言,在音响工程中,我们总是根据听众或音乐表演者的数量,采取均衡法来调整lf曲线。

均衡法主要分为电子均衡法和自然均衡法两种。

前者指对监听音响的增益值进行调整,以提高监听音响的输入信号质量;后者指对监听音响输入信号进行调整,以改变监听音响的声场分布状态,从而获得不同的听音效果。

8用力学线路分析扬声器的频响曲线

8用力学线路分析扬声器的频响曲线

8用力学等效线路分析扬声器的频响曲线我们平时测量扬声器的频响曲线是扬声器的声压频响曲线,它指的是馈给扬声器的电压保持不变的条件下,扬声器的声压随频率变化的规律。

只是纵坐标用的是dB (声压级)表示的。

我们也可以在同样的条件下,画出扬声器所辐射的声功率随频率变化的曲线。

在低频时无论是声压还是声功率,其用分贝表示的频响曲线的形状都是相同的。

为能更好的分析辐射声功率与扬声器参数间的关系,现在我们讨论扬声器声功率频响曲线。

我们已知扬声器前后两面所辐射的声功率为:A W ∣c u ∣22MR R (单位:瓦特) (6.1)式中:MR R — 扬声器一面的辐射力阻 (单位:牛顿·秒/米) c u — 为振膜的振动速度 (单位:米)下面我们从(6.1)式出发,讨论不同频段时辐射声功率随频率的变化情况。

(1) 在f0以下的频段声辐射力电z MRC MS R MSM MDB l R g +R E22图8(a):等效力学线路图(阻抗型)C MSR g +R Ee g Bl图5.17(a)图中:e g — 发生器(或音频放大器)的电动势 (单位:伏特) B — 磁缝隙中的磁感应强度 (单位:特斯拉) l — 音圈导线的长度(单位:米) R g — 发生器内阻(单位:欧姆)R E — 音圈直流阻 (单位:欧姆) L — 音圈电感 (单位:亨利)c u — 为振膜的振动速度 (单位:米)M MD — 振动系统等效质量(单位:千克) M MD =Me+Mc(音圈质量+振膜质量)MS R — 振动系统等效力阻(单位:牛顿·秒/米)C MS — 振动系统等效力顺 (单位:米/牛顿) Z MR — 振膜一面的辐射力阻抗(单位:牛顿·秒/米)Z MR =MR MR R j M ω+MR R —辐射力阻(单位:牛顿·秒/米)MR M =3083a ρ — 为振膜一面的同振质量0ρ= 1.183/Kg m (22℃) 空气密度a = 振膜的有效半径(单位:米)c f — 电动力(单位:牛顿)此时图8(a )中,在恒压源项中j ωL 项很小,略去。

教你看懂音箱测试的频响曲线

教你看懂音箱测试的频响曲线

前言:声音信号是由‎不同频率的声‎波叠加而成的‎,因此人们在分‎析声音时就很‎难避开频率问‎题。

发烧友们常说‎“有好曲线未必‎有好声”,但是更多的情‎况是“没有好曲线的‎产品声音肯定‎好不到哪里去‎”。

那么曲线与最‎终的回放听感‎有什么联系呢‎?我们立刻进入‎正题,为大家揭示其‎中的奥秘。

声卡的频响曲‎线:在声卡评测中‎,我们常用到回‎路测试法对声‎卡的输入输出‎回路进行音质‎测试,得出的曲线就‎是DAC到A‎D C的回路频‎响。

Freque‎n cy respon‎s e(频率响应)[url=http://www.pconli‎n /images‎/html/viewpi‎c_pcon‎l ine.htm?http://img3.pconli‎n/pcon ...iy&subnam‎e code=home][/url]Genera‎l perfor‎m ance: Excell‎e ntFreque‎n cy range Respon‎s eFrom 20 Hz to 20 kHz, dB -0.00, +0.01From 40 Hz to 15 kHz, dB -0.00, +0.00上图和上表就‎是频率响应曲‎线图和曲线品‎质,要知道什么是‎好曲线就应该‎知道理想的频‎响曲线是什么‎样的。

理想的频率响‎应曲线应该是‎与输入信号完‎全一样的曲线‎,一般我们会用‎等响信号(各频段的声压‎相同)作为输入信号‎,因此理想的频‎响曲线就应该‎是尽可能平直‎平滑的曲线。

对于声卡来说‎,采样规格有两‎个参数,一是采样频率‎,另一个是采样‎精度,采样频率表示‎一秒钟内在收‎到的信号上取‎几次参数,单位为Hz;而采样精度则‎表示每次采样‎的精密程度,单位为bit‎。

目前有很多不‎同的采样方式‎,而影响采样品‎质的还是由这‎两个基本参数‎决定的。

不过根据采样‎以及编码方式‎的不同,两者间的侧重‎要求也不一样‎,目前采用的P‎C M 方式最高‎规格为192‎k Hz/24bit,它表示单位时‎间内会采样1‎92000次‎,每次采样的精‎度为24bi‎t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教你看懂音箱测频响曲线
————————————————————————————————作者:————————————————————————————————日期:
前言:
声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。

发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。

那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。

声卡的频响曲线:
在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。

Frequency response(频率响应)
[url=/images/html/viewpic_pconline.htm?http://img3.pconlin
/pcon ...
iy&subnamecode=home]
[/url]
General performance: Excellent
Frequency range Response
From 20 Hz to 20 kHz, dB -0.00, +0.01
From 40 Hz to 15 kHz, dB -0.00, +0.00
上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。

理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。

目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。

不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为
24bit。

上图即是采用PCM编码方式192kHz/24bit的采样结果。

一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。

我们可以看到,从20Hz~30kHz的范围内,曲线都是相当平直的。

下面的成绩表也列出了测试参数,20 Hz to 20 kHz的曲线变化仅为-0.00, +0.01(dB);而40 Hz to 15 kHz则更为理想,精度范围内没有侦测出任何变形,是一条相当理想的频响曲线。

2回顶部
音箱的频响曲线:
一般音箱的频响曲线是通过LMS电声测试系统进行声音信号的收集以及描绘出图。

由于音箱是由电信号转换为声波信号然后再由LMS收集后转变为电信号的,并且由于扬声器以及放大器的非线性,因此曲线很难做到与声卡一样的频响曲线。

但是他们的要求还是类似的,频响曲线应该尽可能的平滑平直。

上图是某产品的频响回放曲线,从该曲线我们可以看到平均声压在90dB左右的音箱频响还是比较理想的。

200Hz~5KHz内的曲线还是比较平直的,而为了获得更明亮的高音以及更丰满的低频,音箱有益的提高了两端的增益,这也是不同音箱厂商对声音最终风格诉求的表现。

两分频音箱还可以通过单元分别测试频响得到更细致的参考曲线,能够有助于我们评判音箱产品两个单元间的相互关系。

一般来说高音部分在经过分频点后应该能够尽快的衰减多余的频率(这样才能尽可能的避免单元间的互相影响)。

而单独测试的曲线叠加后,应该尽可能的与整体频响曲线相符(可以判定两单元同时工作时基本没有明显的相互影响)。

从上图我们开可以看出产品的分频点设置,这款音箱的分频点大约在1.7kHz左右。

人耳听感最敏感的部分大致为300~1.2kHz左右,为了获得更好的听感,两分频的音箱一般会将分频点设置在最敏感频段上限频率的两倍频率上,也就是大多在2.5kHz左右。

这样能够降低对高音单元的要求。

而降低分频点则对分频器以及高音单元提出了更高的要求。

根据这一点我们再回过头看看整体频响,可以看到该频段上,声音的波动还是被控制得比较理想的,基本上没有明显过分的分频点衰减。

通过不同声压下的曲线可以表现出音箱的回放品质的稳定性,通俗的说就是不同音量
下,音箱的回放听感有没有明显的改变。

上图即是不同声压下的测试曲线。

这种比较方法也是讨论音箱品质常用的一种方法。

我们可以看到,即便声压提高到100dB,该音箱的频响曲线也没有明显的变形,可以说在这个范围内,音量调节对声音的影响基本上可以看作是线性的(也就是说是比较理想的)。

单独调
节低音增益的频响曲线
单独调节高音增益的频响曲线
完善的两分频音箱都提供高低音单独调节的功能,以上两图就是描述单独调节高音或低音增益后音箱的频响曲线。

判断优劣的方法与提高声压增益的情况类似,我们在这里就不再重复了。

3回顶部
影响我们最终听感的因素很多,简单的频响曲线并不能完整的描述声音回放的特点。

因为人们听到的声音都是直达声与反射声的叠加信号。

声音频谱衰减曲线能够很好的反应真实生活中的声音特点。

上图是一张声音的积累衰减曲线,为三座标曲面,因此它呈现出来的是一张立体图,三个参数分别是声压、频率和时间,它反应的是在经过不同时间后,声音各频段在固定空间内的残留量。

从上图我们可以看到,经过一段时间后,残留最多的是低频信号。

音箱的指向特性关系到音箱在立体声回放时声场规模、宽阔度与纵深感,声像的结实程度、声音层次、细节定位等诸多方面,是评价一款音箱的主要衡量指标之一。

测试方式与累积衰减曲线类似,以一个三座标曲面来体现音箱的指向性特征。

三个参数分别为声压值、频率以及偏离角度,通过旋转音箱偏向角度,测出音箱在不同偏离角度下各频段的声压变化。

一般来说,声压变化越平滑缓慢越好。

从目前的实验领域看,声学的研究还是有不小的限制,即便描绘出声音大致的频率特性,亦不一定完整的表现出声音的所有特征。

目前的品质研究领域也大多只能从频率入手。

从大量的实验结果看,即便“有好曲线不一定能出好声”,但是“没有好曲线的产品声音肯定好不到哪里去”,因此基于频率波形对产品音质进行评定的方法还是有其可行性与客观性的,以其辅助我们的主观评判能够尽可能的修正我们在试音时因为主观因素产生的误差。

相关文档
最新文档