教你看懂音箱测频响曲线

合集下载

喇叭相位曲线和频响曲线的关系_解释说明以及概述

喇叭相位曲线和频响曲线的关系_解释说明以及概述

喇叭相位曲线和频响曲线的关系解释说明以及概述1. 引言1.1 概述喇叭相位曲线和频响曲线是研究声学系统中的重要参数,它们描述了喇叭在不同频率下的相位特性和频率响应。

喇叭作为一种常用的音频输出设备,其性能对于实现高质量音效至关重要。

了解喇叭相位曲线和频响曲线之间的关系对于喇叭设计、优化和声学系统调节具有重要意义。

1.2 文章结构本文将首先概述喇叭相位曲线和频响曲线的概念及定义,并详细阐述其各自的解释。

接着,我们将深入探讨喇叭相位曲线和频响曲线之间存在的关系,包括相位曲线对频响曲线的影响以及频响曲线对相位曲线的影响。

然后,通过实例一和实例二,我们将进一步解释说明这两个参数在不同情况下的变化趋势,并进行相关数据分析。

最后,在结论部分总结以上讨论内容,并探讨喇叭设计和优化方面的意义,并提出建议。

1.3 目的本文旨在深入研究喇叭相位曲线和频响曲线之间的关系,帮助读者更好地理解这两个参数的含义和作用。

通过分析实例和数据,我们将展示不同情况下喇叭相位曲线和频响曲线的变化模式,并探讨其在实际应用中的意义。

希望本文能为喇叭设计、优化以及声学系统调节等相关领域的研究工作提供一定的指导和启示。

2. 喇叭相位曲线和频响曲线的概述:2.1 喇叭相位曲线的定义和解释:喇叭相位曲线是指在不同频率下,声音在喇叭系统中传播时所引起的声音波动的相位差。

当音频信号经过喇叭系统时,不同频率的声波会因为传播路径的不同而产生相位差。

喇叭相位曲线描述了这种相位差与频率之间的关系。

喇叭相位曲线通常以角度或时间延迟来表示。

对于一个完美设计的喇叭系统,其相位响应应该是线性平坦的,即角度保持一致或时间延迟保持恒定。

然而,在实际情况下,由于电子元件、声学特性等因素的存在,喇叭系统可能会出现相位失真。

2.2 频响曲线的定义和解释:频响曲线是指在不同频率下音响系统所产生声音信号输出与输入之间增益或减益比例的测量结果。

换句话说,它显示了音响系统如何对不同频率构成的输入信号做出反应,并通过增加或降低某些频率上的能量来形成最终的声音输出。

频响曲线

频响曲线

扬声器的频率特性扬声器的锥盆具有一定的刚性,它在低频段可以看做一个刚体,但当扬声器的工作频率增高时,扬声器的锥盆就不再是一个刚体,锥盆将出现分割运动。

此外扬声器的锥盆和折环在振动叶还会出现相互干扰的现象。

由于这些原因,当我们将不同频率的音频信号输给扬声器单元时,虽然音频信号电压保持不变,扬声器单元辐射出的声压却随着信号频率的不同而变化。

扬声器的频率特性揭示了扬声器单元对不同频率的声波的辐射能力,因此,它是扬声器的重要参数之一,扬声器的频率特性可以通过频响曲线,有效频率范畴,不均匀度这三个方面综合表示。

扬声器的频响曲线频响曲线是一条记录在频宽为5CM或10CM纸上的连续不规则的曲线,记录纸上的X轴表示输入扬声器单元的电信号频率,Y轴表示被测扬声器单元在不同频率范围的电信号时所产生的声压级,我们人耳可以听到的声压级范围相当大,从耳朵刚能听到的到耳朵感到疼痛时的声压级上下相差一百万倍,如此宽大的声压级变化范围直接用声压进行测量和比较是十分的不利的。

人们在试验中发现,人耳的听觉特性具有指数特性能,用指数形式来表示声压级大小,从客观上也能符合人的听觉分辨力。

声压级的单位是分贝(DB)它在音响技术中是一个相当有用的度量单位。

某一发声体的声压级可用该发声体所产生的有效的声压P 与基准声压PR的比值常用对数乘以20来表示。

这里的基准声压是大多数听力正常的人刚能听到频率为1000HZ的声音时该声音的声压,我们通常将人耳刚能听到的声压定为0DB,那么我们感觉到震耳欲聋时的声压级只有140DB,由此可见对数形式表示打印机的大小可以使声压级测量的比较变得十分的简单。

扬声器的频响曲线大多都在消声室测得的,被测扬声器放在固定的消声室的障板上测量话筒放置在被测扬声器的同轴上,目前大多数的扬声器的频响曲线上在1M1W 的条件下测得的,信号发生器的输出信号经功率放大器放大反馈送到被测扬声器,被测扬声器辐射出的声信号被测量话筒接收后转变成为电信号经测量放大器处理后送至点评记录仪。

教你看懂音箱测试的频响曲线

教你看懂音箱测试的频响曲线

前言:声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。

发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。

那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。

声卡的频响曲线:在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。

Frequency response(频率响应)[url=/images/html/viewpic_pconline.htm?http://img3.pc/pcon ...iy&subnamecode=home][/url]General performance: ExcellentFrequency range ResponseFrom 20 Hz to 20 kHz, dB-0.00, +0.01From 40 Hz to 15 kHz, dB-0.00, +0.00上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。

理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。

目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。

不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为24bit。

上图即是采用PCM编码方式192kHz/24bit的采样结果。

一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。

如何看懂频响曲线

如何看懂频响曲线

首先,频响是什么?频率响应,简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。

同失真一样,这也是一个非常重要的参数指标。

一个“完美”的交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大率,并且对于相应的负载具有同等的驱动能力。

显然这在目前技术水平下是完全不可能的,那么针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围内的频率的信号。

这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz,也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。

实际上,根据研究表明,高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放大器甚至会达到0.1~数百KHz。

但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们连这样的要求也不可能达到。

于是,就有了“频响”这个指标。

(附言:指标本身就代表着“不完美”,如果一切都“完美”了,指标也就没有存在的理由了。

)频响的测试方法与标注任何可以被写上说明书的“指标”都是必须借助仪器来测量的,这些指标必须有一个共同的特点,就是“可重复性”,也就是说,只要你用同样的设备,就可以重复得到相同货相近的测量结果。

我们把这一类指标称为“客观指标”,频响当然是属于此类。

频响的测量方法很简单,在放大器的输入端接入一个标准信号发生器,这个信号发生器可以产生标准的正弦波信号,并且可以通过调节使得这个发生器的输出信号的频率发生变化,而幅度不变。

在放大器的输出端接一个标准的纯阻性负载,并且接一个交流电平表,通过读取电平表的数据,就可以测量该放大器的频响特性了。

音响曲线识别基础知识

音响曲线识别基础知识

重新对准麦克风 后高頻上调了
解決方案: 如果出现有这种高頻下跌的曲线, 要证明曲线是否是因为麦克风 没有对准的话,可以測试单边曲线, 如单边曲线有上升那就是麦克风没对准。
高頻下跌,原因 是麦克风 没有对准
青色高低音 组合SPL
红色高音 SPL
蓝色低音 SPL
TS参数 说明见下 页
Vb1=15*Vas*QTS2.87次方
IEC标准测试障板 配置:高密度压合板(2m*1.2m*15.mm)4张 刨花板(2m*1.2m*2mm)2张 2mm不锈钢全包边与支撑架壹套 定向脚轮2个,万向转轮带自锁2个 测试模板与喇叭定位支架1幅 附送:喇叭测试安装高线
风管口不加布网,风 管口无阻 风管口盖上布网,出 风有阻
系统曲线
风管口不加布网,风 管口无阻
风管口盖上布网,出 风有阻
箱体SPL曲线
风管口不加布网,风 管口无阻
风管口盖上布网,出 风有阻
原:SUB:6Ω/SAT:白色.
改喇叭:SUB:8Ω/SAT:黑色.
國外專家Neville Thiele對揚聲器參數發展的40年歷程還做了回顧,證明了揚聲器 參數的有效性和精確性都在不斷提高; 聲學博士FloydE.Toole從理論及實踐證明 86%左右的消費者從聽感上判斷音質好的揚聲器,頻率響應曲線都是非常平坦的, 這就給我們在設計揚聲器時提供了設計指標.
曲线识别基础知识
---研发部內部教材
woofer音箱正確曲线
Notebook音箱正確曲线
Notebook音箱漏风曲线
此处漏风严重
Notebook音箱漏风曲线
此处漏风严重
Notebook音箱漏风曲线
此条是风管口有补胶
此条是风管口未补胶 漏风

监听音响指标 lf

监听音响指标 lf

监听音响指标 lf监听音响指标lf,顾名思义是听觉范围内感受到的最大声压级,以毫瓦为单位。

lf代表频响曲线,它包括主频率曲线和主加权等响曲线两部分,由两个特性曲线组成,一个叫做主频率特性曲线,另一个叫做加权等响曲线。

这里的“主”和“加权”,都是指这些曲线的起始频率都比较高,因此叫做主曲线;而所谓“等响”,是指这些曲线在频率点上的斜率逐渐减少,声压也越来越小,因此叫做等响曲线。

lf和音乐没有必然的联系,但在制作人的音响设计中,却常常用到这个数据。

可见,理解lf曲线,就等于掌握了监听音响的表现手段,了解了监听音响与音乐表现手法的不同。

lf曲线与音乐的关系如图1。

从图中可以看出,一般而言, lf 曲线越宽、越平坦,说明音乐的表现力越丰富,音乐作品的魅力就越大。

当lf曲线非常平直、几乎垂直时,则意味着音乐的表现力已经达到极限,音乐已经失去了表现力,失去了活力,使聆听者的精神无法集中到音乐的细节之中,从而使整个音乐的结构变得混乱,严重的甚至会使听者产生反感的情绪。

在这种情况下,除非能够找到能够表现出更丰富、更有张力的音乐形式,否则监听音响只能是维持现状,难有作为。

影响lf曲线的因素有许多,但总的来说主要可以分为三类:音响环境,音响设备,音响技术。

实际上每一个因素都可以通过不同的途径改变lf曲线,只要人们注意这些影响因素,并进行相应的调整,就可以将lf曲线改造成自己所需要的效果。

lf曲线对音乐表现力有一定的限制。

在传统监听音响中,人们总是通过控制监听音响的输入音量,来控制lf曲线。

具体地讲,就是通过控制音量的大小,使lf曲线的下降或上升,达到控制音乐表现力的目的。

一般而言,在音响工程中,我们总是根据听众或音乐表演者的数量,采取均衡法来调整lf曲线。

均衡法主要分为电子均衡法和自然均衡法两种。

前者指对监听音响的增益值进行调整,以提高监听音响的输入信号质量;后者指对监听音响输入信号进行调整,以改变监听音响的声场分布状态,从而获得不同的听音效果。

8用力学线路分析扬声器的频响曲线

8用力学线路分析扬声器的频响曲线

8用力学等效线路分析扬声器的频响曲线我们平时测量扬声器的频响曲线是扬声器的声压频响曲线,它指的是馈给扬声器的电压保持不变的条件下,扬声器的声压随频率变化的规律。

只是纵坐标用的是dB (声压级)表示的。

我们也可以在同样的条件下,画出扬声器所辐射的声功率随频率变化的曲线。

在低频时无论是声压还是声功率,其用分贝表示的频响曲线的形状都是相同的。

为能更好的分析辐射声功率与扬声器参数间的关系,现在我们讨论扬声器声功率频响曲线。

我们已知扬声器前后两面所辐射的声功率为:A W ∣c u ∣22MR R (单位:瓦特) (6.1)式中:MR R — 扬声器一面的辐射力阻 (单位:牛顿·秒/米) c u — 为振膜的振动速度 (单位:米)下面我们从(6.1)式出发,讨论不同频段时辐射声功率随频率的变化情况。

(1) 在f0以下的频段声辐射力电z MRC MS R MSM MDB l R g +R E22图8(a):等效力学线路图(阻抗型)C MSR g +R Ee g Bl图5.17(a)图中:e g — 发生器(或音频放大器)的电动势 (单位:伏特) B — 磁缝隙中的磁感应强度 (单位:特斯拉) l — 音圈导线的长度(单位:米) R g — 发生器内阻(单位:欧姆)R E — 音圈直流阻 (单位:欧姆) L — 音圈电感 (单位:亨利)c u — 为振膜的振动速度 (单位:米)M MD — 振动系统等效质量(单位:千克) M MD =Me+Mc(音圈质量+振膜质量)MS R — 振动系统等效力阻(单位:牛顿·秒/米)C MS — 振动系统等效力顺 (单位:米/牛顿) Z MR — 振膜一面的辐射力阻抗(单位:牛顿·秒/米)Z MR =MR MR R j M ω+MR R —辐射力阻(单位:牛顿·秒/米)MR M =3083a ρ — 为振膜一面的同振质量0ρ= 1.183/Kg m (22℃) 空气密度a = 振膜的有效半径(单位:米)c f — 电动力(单位:牛顿)此时图8(a )中,在恒压源项中j ωL 项很小,略去。

教你看懂音箱测试的频响曲线

教你看懂音箱测试的频响曲线

前言:声音信号是由‎不同频率的声‎波叠加而成的‎,因此人们在分‎析声音时就很‎难避开频率问‎题。

发烧友们常说‎“有好曲线未必‎有好声”,但是更多的情‎况是“没有好曲线的‎产品声音肯定‎好不到哪里去‎”。

那么曲线与最‎终的回放听感‎有什么联系呢‎?我们立刻进入‎正题,为大家揭示其‎中的奥秘。

声卡的频响曲‎线:在声卡评测中‎,我们常用到回‎路测试法对声‎卡的输入输出‎回路进行音质‎测试,得出的曲线就‎是DAC到A‎D C的回路频‎响。

Freque‎n cy respon‎s e(频率响应)[url=http://www.pconli‎n /images‎/html/viewpi‎c_pcon‎l ine.htm?http://img3.pconli‎n/pcon ...iy&subnam‎e code=home][/url]Genera‎l perfor‎m ance: Excell‎e ntFreque‎n cy range Respon‎s eFrom 20 Hz to 20 kHz, dB -0.00, +0.01From 40 Hz to 15 kHz, dB -0.00, +0.00上图和上表就‎是频率响应曲‎线图和曲线品‎质,要知道什么是‎好曲线就应该‎知道理想的频‎响曲线是什么‎样的。

理想的频率响‎应曲线应该是‎与输入信号完‎全一样的曲线‎,一般我们会用‎等响信号(各频段的声压‎相同)作为输入信号‎,因此理想的频‎响曲线就应该‎是尽可能平直‎平滑的曲线。

对于声卡来说‎,采样规格有两‎个参数,一是采样频率‎,另一个是采样‎精度,采样频率表示‎一秒钟内在收‎到的信号上取‎几次参数,单位为Hz;而采样精度则‎表示每次采样‎的精密程度,单位为bit‎。

目前有很多不‎同的采样方式‎,而影响采样品‎质的还是由这‎两个基本参数‎决定的。

不过根据采样‎以及编码方式‎的不同,两者间的侧重‎要求也不一样‎,目前采用的P‎C M 方式最高‎规格为192‎k Hz/24bit,它表示单位时‎间内会采样1‎92000次‎,每次采样的精‎度为24bi‎t。

看懂频响曲线图

看懂频响曲线图

看懂频响曲线图要了解频响曲线,首先我们要知道什么是频响。

频响是频率响应的简称,英文名称是Frequency Response,一般是用来描诉仪器对于不同频率信号处理能力的差异。

“频”指“频率”,频率震动越高,音调越高,就如声音表现中的“音调”;“响”则可以看作是扬声器系统对输入电信号中“频”转换成声能的响应。

“频响曲线”就是这种由麦克风接收、并经过测试仪器运算后以dB SP L数值的形式呈现出来的响应,当很多个“频”的响应值连在一起,就成了有峰有谷的“曲线”。

这种曲线称作为频率特性响应曲线,简称频响曲线,许多烧友形象的称其为“瀑布图”。

频响曲线的波动,是表示耳机或者音频设备在这个凸起或者凹陷的区域的表现能力。

曲线过于突出,就说明这个频段的表现力很强,播放音乐的时候,就会增强本来表现很弱的声音;如果过于凹陷,就说明这个频段表现很弱,对输入进来的信号输出的声压降低了,表现本来强的会变弱,最后的导致失真。

对于频响曲线,一直存在好听的不一定平直,平直的不一定好听的说法。

因为频响曲线并不能决定耳机的整体素质和音质的表现能力,频现曲线的波动只能代表耳机系统对于不同频段的声音信号的增益量差异。

频响曲线越平直,耳机系统各个频段的增益量就越接近相同,也就是对于各个频段声音的音量表现就大致相同,与音质无关。

毕竟音质是个理想化的东西,不是频现曲线能够决定的。

音质的好坏涉及到音质还原度和声场的还原度,而且音质的高低,跟耳机的物料,工艺,设计师的技术和艺术修养也有很大的关系。

至于好不好听,首先耳机要在各个频段上对于输入信号的增益量要大致相同,也就是曲线尽量平直,这样才能把原始信号中的各个频段的声音大小的比例放大后再还原出来。

就是该强的地方强,不该强的的地方就弱,能够真实反应声音的强弱,是“好不好听”的基础。

比如,在曲线很平直的情况下,我们听一首高中低音音量比例都很和谐的歌曲,通过频响曲线高度还原出来后,各频段的量感合适,听感自然也很和谐;如果我们播放的歌曲是那种高中低音音量本身就不和谐的歌曲,通过频响曲线高度还原出来后的听感肯定也不能和谐。

教你看懂扬声器单元的各项数据

教你看懂扬声器单元的各项数据

教你看懂扬声器单元的各项数据2015/8/26 17:25:32 来源:艾维音响网[提要]今天,艾维音响网给大家介绍一下扬声器单元的一些主要参数。

艾维音响网今天,艾维音响网给大家介绍一下扬声器单元的一些主要参数。

以下面一款型号6寸半低音单元为例,它的参数表可以在商城找到。

以它的数据为例:第一部分是关于这个单元的特征的纯文字描述:这类单元是一种紧凑型短音圈单元,带有环形钕磁。

申请了专利的磁路提供了非常长的线性冲程,同时力系数很高。

上夹板设计成可以“引导”磁体附近后向气流的形状,同时由于铸铝盆架的设计非常开放,这个单元真正避免了声压缩。

接下来,就是所谓的"DriveHighlights"部分,也就是这个单元的亮点所在。

写的是“钕磁,短音圈磁路系统,特长线性冲程”。

第二部分就是参数表,放大看一下:参数中英对照:fs:谐振频率(单元自由场谐振频率,单元阻抗峰所在频率,此处电相位角为0度)Qms:机械品质因数(此处s代表扬声器单元Speaker,下同)Qes:电品质因数Qts:总品质因数BL:力系数(磁隙磁通密度B与位于磁隙中的音圈导线长度的乘积)Rms:机械力阻Mms:总振动质量(包含所推动的空气负载,不含空气负载的为Mmd)Cms:悬挂顺性(由折环与支片的顺性构成)Sd:有效振动面积Vas:等效容积Sensitivit:灵敏度在这个表中,所有的数据又分成了四个部分分别是电参数、T/S参数、额定功率、音圈和磁体参数。

1. 电参数在电参数中,首先是“nominalimpedance",即额定阻抗,或叫标称阻抗、名义阻抗。

什么意思呢?一般是指单元谐振峰后面(频率更高的方向)阻抗最低点的近似值。

网络配图本文我们研究的这个单元最低点大约在150赫兹处,数值大约是7.5ohm(下面写的Zmin就是),近似值就是8ohm了。

那如果是7.1ohm呢?还是标成8ohm。

大多数单元的额定阻抗不是8ohm,就是4ohm。

扬声器单元频响曲线的测量

扬声器单元频响曲线的测量

扬声器单元频响曲线的测量Gate 法测量所谓Gate 法,就是对测量信号设置一个时间窗,软件的只在时间窗限定的时间段 进行信号的采集,也就是说,如果我们正确的设置了时间窗,在反射声到达MIC 之前 截至测量,那么,软件接受的就只有测量信号的直达声,并能够绘制正确的频响曲线。

请看下图。

图中A 为直达声,B 为反射声,只要在A 到达而B 还未到达的这段时间进行测 量,就能够正确测量出频响曲线,时间窗就是软件屏蔽掉反射声的一个手段,也就是 Gate 法。

看下图图一图二就是时间窗设定的对话框,在菜单/Options/Preferences中;Time框中“ Visible为时间窗可见,第一个时间是时间窗的起始点,第二个时间是时间窗的终结。

请看下图图三图二的时间窗的设定就是根据图三的这张脉冲信号进行设定的。

图中第一个红线之前的不是直达声,所以被屏蔽掉了 , 4— 5毫秒之间的那个很大的脉冲就是直达 声,接下来看第二根红线后面紧跟一个较小 的脉冲但很明显,那就是反射声,这样在图三两根红线之间就只剩下直达声了 ,软件中一些用到Gate 法测量的曲线如:0n Axis, 30 Degrees, 60 Degree 等,都是在时间窗限定的时间段内完成测量并绘制曲 线的。

所以,如何正确的设定时间窗是 Gate 法的关键。

首先,对所测单元或箱体进行一个脉冲信号的测量,将硬件按照频响曲线测量的 连接方式进行连接,软件方面,先调出所测资源(单元或箱体,选择菜单的Measure/Pulse respons 这样,软件对应所测资源生成一个脉冲信号,因为本例使用的 是f5单元所以图三信号的名称为f5.Pulse 。

调出刚测出的脉 冲信号,由于脉冲的幅 度相当小,刚调出时可能看不到,先zoom out 然后用鼠标在0附近画框,不断的放大, 直到看到较明显的脉冲信号为止,调整到像图三一样容易分析为止。

按照上面的设7 3 7 8 13 liO4 5 6 Time (ms)定方法保留直达声部分,并到图二的菜单中设定好时间,然后就可以进行On Axis 曲线的测量了。

读懂监听音箱地频响全参数

读懂监听音箱地频响全参数

读懂监听音箱的频响参数作为精密设备,监听音箱的参数通常标注得更为详细、严谨,其中还包含一些常被忽略的小细节。

我们就先拿最常见的频率响应来展开一下。

录音师们请当做“工间休息”轻松一阅,正常人类可以抱着了解科学小知识的心态细读一下哈。

频率响应范围最常被拿来PK,也是最重要的参数之一,可能就是这个了:它就是如同妹子三围一样重要的频率响应范围。

通俗地说,它是指音箱能够回放的最低有效频率与最高有效频率之间的那个范围。

频率响应曲线光有范围还不够,我们还想知道在这个范围里的详细情况。

通俗地说,把音箱在各个频率点上的相应表现记录下来,在坐标图中描绘出一条连续变化的曲线,就是频率响应曲线了。

通常,横坐标采用对数刻度,单位是Hz;纵坐标采用线性刻度,单位是dB。

例如,下图就是Genelec 8030B的频率响应曲线(声轴方向上,距离音箱1m处测得):“平直”与“崎岖”?理想的监听系统,频率响应曲线应该较为平直。

也就是说,监听系统必须在各个频率点上的表现都非常一致、稳定。

声音进入系统再被回放出来,不会被改变了原样。

不过,看频响曲线时,第一眼可别被“平直”或“崎岖”所迷惑了,得先看看它的纵坐标刻度再说。

比如下图,纵坐标每格是10dB,俨然是一条近乎完美的直线…但是把纵坐标放大成每格1dB之后,真相顿时变得跌宕起伏,十分惊悚……细节见差距细心的你可能已经要问,刚才频响范围后面括号里的“- x dB”和“±x dB”有什么门道?这和频响曲线又是什么关系?厉害,您找到问题的关键了……通常,真力音箱会使用两种不同表示方法向您坦白描述它的实际频率响应——①(- x dB)——频响范围左右两头,到哪儿才“算数”?在Genelec 8030B的频响参数中,其中一种表示方法是:50Hz - 25kHz (-6dB)看曲线的左边这头,它一路“坐滑梯”下降,当下降到比正常值低了6dB时,我们在这里划道橘色竖线——表示就到这里“算数”,此时横轴读数50Hz,因此8030B的低频截止频率标注为50Hz。

声学灵敏度频响曲线

声学灵敏度频响曲线

声学灵敏度频响曲线
声学灵敏度频响曲线是一种用于描述测量设备或系统对不同频率声音的响应程度的图表。

该曲线以频率为横坐标,以灵敏度(通常以分贝为单位)为纵坐标。

在制作声学灵敏度频响曲线时,通常需要测量设备或系统对一系列不同频率的声音信号的响应,并记录下每个频率下的灵敏度值。

然后,将所有的测量结果连接成一条曲线,该曲线即为声学灵敏度频响曲线。

声学灵敏度频响曲线在音频测量、声音质量评估和声学工程等领域中有着广泛的应用。

通过观察曲线的形状和峰值、谷值,可以了解设备或系统在不同频率下的性能表现,例如哪些频率的响应较强,哪些频率的响应较弱等。

此外,声学灵敏度频响曲线还可以用于声音信号的处理、音频设备的校准和调整等方面。

需要注意的是,声学灵敏度频响曲线的测量结果可能会受到多种因素的影响,例如测量环境、测量方法、设备性能等。

因此,在制作声学灵敏度频响曲线时,需要遵循一定的测量标准和规范,以确保结果的准确性和可靠性。

频响范围和曲线

频响范围和曲线

频响范围和曲线
频响范围是指一个音频设备或扬声器能够传递的频率范围。

通常以Hz(赫兹)为单位来表示。

频响范围包括了低频和高频的极限,以及中间的频率范围。

曲线指的是频响曲线,也称为频率响应曲线。

它展示了在不同频率下音频设备的输出相对于输入信号的增益或衰减情况。

频响曲线可以用来描述一个设备在不同频率下的音质表现。

常见的频响曲线有以下几种:
1. 平坦曲线:在整个频率范围内保持相对平坦的响应,即各个频率的增益或衰减基本相等。

2. V型曲线:低频和高频部分相对于中频部分有所强调,中频相对较弱。

3. 强调低频/高频曲线:低频或高频相对于其他频率部分有较大增益。

4. 倒V型曲线:高频和低频相对于中频部分有所强调,中频相对较弱。

5. 其他定制曲线:根据特定的需求或音频设备的设计,可能会采用其他形状的频响曲线。

选择适合的频响范围和曲线取决于具体的应用需求。

例如,音乐制作和录音室监听通常需要平坦的频响曲线,以尽可能准确地还原录音的声音。

而在家庭音响系统中,一些用
户可能更喜欢有所强调的低频或高频部分,以获得特定的音效效果。

如何看懂音箱的技术指标

如何看懂音箱的技术指标

搞音响的朋友,不可避免地要选用音箱,而在选用音箱时,除了考虑音箱的外形,材质及大小之外,似乎怎么选都不是问题。

果真如此吗?让我们从如何看懂一款音箱的技术指标说起吧。

说起音箱,很多人都会说出一些有关的技术指标。

如音箱的输入功率、频率响应、几个单元、几分频等等。

但很少人能真正理解并选择合适的音箱为什么这么说呢?在此笔者专门就与音箱有关的技术指标进行具体地分析,并给出各种场合的选择原则。

俗话说得好:适合的才是最好的。

选用音箱也是如此,并不是越贵越好。

当我们拿到一款音箱的彩页时,各种音箱的技术指标就会映入眼帘。

我们假定各项技术指标都是真实可信的,我们只要全面衡量这些指标,就能知道这款音箱的档次、价格及适用场合,这就是音箱技术指标的重要性。

下面我们进行讨论。

1、功率所谓音箱的功率是指功放馈送给音箱喇叭单元的电功率。

它有两个指标,一个是额定功率,另一个是最大功率。

一个音箱的额定功率是指音箱内的喇叭(扬声器),在一定的频率范围内,馈以长时间的粉红噪声信号而不产生永久性损坏的电信号功率有效值。

也就是通常所标注的音箱功率。

最大功率则是指喇叭(扬声器)在额定频率范围内馈以粉红噪声信号,扬声器承受持续1s间隔2s,重复10次而不产生永久性损坏的功率。

那么额定功率与最大功率之间有什么关系呢?实践中,我们一般认为最大功率是额定功率的2-4倍。

因此,平时我们馈送给音箱的电信号功率(有效值)在额定功率的3倍以内,对音箱来说都是安全的。

至于选用多大的音箱功率,我们可通过声场设计来推算,也可以用经验数据来选取,一般以5瓦/立方米厅堂容积来选取音箱的功率。

以语言扩声用途为主的,减半。

2、阻抗与阻抗曲线扬声器的阻抗是喇叭音圈输入端电压与通过音圈的电流的比值。

而这种施加的电压必须是变化的(交流)。

不同频率的交流电所呈现的电压与电流的比值(阻抗)是变化的。

技术上我们定义阻抗曲线中低频部分谐振频率处呈现最大阻抗后出现的最小阻抗为喇叭的阻抗。

如何能看懂频响曲线

如何能看懂频响曲线

首先,频响是什么?频率响应,简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。

同失真一样,这也是一个非常重要的参数指标。

一个“完美”的交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大率,并且对于相应的负载具有同等的驱动能力。

显然这在目前技术水平下是完全不可能的,那么针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围内的频率的信号。

这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz,也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。

实际上,根据研究表明,高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放大器甚至会达到0.1~数百KHz。

但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们连这样的要求也不可能达到。

于是,就有了“频响”这个指标。

(附言:指标本身就代表着“不完美”,如果一切都“完美”了,指标也就没有存在的理由了。

)频响的测试方法与标注任何可以被写上说明书的“指标”都是必须借助仪器来测量的,这些指标必须有一个共同的特点,就是“可重复性”,也就是说,只要你用同样的设备,就可以重复得到相同货相近的测量结果。

我们把这一类指标称为“客观指标”,频响当然是属于此类。

频响的测量方法很简单,在放大器的输入端接入一个标准信号发生器,这个信号发生器可以产生标准的正弦波信号,并且可以通过调节使得这个发生器的输出信号的频率发生变化,而幅度不变。

在放大器的输出端接一个标准的纯阻性负载,并且接一个交流电平表,通过读取电平表的数据,就可以测量该放大器的频响特性了。

教你看懂音箱测试的频响曲线

教你看懂音箱测试的频响曲线

前言:声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。

发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。

那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。

声卡的频响曲线:在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。

Frequency response(频率响应)[url=/images/html/viewpic_pconline.htm?http://img3.pconlin/pcon ...iy&subnamecode=home][/url]General performance: ExcellentFrequency range ResponseFrom 20 Hz to 20 kHz, dB -0.00, +0.01From 40 Hz to 15 kHz, dB -0.00, +0.00上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。

理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。

目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。

不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为24bit。

上图即是采用PCM编码方式192kHz/24bit的采样结果。

一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。

教你读懂音响中的“频响曲线”

教你读懂音响中的“频响曲线”

教你读懂音响中的“频响曲线”什么是“频响曲线”“频响曲线”分解:“频”指“频率”,在声音表现中同“音调”;“响”则可以看作是扬声器系统(机械和电性)对输入电信号中“频”转换成声能的响应。

而这种响应,由麦克风接收并经测试仪器运算后以dB SPL对数值的形式呈现出来。

当很多个“频”的响应值连在一起,就成了有峰有谷的“曲线”,这种曲线称作为频率特性响应曲线,简称频响曲线。

音箱与频响曲线音响系统或音箱产品的频响曲线是否要求平直?很多人在这个问题上争论,争论的焦点往往在于:好听的不一定平直,平直的不一定好听。

比方说某个音箱在80赫兹附近的曲线比较突出,那么就说明,这只音箱对于80赫兹附近的频段表现力过强了,如果播放音乐,那么贝司的声音就会感觉重了。

或者某只音箱的曲线在1000赫兹附近有凹陷,那就说明这只音箱对于1000赫兹附近的频段表现力弱了,对输入进来的信号中1000赫兹附近的频段输出的声压降低了,出来的声音也不是原来那样了。

频响曲线的平直度如何,其实就是告诉你这只音箱或者音响系统对于不同频段的声音信号的增益量差异。

曲线越平直,就说明音箱或者音响系统各个频段的增益量就越接近相同。

但是,音箱或系统对于输入的信号的各频频段增益量相同与好不好听并不是画等号的。

为什么呢?因为增益量相同只是表达了对输入信号中各个频段的的声音的放大量相同,比如某个系统对全音频中各个频率的增益量都是30分贝,你发出1000赫兹的声音,声压级是80分贝,音箱发出的1000赫兹的声音的声压级就是80+30=110分贝。

你发出的2000赫兹的声音的声压级是60分贝,那么音箱播放出来的2000赫兹的声音的声压级就是90分贝。

没有经过系统放大的时候,你发出的1000赫兹的声音和2000赫兹的声音的声压级相差20分贝。

那么通过这个对各个频段的增益量相同的系统,由音箱发出的1000赫兹的声音和2000赫兹的声音的声压级同样是相差了20分贝,队形保持不变,呵呵。

教你读懂音响中的“频响曲线”

教你读懂音响中的“频响曲线”

教你读懂音响中的“频响曲线”接下来是 DAC,即数模转换器。

这是对音质影响非常显著的一个模块。

DAC 的频响也简单做到平直,但衡量 DAC 的音质还需要参考许多其他参数。

DAC 的好坏基本可以就看芯片本身的厂商及型号等,所以没什么可说的。

好的设备会用比较高端的 DAC。

然后是放大器。

相对来说,这一部分还是比较简单做到平直的幅频曲线的。

但相频则不一定。

(目前放大器的频响已经很简单做到平直)最后是耳机/音箱。

通常来说,它们的幅频曲线很难做到平直,这很大程度上是由于发声单元所能发出的频率高度与其尺寸成反比。

所以根本不要指望耳塞式耳机能发出有效的低频。

这也是头戴式耳机普通来说比耳塞式或者挂耳式的音质更好的主要缘由。

而对于音箱来说,往往会采纳二分频、三分频,甚至多分频,即多个发声单元负责不同的频段,其中还会有滤波、处理频段衔接等问题。

从囫囵音频流来看,耳机/音箱才是对音质影响最大的部分。

你手机里放的一致是无损音乐、手机支持挺直输出 44.1kHz、DAC 用的是最好的芯片、放大器几乎没失真,结果你用了一副 50 元的街边摊上买的耳机,那音质就是个渣。

总的来看:1.频响曲线能不能反映音质?能。

理论上来说越平直的频响曲线越好,系统响应越临近于直通。

但光看一个频响曲线是非常不全面的。

2.放大器的频响曲线在多大程度上打算了音质?很少。

3.对手机来说,有哪些影响音质的参数值得关注?混音器和重采样算法,各个手机都一样或差不多。

放大器,比较重要,目前手机的放大器已经可以做到很好的系统响应,所以大家都差别不大。

DAC,比较重要,看芯片型号。

打算性的环节还是在你的回放设备,用个好点的耳机或音箱比什么都第1页共4页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教你看懂音箱测频响曲线
————————————————————————————————作者:————————————————————————————————日期:
前言:
声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。

发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。

那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。

声卡的频响曲线:
在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。

Frequency response(频率响应)
[url=/images/html/viewpic_pconline.htm?http://img3.pconlin
/pcon ...
iy&subnamecode=home]
[/url]
General performance: Excellent
Frequency range Response
From 20 Hz to 20 kHz, dB -0.00, +0.01
From 40 Hz to 15 kHz, dB -0.00, +0.00
上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。

理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。

目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。

不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为
24bit。

上图即是采用PCM编码方式192kHz/24bit的采样结果。

一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。

我们可以看到,从20Hz~30kHz的范围内,曲线都是相当平直的。

下面的成绩表也列出了测试参数,20 Hz to 20 kHz的曲线变化仅为-0.00, +0.01(dB);而40 Hz to 15 kHz则更为理想,精度范围内没有侦测出任何变形,是一条相当理想的频响曲线。

2回顶部
音箱的频响曲线:
一般音箱的频响曲线是通过LMS电声测试系统进行声音信号的收集以及描绘出图。

由于音箱是由电信号转换为声波信号然后再由LMS收集后转变为电信号的,并且由于扬声器以及放大器的非线性,因此曲线很难做到与声卡一样的频响曲线。

但是他们的要求还是类似的,频响曲线应该尽可能的平滑平直。

上图是某产品的频响回放曲线,从该曲线我们可以看到平均声压在90dB左右的音箱频响还是比较理想的。

200Hz~5KHz内的曲线还是比较平直的,而为了获得更明亮的高音以及更丰满的低频,音箱有益的提高了两端的增益,这也是不同音箱厂商对声音最终风格诉求的表现。

两分频音箱还可以通过单元分别测试频响得到更细致的参考曲线,能够有助于我们评判音箱产品两个单元间的相互关系。

一般来说高音部分在经过分频点后应该能够尽快的衰减多余的频率(这样才能尽可能的避免单元间的互相影响)。

而单独测试的曲线叠加后,应该尽可能的与整体频响曲线相符(可以判定两单元同时工作时基本没有明显的相互影响)。

从上图我们开可以看出产品的分频点设置,这款音箱的分频点大约在1.7kHz左右。

人耳听感最敏感的部分大致为300~1.2kHz左右,为了获得更好的听感,两分频的音箱一般会将分频点设置在最敏感频段上限频率的两倍频率上,也就是大多在2.5kHz左右。

这样能够降低对高音单元的要求。

而降低分频点则对分频器以及高音单元提出了更高的要求。

根据这一点我们再回过头看看整体频响,可以看到该频段上,声音的波动还是被控制得比较理想的,基本上没有明显过分的分频点衰减。

通过不同声压下的曲线可以表现出音箱的回放品质的稳定性,通俗的说就是不同音量
下,音箱的回放听感有没有明显的改变。

上图即是不同声压下的测试曲线。

这种比较方法也是讨论音箱品质常用的一种方法。

我们可以看到,即便声压提高到100dB,该音箱的频响曲线也没有明显的变形,可以说在这个范围内,音量调节对声音的影响基本上可以看作是线性的(也就是说是比较理想的)。

单独调
节低音增益的频响曲线
单独调节高音增益的频响曲线
完善的两分频音箱都提供高低音单独调节的功能,以上两图就是描述单独调节高音或低音增益后音箱的频响曲线。

判断优劣的方法与提高声压增益的情况类似,我们在这里就不再重复了。

3回顶部
影响我们最终听感的因素很多,简单的频响曲线并不能完整的描述声音回放的特点。

因为人们听到的声音都是直达声与反射声的叠加信号。

声音频谱衰减曲线能够很好的反应真实生活中的声音特点。

上图是一张声音的积累衰减曲线,为三座标曲面,因此它呈现出来的是一张立体图,三个参数分别是声压、频率和时间,它反应的是在经过不同时间后,声音各频段在固定空间内的残留量。

从上图我们可以看到,经过一段时间后,残留最多的是低频信号。

音箱的指向特性关系到音箱在立体声回放时声场规模、宽阔度与纵深感,声像的结实程度、声音层次、细节定位等诸多方面,是评价一款音箱的主要衡量指标之一。

测试方式与累积衰减曲线类似,以一个三座标曲面来体现音箱的指向性特征。

三个参数分别为声压值、频率以及偏离角度,通过旋转音箱偏向角度,测出音箱在不同偏离角度下各频段的声压变化。

一般来说,声压变化越平滑缓慢越好。

从目前的实验领域看,声学的研究还是有不小的限制,即便描绘出声音大致的频率特性,亦不一定完整的表现出声音的所有特征。

目前的品质研究领域也大多只能从频率入手。

从大量的实验结果看,即便“有好曲线不一定能出好声”,但是“没有好曲线的产品声音肯定好不到哪里去”,因此基于频率波形对产品音质进行评定的方法还是有其可行性与客观性的,以其辅助我们的主观评判能够尽可能的修正我们在试音时因为主观因素产生的误差。

相关文档
最新文档