扬声器单元频响曲线的测量
扬声器主要性能测试方法
扬声器主要性能测试方法1. 范围本标准所计论的扬声器主要性能测试方法是基于DASS32测试软件本标准适用于扬声器单元本身、扬声器箱体及其他无件组成的扬声器系统2. 目的本标准的目的是对本公司的扬声器作出统一的测试方法本标准中给出的测试方法被认为是与该特性有效的检验方法3. 测量条件3.1 测试的大气条件若无特殊规定,测试的标准大气条件按GB/T 9396—1996进行:环境温度:15ºC∽35ºC相对湿度:25%∽75%气压:86kPa∽106 kPa3.2 测量装置DASS32系统(信号发生器)、把信号馈给扬声器的放大器及接收信号用的传声器(即已知校正值的麦克风)3.3 测试环境测试室、测试箱3.4扬声器的安装3.4.1 扬声器安装在规定的测试箱体中.3.4.2 测量扬声器系统时,通常不用任何附加的障板,如需要特殊的安装方式,则在测量的报告中说明3.5 扬声器和传声器的位置3.5.1 以被测扬声器为中心半径1m范围内无障碍物;以测试话筒为中心半径1m范围内无障碍物3.5.2 扬声器平面与测试箱体障板在同一个平面上.扬声器防尘罩中心点与话筒声轴线(话筒中心点)的连线垂直与障板平面3.5.3 低音扬声器到传声器的距离为1m,高音扬声器到传声器的距离为0.5m.无其它规定扬声器及扬声器系统(或音箱)均要满足远场条件测量3.6 测量信号3.6.1 系统测试信号:PN81923.6.2 在额定频率范围内馈给扬声器的信号电压保持恒定.在无其它规定的情况下,系统调试阻抗为8Ω.如对其它组成相、不同阻值的扬声器在同种条件下测试(或作对比测试)时,应对系统调试阻抗作相应的更改.3.7 预负荷处理由于扬声器振膜运动后,可能引起性能参数永久性变化,故在技术参数测量前,扬声器选择经受额定噪声电压的模拟节目信号至少1h的预负荷处理.预处理后扬声器至少恢复1h才能进行技术参数的测量4.测量方法4.1 DASS32系统的操作说明(阻抗曲线、频响曲线测量方法对扬声器单元及扬声系统均有效。
扬声器主要性能测试方法
扬声器主要性能测试方法1. 范围本标准所计论的扬声器主要性能测试方法是基于DASS32测试软件本标准适用于扬声器单元本身、扬声器箱体及其他无件组成的扬声器系统2. 目的本标准的目的是对本公司的扬声器作出统一的测试方法本标准中给出的测试方法被认为是与该特性有效的检验方法3. 测量条件测试的大气条件若无特殊规定,测试的标准大气条件按GB/T 9396—1996进行:环境温度:15ºC∽35ºC相对湿度:25%∽75%气压:86kPa∽106 kPa测量装置DASS32系统(信号发生器)、把信号馈给扬声器的放大器及接收信号用的传声器(即已知校正值的麦克风)测试环境测试室、测试箱扬声器的安装3.4.1 扬声器安装在规定的测试箱体中.3.4.2 测量扬声器系统时,通常不用任何附加的障板,如需要特殊的安装方式,则在测量的报告中说明扬声器和传声器的位置3.5.1 以被测扬声器为中心半径1m范围内无障碍物;以测试话筒为中心半径1m范围内无障碍物3.5.2 扬声器平面与测试箱体障板在同一个平面上.扬声器防尘罩中心点与话筒声轴线(话筒中心点)的连线垂直与障板平面3.5.3 低音扬声器到传声器的距离为1m,高音扬声器到传声器的距离为.无其它规定扬声器及扬声器系统(或音箱)均要满足远场条件测量测量信号3.6.1 系统测试信号:PN81923.6.2 在额定频率范围内馈给扬声器的信号电压保持恒定.在无其它规定的情况下,系统调试阻抗为8Ω.如对其它组成相、不同阻值的扬声器在同种条件下测试(或作对比测试)时,应对系统调试阻抗作相应的更改.预负荷处理由于扬声器振膜运动后,可能引起性能参数永久性变化,故在技术参数测量前,扬声器选择经受额定噪声电压的模拟节目信号至少1h的预负荷处理.预处理后扬声器至少恢复1h才能进行技术参数的测量4.测量方法4.1 DASS32系统的操作说明(阻抗曲线、频响曲线测量方法对扬声器单元及扬声系统均有效。
喇叭相位曲线和频响曲线的关系_解释说明以及概述
喇叭相位曲线和频响曲线的关系解释说明以及概述1. 引言1.1 概述喇叭相位曲线和频响曲线是研究声学系统中的重要参数,它们描述了喇叭在不同频率下的相位特性和频率响应。
喇叭作为一种常用的音频输出设备,其性能对于实现高质量音效至关重要。
了解喇叭相位曲线和频响曲线之间的关系对于喇叭设计、优化和声学系统调节具有重要意义。
1.2 文章结构本文将首先概述喇叭相位曲线和频响曲线的概念及定义,并详细阐述其各自的解释。
接着,我们将深入探讨喇叭相位曲线和频响曲线之间存在的关系,包括相位曲线对频响曲线的影响以及频响曲线对相位曲线的影响。
然后,通过实例一和实例二,我们将进一步解释说明这两个参数在不同情况下的变化趋势,并进行相关数据分析。
最后,在结论部分总结以上讨论内容,并探讨喇叭设计和优化方面的意义,并提出建议。
1.3 目的本文旨在深入研究喇叭相位曲线和频响曲线之间的关系,帮助读者更好地理解这两个参数的含义和作用。
通过分析实例和数据,我们将展示不同情况下喇叭相位曲线和频响曲线的变化模式,并探讨其在实际应用中的意义。
希望本文能为喇叭设计、优化以及声学系统调节等相关领域的研究工作提供一定的指导和启示。
2. 喇叭相位曲线和频响曲线的概述:2.1 喇叭相位曲线的定义和解释:喇叭相位曲线是指在不同频率下,声音在喇叭系统中传播时所引起的声音波动的相位差。
当音频信号经过喇叭系统时,不同频率的声波会因为传播路径的不同而产生相位差。
喇叭相位曲线描述了这种相位差与频率之间的关系。
喇叭相位曲线通常以角度或时间延迟来表示。
对于一个完美设计的喇叭系统,其相位响应应该是线性平坦的,即角度保持一致或时间延迟保持恒定。
然而,在实际情况下,由于电子元件、声学特性等因素的存在,喇叭系统可能会出现相位失真。
2.2 频响曲线的定义和解释:频响曲线是指在不同频率下音响系统所产生声音信号输出与输入之间增益或减益比例的测量结果。
换句话说,它显示了音响系统如何对不同频率构成的输入信号做出反应,并通过增加或降低某些频率上的能量来形成最终的声音输出。
频响曲线测试指导书
文件编号FJ-WI-GC-13-33
版 本A/1
生效日期2013.8.1
工具:酒精、布
频响曲线测试作业指导书
批准: 审核: 编制:适用范围:耳机、喇叭听筒、咪头频响曲线测试
注意事项
1、每日开始测试之前要点检
2、培训合格后方可操作
3、灵敏度:110±3dB
4、阻抗:32±15%
操作步骤:
1、打开主机电源开关,自动进入测试系统
2、通过功能菜单选择测试项目:
喇叭测试:测试喇叭听筒灵敏度和频1、频2点声级、1KHZ交流阻抗,以及喇叭听筒频率特性曲线
参数设定:在器件参数中设定:电阻32Ω,测试低频100,测试高频10000,SPL下限107,
SPL上限113,其他参数通过设定电阻由系统自动调整;在系统参数中设定:稳定时间15S 阻抗测试:阻抗测试也就是为的F0测试,测试喇叭听筒谐振点频率(F0),谐振点阻抗,1KHZ阻抗参数设定:在器件参数中设定:电阻32Ω,测试低频200,测试高频2500,SPL下限107,
SPL上限113,其他参数通过设定电阻由系统自动调整;在系统参数中设定:稳定时间15
3、设置完成后开始测试
技术参数:
1、F10按键:退出并储存Esc:退出不储存
测试选择端口测试话筒显示屏
测试方法。
扬声器系统的频率特性
扬声器系统的频率特性是怎样的?扬声器系统的频率特性是指馈入扬声器系统不同的频率信号后,扬声器系统辐射出来的声压变化规律。
如果扬声器系统的频率特性不好,则在声音重播时各频段声压不平衡。
扬声器系统的频率特性一般由三个指标来综合描述:①频响曲线;②有效频率范围;③不均匀度。
①频响曲线测量扬声器频响曲线的设备很多,除正规的消声室测量设备之外,目前各厂家和一些专业质检所以及部份专业媒体都采用电脑软件在非消声室测量(大部份生产厂没有),具有代表性的设备有美国的LMS、LAUD和德国的DAAS等,其测量结果是基本可信的。
扬声器系统的频响曲线是在1M·1W的条件下测得,即输入扬声器系统信号的功率为1W,测量话筒距被测扬声器系统参考轴1M。
当输入扬声器系统20-20000Hz(或更高)粉红噪声信号(也可以是其它信号)时,扬声器系统辐射出的声压用话筒接收后转变成电信号并记录下来,描绘成一条曲线(横座标是频率Hz,纵座标是声压dB),即频响曲线。
扬声器系统非消声室情况下测量方法②有效频率范围扬声器系统的有效频率范围在产品中往往标注为:XXHz-XXkHz(其中K表示1000),即表示在这一个频宽内扬声器系统能有效响应。
如果产品没有注明频响曲线的波动区间,应视为按国标为准,即有效频率范围内频响曲线波动在上偏差4dB,下偏差-8dB的区间内。
+4dB至-8dB的声压差有12d B,声压每差3dB,响度差1倍,12dB的公差带实在是太宽,所以很多优秀的扬声器系统在标注有效频宽时,注明为±3dB,偏差带只有国标要求的25%。
扬声器系统有一个谐振频率(以后会谈到),国际电工委员会(IEC)规定将扬声器系统的谐振频率作为低频下限频率,将该点沿X轴划一条直线,这条直线与频响曲线在高频端的交点作为该③不均匀度测量出来的扬声器系统频响曲线是一条不平坦的曲线,有很多峰和谷,在有效频率范围内最大声压和最小声压的差(即峰与谷之间的差)称为扬声器系统的不均匀度。
频响曲线
扬声器的频率特性扬声器的锥盆具有一定的刚性,它在低频段可以看做一个刚体,但当扬声器的工作频率增高时,扬声器的锥盆就不再是一个刚体,锥盆将出现分割运动。
此外扬声器的锥盆和折环在振动叶还会出现相互干扰的现象。
由于这些原因,当我们将不同频率的音频信号输给扬声器单元时,虽然音频信号电压保持不变,扬声器单元辐射出的声压却随着信号频率的不同而变化。
扬声器的频率特性揭示了扬声器单元对不同频率的声波的辐射能力,因此,它是扬声器的重要参数之一,扬声器的频率特性可以通过频响曲线,有效频率范畴,不均匀度这三个方面综合表示。
扬声器的频响曲线频响曲线是一条记录在频宽为5CM或10CM纸上的连续不规则的曲线,记录纸上的X轴表示输入扬声器单元的电信号频率,Y轴表示被测扬声器单元在不同频率范围的电信号时所产生的声压级,我们人耳可以听到的声压级范围相当大,从耳朵刚能听到的到耳朵感到疼痛时的声压级上下相差一百万倍,如此宽大的声压级变化范围直接用声压进行测量和比较是十分的不利的。
人们在试验中发现,人耳的听觉特性具有指数特性能,用指数形式来表示声压级大小,从客观上也能符合人的听觉分辨力。
声压级的单位是分贝(DB)它在音响技术中是一个相当有用的度量单位。
某一发声体的声压级可用该发声体所产生的有效的声压P 与基准声压PR的比值常用对数乘以20来表示。
这里的基准声压是大多数听力正常的人刚能听到频率为1000HZ的声音时该声音的声压,我们通常将人耳刚能听到的声压定为0DB,那么我们感觉到震耳欲聋时的声压级只有140DB,由此可见对数形式表示打印机的大小可以使声压级测量的比较变得十分的简单。
扬声器的频响曲线大多都在消声室测得的,被测扬声器放在固定的消声室的障板上测量话筒放置在被测扬声器的同轴上,目前大多数的扬声器的频响曲线上在1M1W 的条件下测得的,信号发生器的输出信号经功率放大器放大反馈送到被测扬声器,被测扬声器辐射出的声信号被测量话筒接收后转变成为电信号经测量放大器处理后送至点评记录仪。
扬声器检验规程
3.3《GB2423.1-89电工电子产品基本环境试验规程试验A:低温试验方法》
3.4《GB/T2423.3-93电工电子产品基本环境试验规程试验Ca:恒定湿热试验方法》
3.5《GB/T 2424.22-1987电工电子产品基本环境试验规程试验N:温度变化试验方法》
3.9《GB/T 2423.5-1995电工电子产品基本环境试验规程第二部分:机械冲击试验》
3.10《部品技术标准》
3.11《YD 1032-2000900/1800MHz TDMA数字蜂窝移动通信系统电磁兼容性限值和测量方法》
4测试设备
电声分析系统,自由场(消声室),万用表,数显卡尺,声级计,电烙铁,温度试验箱,恒温恒湿试验箱,热冲击箱,自制气动跌落夹具,随机振动台,机械冲击台,静电场发生器。
7.3注意事项:
1)在测试之前一定要查看翻盖上蜂鸣孔,要保证其没有被杂物挡住。
2)在测试时,所处环境要保持安静。否则测试误差较大。
3)由于手机的铃声大部分是和弦音,所以铃声的分贝值变化的比较快,在记录分贝值时,应取音量变化比较
平缓的时候的数值,或取一个中间的数值。
8机械性能测试
8.1自由跌落试验:
更改标记
7.2测试步骤:
1)从要测试的5台手机中取两台,分别装上SIM(UIM)卡。
2)把待测试的手机处于待机状态,设置手机的来电提示为响铃模式、且把手机的铃声音量调至最大、铃声种
类调至铃声1。
3)声级计的设置:TES1350A的面板上有三个推钮
RANGE:电源开关及调节音量范围推钮:它有LO和HI两档,一般把它置为LO档。
更改原因
扬声器主要性能测试方法
扬声器主要性能测试方法1. 范围本标准所计论的扬声器主要性能测试方法是基于DASS32测试软件本标准适用于扬声器单元本身、扬声器箱体及其他无件组成的扬声器系统2. 目的本标准的目的是对本公司的扬声器作出统一的测试方法本标准中给出的测试方法被认为是与该特性有效的检验方法3. 测量条件3.1 测试的大气条件若无特殊规定,测试的标准大气条件按GB/T 9396—1996进行:环境温度:15ºC∽35ºC相对湿度:25%∽75%气压:86kPa∽106 kPa3.2 测量装置DASS32系统(信号发生器)、把信号馈给扬声器的放大器及接收信号用的传声器(即已知校正值的麦克风)3.3 测试环境测试室、测试箱3.4扬声器的安装3.4.1 扬声器安装在规定的测试箱体中.3.4.2 测量扬声器系统时,通常不用任何附加的障板,如需要特殊的安装方式,则在测量的报告中说明3.5 扬声器和传声器的位置3.5.1 以被测扬声器为中心半径1m范围内无障碍物;以测试话筒为中心半径1m范围内无障碍物3.5.2 扬声器平面与测试箱体障板在同一个平面上.扬声器防尘罩中心点与话筒声轴线(话筒中心点)的连线垂直与障板平面3.5.3 低音扬声器到传声器的距离为1m,高音扬声器到传声器的距离为0.5m.无其它规定扬声器及扬声器系统(或音箱)均要满足远场条件测量3.6 测量信号3.6.1 系统测试信号:PN81923.6.2 在额定频率范围内馈给扬声器的信号电压保持恒定.在无其它规定的情况下,系统调试阻抗为8Ω.如对其它组成相、不同阻值的扬声器在同种条件下测试(或作对比测试)时,应对系统调试阻抗作相应的更改.3.7 预负荷处理由于扬声器振膜运动后,可能引起性能参数永久性变化,故在技术参数测量前,扬声器选择经受额定噪声电压的模拟节目信号至少1h的预负荷处理.预处理后扬声器至少恢复1h才能进行技术参数的测量4.测量方法4.1 DASS32系统的操作说明(阻抗曲线、频响曲线测量方法对扬声器单元及扬声系统均有效。
扬声器的频响曲线测量实验方案
实验方框图
实验测量声学环境: 严格讲,本实验应当在消声室内进行,但初次实验主要掌握 实验动手技能,不要求十分精确的测量结果,并且兼顾到实验的方便 性,可选取听音室 或 控制室 (本地噪声低于??dB。实验参与人 员务必在测量时保持沉默与安静) 。 要注意由于控制室与听音室在空间体积, 吸声方面有较大的 不同,他们的混响时间不会不同,而不同的混响时间决定了 MLS 测 试信号的长度。若选取控制室,由于混响时间很短(约为??) ,选 取的 MLS 信号长度为 13A 即可,在采样频率为 44.1K 下,对应的时 间长度约为 180 ns。 步骤: 1、 准备好各个实验器材, 按照上面实验方框图稳定安放及 正确接线(尤其注意声卡的 input 与 output 口) 。 2、 打开电脑运行 cooledit 软件(确保其与外置声卡连接起 来) 。 3、 4、 打开适调放大器,确保其与传声器工作在正常状态下。 利用 cooledit 软件产生一个 13A 的 MLS 信号,打开扬 声器与功率放大器的电源,进行测量。 5、 运用 cooledit 软件的解卷积功能得到 h(t),对应到频域得 到频响曲线图。 6、 7、 与出场时给定的频响曲线进行对比,并作分析。 重复 4、5、6 步,多次测量并作分析记录。
8、
实验完成后, 小心正确地拆卸将各部分实验器材并归放 到指定地点。
9、
实验参与人员讨论, 对测量结果分析并提出对实验的改 进。
扬声器频率响应特性的测量实验
一 实验目的
1、 了解实验室学生自主申请做实验的规章制度(包括申请 实验器材,测量工具的借用等) 。 2、 熟悉声学测量实验中基本的实验方法,步骤、流程以及 一些常用的实验测量器材。 3、 作为声测课程的实践部分,结合理论知识,增强研一同 学的实际操作以及动手能力。 二 实验器材 装有 cooledit(要装有??插件)的电脑 usb 外置声卡及配套线缆 功率放大器 测试用扬声器 (带有出场给定的频响特性可用于与实测结果进 行比较) 支架台(摆放扬声器) B&K 传声器(4191 型自由场)及其配套线缆 三角支架(用于固定传声器) 适调放大器 蛇皮音频信号线若干(稳定性好、抗干扰) 卷尺 (确保扬声器的辐射平面中心与传声器在同一水平面且距 离为 1 m)
电动式扬声器阻抗曲线分析与测量
电动式扬声器阻抗曲线分析与测量摘要:电动式扬声器单元支撑系统的蠕变效应表现在扬声器单元的位移在共振频率以下会有所上升。
扬声器的相关性能指标包括频率响应与有效频率范围、额定频带的特性灵敏度级、谐波失真、额定噪声功率、额定阻抗、额定共振频率,其中额定阻抗、额定共振频率可以从阻抗曲线中得到。
围绕扬声器的阻抗曲线,介绍电动式扬声器阻抗曲线方面的相关知识,再介绍用丹麦B&K公司的PULSE电声分析系统测量电动式扬声器的阻抗曲线。
关键词:电动式扬声器;额定阻抗;阻抗曲线现代电声技术的发展, 现已对扬声器有了较深刻、较全面、多角度、多方位、多层次的认识。
目前,在扬声器相关性能指标测试时,往往只注重频响曲线,而忽视阻抗曲线的讨论。
扬声器的阻抗特性很重要,许多听感上的缺陷都能从阻抗曲线上反映出来。
一、扬声器扬声器是一种现代人不可缺少的电声器件, 广泛用于人类生活的各个领域。
世界每年生产几十亿只扬声器, 已形成一个完整的产业链。
扬声器研究受到更多的关注与参与, 扬声器作为一个单独学科, 理论体系正处在完善发展中。
二、电动式扬声器工作原理电动式扬声器的工作原理,永磁体、上导磁板、下导磁板构成一个磁回路,在上导磁板和下导磁板之间形成一个很小的均匀的磁气隙,当音圈有交变电流流过时,音圈就会上下振动,从而推动音盆造成空气振动发出声音。
扬声器的音圈是一个由漆包线绕制而成的线圈,它不但有一定的直流电阻,还具有电感特性。
音圈在磁气隙中运动,切割磁力线,这个过程中会感应出一个与音频信号反向的感应电压,会削弱音圈中的音频信号电流,从而使得音圈的阻抗增大,这种增大会随着音频信号频率的上升变得越来越大。
扬声器系统阻抗随音频信号频率变化而变化的规律,就是所谓的阻抗特性,描述阻抗特性的阻抗-频率坐标图,就是阻抗特性曲线。
在线性无源电路中,对交流电所起的阻碍作用叫做阻抗,阻抗用复数形式Z 表示,Z 的实部称为电阻,虚部称为电抗。
其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。
8用力学线路分析扬声器的频响曲线
8用力学等效线路分析扬声器的频响曲线我们平时测量扬声器的频响曲线是扬声器的声压频响曲线,它指的是馈给扬声器的电压保持不变的条件下,扬声器的声压随频率变化的规律。
只是纵坐标用的是dB (声压级)表示的。
我们也可以在同样的条件下,画出扬声器所辐射的声功率随频率变化的曲线。
在低频时无论是声压还是声功率,其用分贝表示的频响曲线的形状都是相同的。
为能更好的分析辐射声功率与扬声器参数间的关系,现在我们讨论扬声器声功率频响曲线。
我们已知扬声器前后两面所辐射的声功率为:A W ∣c u ∣22MR R (单位:瓦特) (6.1)式中:MR R — 扬声器一面的辐射力阻 (单位:牛顿·秒/米) c u — 为振膜的振动速度 (单位:米)下面我们从(6.1)式出发,讨论不同频段时辐射声功率随频率的变化情况。
(1) 在f0以下的频段声辐射力电z MRC MS R MSM MDB l R g +R E22图8(a):等效力学线路图(阻抗型)C MSR g +R Ee g Bl图5.17(a)图中:e g — 发生器(或音频放大器)的电动势 (单位:伏特) B — 磁缝隙中的磁感应强度 (单位:特斯拉) l — 音圈导线的长度(单位:米) R g — 发生器内阻(单位:欧姆)R E — 音圈直流阻 (单位:欧姆) L — 音圈电感 (单位:亨利)c u — 为振膜的振动速度 (单位:米)M MD — 振动系统等效质量(单位:千克) M MD =Me+Mc(音圈质量+振膜质量)MS R — 振动系统等效力阻(单位:牛顿·秒/米)C MS — 振动系统等效力顺 (单位:米/牛顿) Z MR — 振膜一面的辐射力阻抗(单位:牛顿·秒/米)Z MR =MR MR R j M ω+MR R —辐射力阻(单位:牛顿·秒/米)MR M =3083a ρ — 为振膜一面的同振质量0ρ= 1.183/Kg m (22℃) 空气密度a = 振膜的有效半径(单位:米)c f — 电动力(单位:牛顿)此时图8(a )中,在恒压源项中j ωL 项很小,略去。
喇叭测试曲线方法
喇叭测试曲线方法
喇叭测试曲线的制作方法是,首先在无反射消音室中,使用三维旋转水平仪对音箱进行测量。
这包括水平0-±180度,每隔10度的频响曲线,以及垂
直0-±180度,每隔10度的频响曲线。
一共测量72组频响曲线。
在远场测量中,低音是测不准的,因此需要改用地平面法或者近场测量方式,分别测量低音单元和倒相孔的频响,再进行计算机仿真合成。
最后水平曲线是这样的,得益于天台准消音室的环境,脉冲响应窗口可以拉长到10ms,截断频率是100Hz,尽可能获得轴向曲线的准确数据。
但即便如此,200Hz以下的频率测量数据已失去部分的精度。
然后把低音单元和
倒相孔频响进行混合,然后进行障板衍射补偿计算,最后合成出低音频响曲线进行拼接。
请注意,具体的测试和测量步骤可能因不同的设备、环境和技术而有所不同。
建议在专业工程师的指导下进行测试和测量,以确保准确性和可靠性。
扬声器单元测试方法和测试障板
扬声器单元测试方法和测试障板一、测试目的本测试目的在于确保扬声器单元的性能指标符合要求,提高产品的质量和稳定性。
二、测试准备1. 测试环境:测试应在无干扰、安静的环境中进行,确保测试结果的准确性。
2. 测试设备:包括扬声器单元、阻抗测试仪、失真度测试仪、频率分析仪等。
3. 测试材料:测试障板、标准音源、标记笔等。
三、测试方法和步骤1. 阻抗测试:使用阻抗测试仪连接扬声器单元,测量其阻抗值和随温度的变化情况。
确保阻抗值在正常范围内,并注意避免因温度变化引起的阻抗变化。
2. 失真度测试:使用失真度测试仪测试扬声器单元的失真度。
失真度是衡量扬声器单元音质的重要指标,应控制在一定范围内。
3. 频率响应测试:使用频率分析仪测试扬声器单元的频率响应。
频率响应是指扬声器单元对不同频率声音的响应曲线,应符合产品规格要求。
4. 指向特性测试:在一定范围内,改变扬声器的指向角度,观察其音质的变化情况。
这一指标对立体声音箱尤为重要,应符合产品规格要求。
5. 耐压测试:对于有外壳保护的扬声器单元,进行耐压测试,确保在一定电压下扬声器单元不会受损。
6. 障板测试:制作测试障板,放置在扬声器单元前方一定距离处,观察扬声器单元的音质变化情况。
障板距离一般以障板上的标记点为依据,进行不同的距离测试。
四、测试结果记录与分析1. 记录各测试指标的数据,包括阻抗值、失真度、频率响应、指向特性、耐压等。
2. 将数据与产品规格要求进行对比,分析扬声器单元的性能是否达标。
3. 对于未达标的扬声器单元,分析原因,如电路问题、材料问题等,并采取相应的措施进行改进。
4. 对于性能良好的扬声器单元,记录其特征参数,为后续产品生产提供参考。
五、测试总结与改进建议1. 根据测试结果,对未达标或表现优秀的扬声器单元进行总结,分析原因和改进方向。
2. 对于整体性能表现良好的扬声器单元,可考虑优化生产工艺和材料,提高产品质量和稳定性。
3. 对于存在问题的扬声器单元,根据问题性质和严重程度,提出相应的改进建议,如加强生产过程中的质量控制、改进生产工艺、更换材料等。
教你看懂音箱测试的频响曲线
前言:声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。
发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。
那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。
声卡的频响曲线:在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。
Frequency response(频率响应)[url=/images/html/viewpic_pconline.htm?http://img3.pconlin/pcon ...iy&subnamecode=home][/url]General performance: ExcellentFrequency range ResponseFrom 20 Hz to 20 kHz, dB -0.00, +0.01From 40 Hz to 15 kHz, dB -0.00, +0.00上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。
理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。
对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。
目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。
不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为24bit。
上图即是采用PCM编码方式192kHz/24bit的采样结果。
一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。
教你看懂音箱测试的频响曲线
教你看懂音箱测试的频响曲线声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。
发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。
那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。
声卡的频响曲线:在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。
Frequency response(频率响应)General performance: ExcellentFrequency range ResponseFrom 20 Hz to 20 kHz, dB -0.00, +0.01From 40 Hz to 15 kHz, dB -0.00, +0.00上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。
理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。
对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。
目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。
不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为24bit。
上图即是采用PCM编码方式192kHz/24bit的采样结果。
一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。
我们可以看到,从20Hz~30kHz的范围内,曲线都是相当平直的。
下面的成绩表也列出了测试参数,20 Hz to 20 kHz的曲线变化仅为-0.00, +0.01(dB);而40 Hz to 15 kHz则更为理想,精度范围内没有侦测出任何变形,是一条相当理想的频响曲线。
扬声器参数的测量原理
扬声器参数的测量原理
扬声器参数测量的原理是基于电声学的理论和基本原理。
1. 频率响应测量:频率响应是指扬声器在不同频率下输出的声音的强度。
通过将扬声器连接到音频发生器,在不同频率下发送恒定幅度的声音信号,然后使用麦克风接收扬声器输出的声音,通过频谱分析仪或示波器等设备测量声音的振幅和频率,从而得到扬声器在不同频率下的响应曲线。
2. 阻抗测量:阻抗是指扬声器在不同频率下对电流的阻碍程度。
通过连接扬声器到交流恒流发生器,然后测量扬声器两端的电压和电流的相位差,并计算出扬声器的电阻和电感或电容值,从而得到扬声器在不同频率下的阻抗曲线。
3. 灵敏度测量:灵敏度是指扬声器在特定输入功率下的输出声压级。
通过将扬声器连接到标准的功率放大器,并发送特定幅度的声音信号,然后使用声级计或示波器等设备测量输出的声压级,从而得到扬声器的灵敏度。
4. 谐波失真测量:谐波失真是指扬声器输出声音中含有与输入信号频率不同的倍频或谐波成分。
通过将扬声器连接到音频发生器,发送一个正弦波信号,并使用频谱分析仪或谐波分析仪等设备测量输出声音中的谐波成分的强度和频率,从而得到扬声器的谐波失真特性。
以上是常见的扬声器参数测量原理,不同的测量方法和仪器可能会有些差异,但
基本的原理和步骤大致相同。
喇叭 阻抗曲线和频响曲线的关系
喇叭阻抗曲线和频响曲线的关系
喇叭的阻抗曲线和频响曲线有着密切的关系。
阻抗曲线是指在不同频率下喇叭的电阻大小的变化情况。
喇叭是一个复杂的电路,其阻抗会随着频率的变化而变化,一般而言,随着频率的升高,喇叭的阻抗会逐渐增大。
频响曲线是指在不同频率下喇叭的输出声音的音量大小的变化情况。
通过对喇叭在不同频率下的输入信号进行测试,可以绘制出喇叭的频响曲线。
一般而言,喇叭会在特定频率范围内有较为平坦的响应,能够输出较为均衡的音频信号,而在高频和低频范围内响应会逐渐下降。
阻抗曲线和频响曲线的关系在于,阻抗曲线的变化会直接影响到频响曲线的形状。
例如,当喇叭的阻抗较低时,不同频率的输入信号能够更充分地驱动喇叭,使其输出声音较大,从而得到较为平坦的频响曲线。
相反,当喇叭的阻抗较高时,不同频率的输入信号驱动能力较弱,声音输出较小,频响曲线可能呈现出不均衡的形状。
因此,了解喇叭的阻抗曲线和频响曲线之间的关系,有助于设计和选择合适的驱动电路和信号源,以获得更好的音频输出效果。
喇叭声音的频率与波长的实验测量
喇叭声音的频率与波长的实验测量声音是我们日常生活中常见的物理现象之一,而频率和波长则是声音的两个重要特征。
在本实验中,我们将学习如何测量喇叭声音的频率和波长。
实验材料:- 喇叭- 示波器- 音频信号发生器- 电缆和连接线- 细尺、卷尺或测距仪实验步骤:1. 准备实验设备,将示波器和音频信号发生器连接起来。
确保连接线正常工作。
2. 设置音频信号发生器以发出所需频率的声音信号。
选择适当的频率范围,一开始可以选择100Hz到10kHz的范围。
3. 将示波器的探头连接到喇叭的输出端口上。
确保连接牢固并无松动。
4. 打开音频信号发生器和示波器,并将示波器调整为适当的水平和垂直缩放,以确保信号能够清晰可见。
5. 调节音频信号发生器的频率,逐步增加频率,直到在示波器上观察到稳定的波形。
6. 记下示波器上显示的频率数值。
这个数值代表喇叭声音的频率。
7. 将示波器调整为时间与电压的正比关系,即将示波器切换到频谱分析模式。
8. 观察示波器屏幕上的波形,并测量连续两个相同点之间的距离。
这个距离即为喇叭声音的波长。
实验注意事项:1. 在测量之前,请确保所有实验设备都正常工作并接线正确。
检查连接线是否插牢固,并排除故障。
2. 调节示波器和音频信号发生器时,慢慢调整,避免突然增加频率或幅度导致设备损坏或者观察不清楚。
3. 在观察示波器上的波形时,注意清晰度和稳定性。
如果波形不明确或抖动,可能需要调整示波器的设置或检查设备连接。
4. 在测量波长时,可以使用细尺、卷尺或测距仪等工具。
确保测量过程中的准确性。
5. 在进行实验时,最好保持实验室安静的环境,以减少外界干扰对测量结果的影响。
实验结果分析:通过上述实验步骤,我们可以得到喇叭声音的频率和波长数据。
根据声音的频率和波长之间的关系,可以计算出声速。
通过比较实验结果和理论值,我们可以进一步验证声速的测量方法和准确性。
总结:本实验通过测量喇叭声音的频率和波长,使我们更加深入了解声音的特性,并学习了测量频率和波长的实验方法。
喇叭相位曲线
喇叭相位曲线喇叭相位曲线是描述扬声器系统在不同频率下输出声波相位变化的图表。
相位是指声波振动周期中的特定时刻,通常以度数或弧度表示。
在扬声器系统中,不同频率的声音可能由于扬声器单元的物理特性、分频网络的设计、以及声波在空气中传播的速度差异等因素,导致相位差异。
喇叭相位曲线对于音频系统的设计和调校至关重要,因为它直接影响到声音的立体感和再现质量。
以下是关于喇叭相位曲线的一些详细解释:1. 相位曲线的绘制:相位曲线通常是通过使用相位计或具有相位测量功能的音频分析仪来绘制的。
测试时,扬声器系统会在一个已知频率范围内播放测试信号,同时测量每个频率点的相位响应。
测量结果会以曲线图的形式展现,横轴表示频率,纵轴表示相位。
2. 相位曲线的特点:理想的相位曲线是一条水平线,表示所有频率的相位延迟是恒定的。
实际上,由于扬声器单元的共振频率、分频点的设计等因素,相位曲线往往呈现出非线性变化。
在分频点附近,相位曲线可能会有较大的跌落或上升,这通常是分频网络设计和扬声器单元响应不一致的结果。
3. 相位曲线的影响:相位曲线的不平直会导致声波在不同频率下的到达时间不一致,从而影响声音的相位一致性。
在多扬声器系统中,如果各个扬声器的相位曲线不一致,可能会导致声场的混乱,影响立体声效果。
相位曲线的异常可能会导致某些频率的声波相互抵消,产生频率响应的凹陷,影响声音的平衡性。
4. 相位曲线的校正:通过使用延迟线或数字信号处理技术,可以对扬声器系统的相位曲线进行校正。
校正的目的是使相位曲线尽可能平直,尤其是在人耳敏感的中频范围内。
相位校正通常与频率响应校正同时进行,以确保声音的准确再现。
5. 相位曲线与频率响应的关系:相位曲线和频率响应曲线通常是同时测量的,因为它们之间存在关联。
一个好的扬声器系统应该在广泛的频率范围内具有平坦的相位响应和频率响应。
6. 相位曲线的测量条件:相位曲线的测量应该在控制的环境中进行,以避免房间声学对测量结果的影响。
扬声器的主要技术参数测量方法
扬声器的主要技术参数及测量方法一、极性1、极性标志扬声器输入端的极性标志是指在扬声器输入端馈入信号时,扬声器膜片产生运行的方向与输入端所加信号极性之间关系的标志。
2、测量方法按规定馈给扬声器以瞬时直流电压,引起膜片向扬声器前方运行时,与电压正极相连接的输入端为扬声器正极,用红色或符号:“+”表示。
二、纯音检听1、特性解释在额定频率范围内,馈给扬声器以规定电压的正弦信号,检查扬声器的装配质量。
2、测量方法(1、)扬声器单元检听馈给扬声器正弦信号的电功率为二分之一额定噪声功率:U= WRn/2,一般在0.3m处检听,在此距离内应无反射物(试听室)。
扬声器单元不另加负载。
注:A、全频带及低频扬声器检听时,应从共振频率允许偏差下限向高频扫频。
B、中频、高频扬声器检听时,应从分频点频率开始向高频扫频。
C、高顺性扬声器检听时,可以在产品标准规定的声负载上进行。
应从共振频率允许偏差下限开始向高频扫频。
D、为便于检查垃圾声、碰圈声和机械声,在共振频率Fo附近必须检听,但可以规定馈给扬声器以较低的信号电压。
2 、扬声器系统检听馈给扬声器系统的正弦信号电压及检听距离由标准规定。
检听时由系统的下限频率开始向高频扫频,有衰减器时,一般将衰减器置于频率响应的平直位置或产品标准规定的位置。
三、额定阻抗扬声器的额定阻抗是一个由制造厂规定的纯电阻值,在确定信号源的有效电动率时,用它来代替扬声器。
额定阻抗是指阻抗曲线上紧跟在第一个极大值后面的极小值。
在额定频率范围内,阻抗模值的最低值一般不应小额定阻抗的80%(一般取±20%公差,例8±20%Ω)。
上面提到阻抗曲线----把阻抗值表示为频率的函数。
(如下图)额定阻抗的测试方法:用替代法进行,馈给扬声器的电流通常选用50mA±10%,测量原理图如下:测量时开关K先接通被测扬声器。
在扬声器辐射面前0.3m内应无反射物。
递增信号频率,若无其它规定,使频率停留在有效值电压表指示的第一个极大值后面的极小值处,然后将开关K接通Rk并调节电阻Rk,当电阻Rk上的电压与被测扬声器上的电压一致时,所指示的Rk值即可用于判定是否符合额定阻抗规定的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬声器单元频响曲线的测量
Gate 法测量
所谓 Gate 法,就是对测量信号设置一个时间窗,软件的只在时间窗限定的时间段进行信号的采集, 也就是说,如果我们正确的设置了时间窗,在反射声到达 MIC 之前截至测量,那么,软件接受的就只有测量信号的直达声,并能够绘制正确的频响曲线。
请看下图。
图一
图中 A 为直达声, B 为反射声,只要在 A 到达而 B 还未到达的这段时间进行测量,就能够正确测量出频响曲线,时间窗就是软件屏蔽掉反射声的一个手段,也就是Gate 法。
看下图
图二
图二就是时间窗设定的对话框,在菜单/Options/Preferences… 中, Time 框中“ Visible ”为时间窗可见,第一个时间是时间窗的起始点,第二个时间是时间窗的终结。
请看下图
图三
图二的时间窗的设定就是根据图三的这张脉冲信号进行设定的。
图中第一个红线之前的不是直达声, 所以被屏蔽掉了, 4—5毫秒之间的那个很大的脉冲就是直达声,接下来看第二根红线后面紧跟一个较小的脉冲但很明显,那就是反射声,这样在图三两根红线之间就只剩下直达声了,软件中一些用到 Gate 法测量的曲线如:On Axis, 30 Degrees, 60 Degrees等,都是在时间窗限定的时间段内完成测量并绘制曲线的。
所以,如何正确的设定时间窗是 Gate 法的关键。
首先,对所测单元或箱体进行一个脉冲信号的测量,将硬件按照频响曲线测量的连接方式进行连接, 软件方面,先调出所测资源 (单元或箱体 ,选择菜单的
Measure/Pulse response,这样,软件对应所测资源生成一个脉冲信号,因为本例使用的是 f5单元,所以图三信号的名称为 f5.Pulse 。
调出刚测出的脉冲信号,由于脉冲的幅度相当小,刚调出时可能看不到,先 zoom out,然后用鼠标在 0附近画框,不断的放大, 直到看到较明显的脉冲信号为止, 调整到像图三一样容易分析为止。
按照上面的设
定方法保留直达声部分,并到图二的菜单中设定好时间,然后就可以进行 On Axis曲线的测量了。
注意:尽可能的把时间窗设的长一些, 图三中在直达声和第一根红线之间其实还是由一些细小的干扰信号,但对结果无大碍,所以把这一段也包括在内了,目的就是为了获得更多的采样点,而且,时间窗越长,所测信号低频段的有效值就越低,像图三时间段由 6ms 多一点,理论上其侧得信号低频段到 156Hz 都有效。