求数列通项公式的方法(教案例题习题)

合集下载

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二. 四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三. 求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四. 求数列通项的基本方法是:累加法和累乘法。

五. 数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1. ---------------------------------------------- 适用于:。

心=“"+/(,?)这是广义的等差数列累加法是最基本的二个方法之一。

2. 若%+]-%= /(〃)(〃 > 2),«2 - a\ =/(1)则I*)两边分别相加得。

心一明 =文/0?)A.1例1已知数列{%}满足。

心=% + 2n + 1, %=1,求数列{%}的通项公式。

解:由S =缶+2// + 1得《土一%= 2〃 +1则% =(% 一%)+(%.| - %.2)+ •・• +(% - 务)+(% - 角)+ % =[2(〃一1) + 1] + [2(〃一2)+ 1] +…+ (2x2 + 1) +(2x1+ 1) + 1 =2[(〃一1) + (〃一2)+ …+ 2 +1] + (〃一1) +1(fi-l)n ,八, =2 +(〃一1) + 1=(〃一1)(〃+ 1) + 1=,?-所以数列{劣}的通项公式为% =〃七例2已知数列{%}满足%|=%+2x3"+l,《=3,求数列{丹}的通项公式。

解法一:由““I =ci n +2x3" +1 得为+[ -%=2x3" +1 则% =(% 一《I)+ (%| —《一2)+ • • • + (% - 缶)+(缶一妃 + % =(2X3”T +1)+(2X3"-2 +1)+ ...+(2x3?+ l) + (2x3】+1) + 3= 2(3/,-1+3n-2+.-- + 32+31) + (n-l) + 33(1—3”T)=2•- ]-、一 + (〃_1) + 3=3”一3+ 〃一1 + 3=3”+〃一1所以a n = 3" +〃一1.解法二:“,*=3%+2x3”+1两边除以3”“,得参=3 + : +名,an =(% _ 4-1)+(勺― , 3-2 %-3a3〃 3" )+(22^_4)+ ・.. +(查一 *%】a . 3〃-2 明 3〃-3 32 313/2 1、,2 1、,2 1、 2 13(—+ ) + ( — + r) + (— H + ■ . ■ + (— + -^r) + —3 3” 3 3〃-】 3 3心 3 32 32(n-1) ,11 1 11、「3 3" 3〃 3”-' 3〃-2 323“ 因此色=翌1 +剥一3")+1=空+- 1-33 2 2x3〃3〃32 1 1贝 ij a n = —x 〃x3" + —x3"——・3 2 2评注:已知4 =",匕由一。

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案

数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。

我们逐个讲解一下这些重要的方法。

递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。

这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。

(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。

累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

数列通项公式的常用方法及例题

数列通项公式的常用方法及例题

数列通项公式的常用方法及例题一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、n s 与n a 的关系式法:⎩⎨⎧≥-==-2,1,11n S S n S a n n n 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .三、累加法:()n f a a n n =--1,()的函数是一个关于n n f例4:12,011-+==+n a a a n n ,求通项n a四、累乘法:()1n n a f n a -=,()的函数是一个关于n n f 例5:111,1n n n a a a n -==- ()2,n n N *≥∈ 求通项n a五、构造法: ㈠、两边加常数:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:处理方法:设1n n a ka b λλ-+=++ 则1()n n b a k a kλλ-++=+ b k λλ+=令 1b k λ∴=- 111111n n n n b b a k a k k b a k k b a k --⎛⎫∴+=+ ⎪--⎝⎭+-∴=⎛⎫+ ⎪-⎝⎭ ∴数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 为公比,11b a k +-以为首项的等比数列,借助它去求n a 例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a(二)两边加指数函数式:在数列{}n a 中有m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)型的数列求通项n a . 处理方法:两边同除以1+n c,得到一个“1n n a ka b -=+”型的数列,再用上面(一)方法处理,便可求出nn c a 的通式,从而求出n a . 例7:{}1113,232,.n n n n n a a a a a ++==+数列满足:求(三)、取倒数法:适用于11n n n ka a ma p --=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例8:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a(四)、取对数法:适用于1(2)p q n n a a n -=≥(,p q 为非零常数) 例9:已知()2113,2n n a a a n -==≥ 求通项n a能力提升1.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .642.已知数列{a n }满足a 1=0,a n +1=a n +2n ,则a 2 013等于( )A .2 013×2 014B .2 012×2 013C .2 011×2 012D .2 013×2 0133.已知数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2x n(n ≥2),则x n 等于( ) A .(23)n -1 B .(23)n C.n +12 D.2n +14.已知数列{a n }中a 1=1,a n =12a n -1+1(n ≥2),则a n =( ) A .2-(12)n -1 B .(12)n -1-2 C .2-2n -1 D .2n -1 5.若数列{a n }的前n 项和为S n =32a n -3,则这个数列的通项公式a n =( ) A .2(n 2+n +1) B .2·3n C .3·2n D .3n +16.在数列{a n }中,a 1=3,a n +1=a n +()11+n n ,则通项公式a n =________. 7.已知数列{a n }的首项a 1=12,其前n 项和S n =n 2a n (n ≥1),则数列{a n }的通项公式为 8.在数列{a n }中,a 1=1,当n ≥2时,有a n =3a n -1+2,则a n =________.9.在数列{a n }中,a 1=2,a n =2a n -1+2n +1(n ≥2),则a n =________.10.若数列{a n }满足a 1=1,a n +1=2n a n ,则数列{a n }的通项公式a n =________.11.已知{a n }满足a 1=1,且a n +1=a n 3a n +1(n ∈N *),则数列{a n }的通项公式为________. 12.数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足: a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1,求数列{b n }的通项公式.。

求数列的通项公式列(教案+例题+习题)

求数列的通项公式列(教案+例题+习题)

求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。

2. 学会求解数列的通项公式,并能应用于实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。

2. 教学难点:数列通项公式的推导和应用。

四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。

2. 利用例题,演示数列通项公式的应用过程。

3. 布置习题,巩固所学知识。

五、教学过程1. 引入数列的概念,讲解数列的基本性质。

2. 讲解数列通项公式的求法,引导学生掌握求解方法。

3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。

4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。

5. 总结本节课的重点内容,布置课后作业。

教案结束。

例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。

解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。

将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。

该数列的通项公式为an = n/2 + 1/2。

习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。

2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。

3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。

4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。

5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。

六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。

2. 学习利用函数的方法求解数列的通项公式。

3. 提升学生分析问题、解决问题的能力。

数列的通项公式的求法以及典型习题练习

数列的通项公式的求法以及典型习题练习

数列的通项公式的求法以及典型习题练习数列解题方法与研究顺序一、累加法累加法是最基本的两个数列解题方法之一,适用于广义的等差数列,即an+1=an+f(n)。

1.若an+1-an=f(n)(n≥2),且a2-a1=f(1),则可得an+1-a1=∑f(n)(k=1至n)。

例1:已知数列{an}满足an+1=an+2n+1,a1=1,求数列{an}的通项公式。

解:由题可知,f(n)=2n+1,故an+1-an=f(n)=2n+1,且a2-a1=f(1)=3.根据累加法得an+1-a1=∑f(n)=∑(2n+1)=n(n+1)+n= n^2+2n,即an=n^2+2n。

所数列{an}的通项公式为an=n^2+2n。

2.若an+1-an=f(n),则可得an+1/an=f(n)。

例2:已知数列{an}满足an+1=an+2×3+1,a1=3,求数列{an}的通项公式。

解:由题可知,f(n)=2×3+1=7,故an+1-an=f(n)=7.根据累乘法得an+1/an=f(n)=7,即an=3×7^(n-1)。

所以数列{an}的通项公式为an=3×7^(n-1)。

二、累乘法累乘法是最基本的两个数列解题方法之二,适用于广义的等比数列,即an+1=f(n)×an。

1.若an+1/an=f(n),则可得an+1/an=∏f(k)(k=1至n)。

例3:已知数列an=an-1/n,a1=2,求数列的通项公式。

解:由题可知,f(n)=1/n,故an+1/an=f(n)=1/n。

根据累乘法得an+1/an=∏f(k)=∏(1/k)=1/n。

即an=n!/n。

所以数列的通项公式为an=n!/n。

2.若an+1/an=f(n),则可得an+1×an=f(n)。

例4:已知数列{an}满足an+1=2(n+1)5×an,a1=3,求数列{an}的通项公式。

解:由题可知,f(n)=2(n+1)5,故an+1/an=f(n)=2(n+1)5.根据累乘法得an+1×an=∏f(k)=∏2(k+1)5=2^(n+1)×3^(n(n+1)/2),即an=3^n×2^(n-1)。

特色专题一:数列通项的求法(讲义+典型例题+小练)(原卷版)

特色专题一:数列通项的求法(讲义+典型例题+小练)(原卷版)

特色专题一:数列通项的求法(讲义+典型例题+小练)题型一:观察法观察法:找项与项数的关系,然后猜想检验,即得通项公式a n ; 例1:1.数列2468,,,,3579⋯的第10项是( ) A .1415B .1617C .1819D .2021举一反三1.(2022·全国·高三专题练习)数列1111,,,,57911--的通项公式可能是a n =( )A .1(1)23n n --+B .1(1)32n n --+C .(1)32nn -+D .(1)23nn -+3.写出下面各数列的一个通项公式. (1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….二,公式法等差数列1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. (2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.通项公式的变形:①()n m a a n m d =+-;②n ma a d n m-=-.通项公式特点:1()na dn a d =+-),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。

例2:1.在等差数列{}n a 中,已知28a =-,44a =-,则12a =( ) A .10 B .12 C .14 D .16举一反三:1.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.求公差d 及{}n a 的通项公式; 等比数列:1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.(2)符号表示:1n na q a +=(常数) 2、通项公式(1)、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. (2)、通项公式的变形:①n m n m a a q -=;②n m nma q a -=. 例3:1.已知等差数列{}n a 中,22a =,156a a +=. 求{}n a 的通项公式;举一反三:1.在等比数列{}n a 中,(1)已知13a =,2q =-,求6a ; (2)已知320a =,6160a =,求n a .三.递推公式为n S 与n a 的关系式。

高三数学常见递推数列通项公式的求法典型例题及习题

高三数学常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题【典型例题】[例1] b ka a n n +=+1型。

(1)1=k 时,}{1n n n a b a a ⇒=-+是等差数列,)(1b a n b a n -+⋅=(2)1≠k 时,设)(1m a k m a n n +=++∴m km ka a n n -+=+1 比较系数:b m km =-∴1-=k b m ∴}1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a ∴11)1(1-⋅-+=-+n n k k b a k b a ∴1)1(11--⋅-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。

(1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。

例:已知}{n a 满足11=a ,)1(11+=-+n n a a n n 求}{n a 的通项公式。

解: ∵111)1(11+-=+=-+n n n n a a n n ∴n n a a n n 1111--=--112121---=---n n a a n n213132---=---n n a a n n …… 312123-=-a a 21112-=-a a对这(1-n )个式子求和得:n a a n 111-=-∴n a n 12-=(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴A B k An k ka a n n --+-+=+)1()1(1∴⎩⎨⎧=--=-b A B k a A k )1()1(解得:1-=k a A ,2)1(1-+-=k a k b B ∴}{B An a n ++是以B A a ++1为首项,k 为公比的等比数列∴11)(-⋅++=++n n k B A a B An a∴B An k B A a a n n --⋅++=-11)(将A 、B 代入即可 (3)nq n f =)((≠q 0,1) 等式两边同时除以1+n q 得q q a q k qa n n n n 111+⋅=++ 令n n n q a C =则q C q k C n n 11+=+∴}{n C 可归为b ka a n n +=+1型[例3] n n a n f a ⋅=+)(1型。

数列通项公式的完整求法,还有例题详解

数列通项公式的完整求法,还有例题详解

一.观察法之答禄夫天创作例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n的关系。

二、公式法:当已知条件中有a n 和s n 的递推关系时,往往利用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式。

例1: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3=f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例 2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公差位d ,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a , 解得⎩⎨⎧±==243d a ,又{}n a 是递减数列, ∴2-=d,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D)。

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

求数列通项公式的常用方法

求数列通项公式的常用方法

1 1 数列 是以 1, 公差为 3 的等差数列. a1 an 1 1 1 (n 1) 3,即 3n 2 an an 1 (n N ) an 3n 2 2an 变式练习:知数列 an 中满足 a1 1 , an 1 ,求数列的通项. 3an 1
然还有特征方程法等等。 以上这些方法大部分属于模型,需要理解、记忆,并在实践中加以适当的训练,才能做 到得心应手,迅速解题。 数列问题对学生能力要求较高,如考查的运算能力、转化能力、归纳猜想能力、逻辑推 理能力等,这与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与 学的过程中,既要加强基本知识、基本方法、基本技能和基本思想的学习,又要注意培养和 提高数学素质与能力和创新精神。在实际学习中,应注意多加总结和反思,通过对条件与结 论的综合分析、研究,注意联想和对比分析,做到触类旁通地求解数列通项公式。
an2 2an1 3 ②-①得 an2-an= ( 2 an1 an) a an1 2 n2 an1 an 又 a2 2a1 3 1


例题 6:已知数列 an 中满足 a1 1 , an 1
an ,求数列的通项 an . 3an 1 Can 分析:可将形如一阶分式递推公式 an 1 ,(A、B、C 为满足条件的常数),等式 Aan B 1 B 1 A 两边取倒数得: . ,又可利用求形如 an1 A ' an B ' (A’、B’为常数) an 1 C an C
项的规律,再进行归纳、猜想出通项,最后予以证明,例如:数列 an 满足 a1=4, an =4 - 另外,数列通项求法还有数学归纳猜想法,可以先求出数列的前 n 项,然后观察前 n

求数列通项公式常用的几种方法

求数列通项公式常用的几种方法

求数列通项公式常用的几种方法一、公式法:已知数列{a n}为等差或等比数列,根据通项公式a n=a1+(n-1)d或a n=a1q n-1进行求解.例1:已知{a n}是一个等差数列,且a2=1,a5=-5,求{a n}的通项公式.二、前n项和法:已知数列{a n}的前n项和s n的解析式,求a n.例2:已知数列{a n}的前n项和s n=2n-1,求通项a n.三、s n与a n的关系式法:已知数列{a n}的前n项和s n与通项a n的关系式,求a ns n,其中a1=1,求a n.例3:已知数列{a n}的前n项和s n满足a n+1=13四、累加法:当数列{a n}中有a n-a n-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,就可以用这种方法. 例4:a1=0, a n+1=a n+2(n-1),求通项a n=f(n),即第n项与第n-1项的商是个有“规律”的数时,就可以用这种方法.五、累乘法:当数列{a n}中有a na n−1例5:a1=1,a n=na n-1(n≥2),求通项a nn−1六、构造法:(一)、配常数法:在数列{a n}中有a n=ka n-1+b(k,b均为常数且k≠0),从表面形式上来看a n是关于a n-1的“一次函数”的形式,这时用下面的方法:一般化方法:设a n +m=k(a n-1+m) 则{a n +m}成等比数列例6:已知a1=1,a n=2a n-1+1(n≥2),求通项a n(二)配一次函数法:在数列{a n}中有a n=ka n-1+bn+c(k,b,c均为常数且k≠0),这时用下面的方法:一般化方法:设a n+tn+u=k(a n-1+t(n-1)+u)则{a n+tn+u}成等比数列例7:已知a1=1,a n=2a n-1+3n-2 (n≥2),求通项a n(三)、取倒数法:这种方法适用于a n =ka n−1man−1+p , (n ≥2)(k,m,p 均为常数m ≠0),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于a n =ka n-1+b 的式子. 例8:已知a 1=2,a n =2a n−1a n−1+2 (n ≥2),求通项a n(四)取对数法:一般情况下适用于a n k =a n−1l (k,l 为非零常数)例9:已知a 1=3,a n =a n−12(n ≥2) 求通项a n练习:1、已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+,,求}{n a 的通项公式.2、已知}{n a 中,n n a n n a 21+=+,且21=a ,求数列}{n a 的通项公式.3、已知下列各数列}{n a 的前n 项和n S 的公式为)(23S 2*∈-N n n n n =,求}{n a 的通项公式。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学xx、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其xx形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于: ----------这是xx 的等差数列 累加法是最基本的二个方法之一。

2.若,则两边分别相加得例1 已知数列满足,求数列的通项公式。

解:由得则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列的通项公式为。

例2 已知数列满足,求数列的通项公式。

解法一:由得则所以解法二:两边除以,得,则,故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++ 因此,则评注:已知,,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。

数列通项公式方法大全

数列通项公式方法大全

1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求数列的通项公式的方法
1.定义法:①等差数列通项公式;②等比数列通项公式。

例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,
2
55a S =.求数列{}n a 的通项公式.
解:设数列{}n a 公差为)0(>d d
∵931,,a a a 成等比数列,∴912
3a a a =,
即)8()2(1121d a a d a +=+d a d 12
=⇒
∵0≠d , ∴d a =1………………………………①
∵2
55a S = ∴211)4(2
4
55d a d a +=⋅⨯+
…………② 由①②得:531=
a ,5
3=d ∴n n a n 5
353)1(53=⨯-+=
点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

练一练:已知数列 ,32
1
9,1617,815,413试写出其一个通项公式:__________;
2.公式法:已知n S (即12()n a a a f n ++
+=)求n a ,用作差法:
{
11,(1)
,(2)
n n n S n a S S n -==-≥。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n
n n .求数列{}n a 的通
项公式。

解:由1121111=⇒-==a a S a
当2≥n 时,有
,)1(2)(211n
n n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-
,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-
].)1(2[3
2
3
]
)2(1[2)
1(2
)]2()2()2[()1(21211
211--------+=----=-++-+--+=n n n n
n n n n n
经验证11=a 也满足上式,所以])1(2[3
212
---+=
n n n a 点评:利用公式⎩⎨
⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2
1
1n S S n S a n n n n 求解时,要注意对n 分类讨论,但若
能合写时一定要合并.
练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ;
②数列{}n a 满足1115
4,3
n n n a S S a ++=+=
,求n a ;
3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)()
,(2)
(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

如数列}{n a 中,,11=a 对所有的2≥n 都有2
321n a a a a n = ,则=+53a a ______ ;
4.累加法:
若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。

例3. 已知数列{}n a 满足211=a ,n
n a a n n ++=+211
,求n a 。

解:由条件知:1
1
1)1(1121+-=+=+=
-+n n n n n n a a n n
分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即
)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a
)111()4131()3121()211(n
n --+⋅⋅⋅⋅⋅⋅+-+-+-=
所以n
a a n 1
11-=-
211=a ,n
n a n 1231121-=-+=∴
如已知数列{}n a 满足11a =,n
n a a n n ++=
--111(2)n ≥,则n a =________ ;
5.累乘法:已知1()n n a f n a +=求n a ,用累乘法:12
112
1
n n n n n a a
a a a a a a ---=⋅⋅⋅
⋅(2)n ≥。

例4. 已知数列{}n a 满足321=a ,n n a n n
a 1
1+=
+,求n a 。

解:由条件知
1
1+=+n n
a a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即
1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n
n 1
433221-⨯
⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,n
a n 32=∴
如已知数列}{n a 中,21=a ,前n 项和n S ,若n n a n S 2
=,求n a
6.已知递推关系求n a ,用构造法(构造等差、等比数列)。

(1)形如1n n a ka b -=+、1n
n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法
转化为公比为k 的等比数列后,再求n a 。

①1n n a ka b -=+解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中
p
q
t -=
1,再利用换元法转化为等比数列求解。

例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .
解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即
321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且
23
3
11=++=++n n n n a a b b 所以{}n b 是以41=b 为首项,2为公比的等比数列,则1
1224+-=⨯=n n n b ,所以
321-=+n n a .
②1n n n a ka b -=+解法:该类型较类型3要复杂一些。

一般地,要先在原递推公
式两边同除以1
+n q
,得:
q q a q p q a n n n n 111+∙=++引入辅助数列{}n b (其中n
n
n
q a b =),得:q
b q p b n n 1
1+=
+再应用1n n a ka b -=+的方法解决.。

例6. 已知数列{}n a 中,651=
a ,1
1)2
1(31+++=n n n a a ,求n a 。

解:在11
)21(31+++=n n n a a 两边乘以12+n 得:1)2(3
2
211+∙=∙++n n n n a a
令n n
n a b ∙=2,则1321+=
+n n b b ,应用例7解法得:n n b )3
2(23-= 所以n
n n
n n b a )31(2)21(32
-==
练一练①已知111,32n n a a a -==+,求n a ;
②已知111,32n
n n a a a -==+,求n a ;
(2)形如1
1n n n a a ka b
--=+的递推数列都可以用倒数法求通项。

例7:1,1
3111
=+⋅=
--a a a a n n n
解:取倒数:
1
1113131---+=+⋅=n n n n a a a a ⎭
⎬⎫⎩⎨⎧∴n a 1是等差数列,3)1(111⋅-+=n a a n 3)1(1⋅-+=n 231
-=⇒n a n
练一练:已知数列满足1a =1
=n a ;
数列通项公式课后练习
1已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N +
)求数列{}n a 的通项公式。

2已知数列{}n a 中,a n >0,且a 1=3,1+n a =n a +1 (n ∈N +

3已知数列{}n a 中,a 1=3,a 1+n =2
1a n +1(n ∈N +
)求数列{}n a 的通项公式
4已知数列{}n a 中,a 1=1,a 1+n =3a n +2,求数列{}n a 的通项公式
5已知数列{}n a 中,a n ≠0,a 1=21,a 1+n =n
n a a 21+ (n ∈N +
) 求a n
6设数列{}n a 满足a 1=4,a 2=2,a 3=1 若数列{}n n a a -+1成等差数列,求a n
7设数列{}n a 中,a 1=2,a 1+n =2a n +1 求通项公式a n
8已知数列{}n a 中,a 1=1,2a 1+n = a n + a 2+n 求a n。

相关文档
最新文档